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3.  The implications of electric vehicle uptake for non-exhaust emissions 

This chapter estimates the non-exhaust PM emission factors from electric vehicles and 

compares these factors with those of internal combustion engine vehicles. Assuming 

lightweight EVs (i.e. with battery packs enabling a driving range of about 100 miles), the 

report finds that EVs emit an estimated 11-13% less non-exhaust PM2.5 and 18-19% less 

PM10 than ICEVs. Assuming that EV models are heavier (with battery packs enabling a 

driving range of 300 miles or higher), however, the report finds that they reduce PM10 by 

only 4-7% and increase PM2.5 by 3-8% relative to conventional vehicles. Additional 

simulations indicate that the uptake of electric vehicles will lead to very marginal 

decreases in total PM emissions from road traffic in future years. In scenarios where 

electric vehicles comprise 4% and 8% of the vehicle stock in 2030, their penetration 

reduces PM emissions by 0.3%-0.8% relative to current levels.  

 

The direct and indirect implications of vehicular emissions on the environment and human 

health indicate that current transportation systems based on the use of conventional 

vehicles are unsustainable from social, environmental and economic perspectives. Electric 

vehicles are widely regarded as a solution to many of the negative impacts of their 

conventional counterparts. Given their potential to reduce local air pollution and 

greenhouse gas emissions, consumers, businesses, and governments are increasingly 

supportive of electric vehicles (Requia et al., 2018[1]), which has led to rising shares of new 

vehicle sales around the world.  

According to the IEA Global EV Outlook 2018 (IEA, 2018[2]), sales of new electric 

vehicles, including battery electric vehicles (BEVs), plug-in hybrid electric vehicles 

(PHEVs) and fuel-cell electric vehicles (FCEVs) passed 1 million units in 2017,  54% more 

than in 2016. More than half of new electric vehicles were sold in China, where their 

market share amounted to 2.2% in 2017. Twice as many cars were sold in China as in the 

United States, the second-largest electric car market.  

Growth in the EV market has been driven by technological improvements that improve 

performance and reduce costs, as well as by policy support. To the extent that technological 

improvements are widely available, differences in EV uptake across markets is best 

explained by differing degrees of policy support in place in these markets. The largest EV 

markets by volume (China) and sales share (Norway), for example, are both characterised 

by highly supportive policy environments. This is true for light-duty vehicles (LDVs) as 

well as for buses and two-wheelers.  

Looking to the future, strong policy signals in favour of EVs include electric car mandates 

in China and California, as well as the European Union’s recent proposal on carbon dioxide 

emissions standards for 2030 (IEA, 2018[3]). Electrification targets announced by a number 

of countries and major cities worldwide also point to continued growth in EV uptake in the 

coming years. The IEA (2018[3]) foresees two possible scenarios of EV penetration 

worldwide. In the New Policies Scenario, which takes into account existing and announced 
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policies, the number of electric light-duty vehicles on the road reaches 125 million by 2030. 

Should policy ambitions continue to rise to meet climate goals and other sustainability 

targets, as in the EV30@30 Scenario, then the number of electric LDVs on the road could 

be as high as 220 million in 2030, consisting of 130 million battery electric and 90 million 

plug-in hybrid vehicles, respectively. 

3.1. Evidence on the impact of electric vehicle use on particulate emissions 

3.1.1. Impacts on particulate emissions levels 

Since BEVs do not emit tailpipe emissions, the adoption of these vehicles is generally 

viewed as a highly effective measure for improving air quality. Although increasing the 

market share of EVs is an important part of achieving environmental goals, their 

implications for non-exhaust emissions remain less well-understood than their implications 

for exhaust emissions. 

In a recent review, Requia et al. (2018[1]) assessed 4734 studies on the impact of a shift to 

greater EV use. Of the 65 studies that fulfilled the inclusion criteria for the review, the 

authors concluded that while the benefits of EVs with respect to exhaust emissions of a 

number of air pollutants are well-established, less evidence exists regarding the impact of 

EV use on PM emissions: these impacts appear to be particularly dependent on context.1 

Since Requia et al. (2018[1]), PM10 and PM2.5 emissions have been studied in 11 papers 

16 papers, respectively. Some studies find that EVs offer moderate potential for reductions 

in PM emissions.2  

In Ireland, Alam et al., (2018[4]) addressed the co-benefits of climate change mitigation 

policies to reduce the air pollution (PM2.5) and climate change (CO2) impacts of passenger 

cars, using a scenario-based approach, disaggregating road traffic PM2.5 in exhaust and 

brake, tyre and road abrasion. The results revealed that CO2 emissions continuously 

decreased in the projection period, however, reductions of PM2.5 reversed from the year 

2028 due to increases in the non-exhaust component of PM2.5 emissions. Under the two 

alternative scenarios, a 9-15% reduction in PM2.5 could be achieved by 2035. The analysis 

suggests that non-exhaust PM2.5 was found to have a larger share of total emissions (as 

much as 34 times that of exhaust emissions) in 2035 in a scenario in which passenger cars 

with alternative drivetrains comprised a major part of the vehicle fleet. In the Yangtze 

River Delta region in China, Ke et al. (2017[5]) estimated that a scenario with 20% of 

private light-duty passenger vehicles and 80% commercial passenger vehicles electrified 

with BEV could reduce average total PM2.5 concentrations by 0.4 to 1.1 μg/m3. 

3.1.2. Determinants of PM emissions impacts 

Vehicle weight  

Heavier vehicles require greater amounts of energy for acceleration and deceleration, 

implying greater wear rate of brakes and tyres (Carslaw, 2006[6]).  The recent UK 

government Survey “Call for Evidence on non-exhaust emissions” acknowledged that data 

on tyre wear from EVs was lacking or not publically available. Nonetheless, many 

respondents assumed that increased EV weight would lead to increased tyre wear, and 

possibly higher particulate emissions, although no direct evidence of this was provided. 

Van Zeebroek and De Ceuster (2013[7]) compared the weight (mass in running order) of 

20 battery electric passenger cars to the average weight of conventional vehicles in the 

same vehicle segment, finding that EVs are 22% heavier than the average of their market 

segments. However, comparing EVs to the average passenger car in a category is 

complicated by a number of issues (see also Timmers and Achten (2018[8])). First, there 
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are various classification systems available. This study used the EURO market segment 

classification, but vehicles can also be classified using the US EPA Size Class or EURO 

NCAP Class, which would produce different results. Second, EVs do not always fit well 

into a specific class. Finally, and most importantly, the vehicles in any vehicle class will 

vary significantly even within the class. They will have a range of dimensions, engine sizes, 

and features that renders isolating the impact of weight differences on PM emissions 

problematic.  

Another method of comparing the weight of EVs to ICEVs is by comparing EVs with their 

equivalent conventional models. This avoids classification problems and ensures that the 

vehicles are as similar as possible. Timmers and Achten (2016[9]) used this method to 

compare the mass in running order of nine EVs and their ICEV counterparts. On average, 

they found the difference in weight to be 24% and assume that road and tyre wear increase 

linearly with vehicle weight. 

The most appropriate comparison would be between vehicles that share identical 

specifications in all respects except for their drivetrains. However, EVs and ICEVs often 

have different specifications in terms of materials used, range, top speed, trailer load, types 

of tyres, and brakes, among others. Moreover, the increased weight due to the addition of 

battery pack depends on a number of characteristics (battery density, efficiency and km 

range) which vary from one segment to another and are also expected to evolve in the 

future. Finally, there is no evidence that two vehicles with the same size and shape but 

different weights have different emission factors for road dust resuspension. 

Hooftman et al. (2016[10]) assumed that BEVs had 10% higher emissions from tyre wear 

due to their increased weight and tyre type, but they do not specify the assumptions 

underlying this estimation. Other studies have assumed no difference in non-exhaust 

emissions between BEVs and ICEVs (Requia et al., 2018[1]; Soret, Guevara and Baldasano, 

2014[11]; Huo et al., 2015[12]).  

Regenerative braking 

Regenerative braking systems (RBS) are energy recovery mechanisms that slow a vehicle 

by converting its kinetic energy into a form which can be either used immediately or stored 

until needed. In these systems, the electric motor uses the vehicle's momentum to recover 

energy that would be otherwise lost to the brake discs as heat. This contrasts with friction 

braking systems, where the excess kinetic energy is converted to heat by friction in the 

brakes. In addition to improving the overall efficiency of the vehicle, RBS can greatly 

extend the life of the braking system, as its parts do not wear as quickly.  

On hybrid and electric vehicles, pressing the brake pedal has very different effects, as the 

strategy followed is mostly oriented to maximising the amount of energy recuperated 

through regenerative braking, i.e. using the electric circuits in reverse to transform kinetic 

energy into deceleration. The amount of regenerative energy that a system can produce is 

strictly related to the maximum power of the installed electric motor(s) and electronics, 

and to the capacity of the battery to receive the energy without degrading. Above a certain 

battery size, the energy of a braking event can be recovered, except in the case this happens 

with the battery still fully charged. It is therefore safe to assume, that fully electric vehicles 

have extremely low brake emissions (the pads are used mainly to keep the vehicle at a 

standstill). Hybrid vehicles also have relatively low brake wear emissions, proportional to 

the level of hybridisation (micro hybrids show practically no advantage from this point of 

view, since the added mass is likely to compensate for the reduced energy to be dissipated). 

Vice versa, for RBS-equipped vehicles with large batteries, vehicle mass has a low to 

negligible influence on brake wear. 
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Several estimates of the impact of RBS on brake wear PM emissions exist in literature. 

The Platform for Electro-Mobility (2016[13]) claims that RBS reduce brake wear by 25-

50%. Van Zeebroek and De Ceuster (2013[7]) assume that regenerative braking should 

reduce the PM emissions associated with brake wear by 50%. Timmers and Achten 

(2016[9]) assume a zero brake wear emissions from RBS-equipped vehicles, and Barlow 

(2014[14]) also suggests that regenerative braking produces virtually no brake wear. 

Hooftman et al. (2016[10]) state that EVs require about two-thirds (66%) less braking 

activity than ICEVs due to RBS. Their analysis is based on the service times of brake pads 

on Teslas, BMW i3s, and Nissan Leafs, which demonstrates that on average, the brake 

pads of these EVs last roughly two-thirds longer than those on diesel/petrol vehicles. They 

note that this outweighs the additional wear due to the vehicle’s mass. Ligterink et al. 

(2014[15]) assume regenerative braking reduces wear by up to 95%. Del Duce et al. 

(2016[16]) report that brake wear emissions fall by 80% for EVs, based on a report by 

Althaus and Gauch (2010[17]). Nopmongcol et al. (2017[18]) estimated a 25% reduction of 

brake wear.  

Road dust resuspension 

Out of many studies evaluating the relative environmental burden of BEVs and ICEVs, 

only a handful have analysed PM10 (Kantor et al., 2010[19]; Huo et al., 2013[20]; Nichols, 

Kockelman and Reiter, 2015[21]; Huo et al., 2015[12]; Peng et al., 2018[22]; Nopmongcol 

et al., 2017[18]; Wu and Zhang, 2017[23]; Hooftman et al., 2016[10]; Timmers and Achten, 

2016[9]), and of these, only six considered non-exhaust emissions. Road dust resuspension 

was included in only three studies. As evidenced in Section 2, road dust resuspension is 

currently understood to be the main source of non-exhaust PM10 emissions for road 

vehicles. This is confirmed both by emission inventories (Pachón et al., 2018[24]; Secretaria 

del Medio Ambiente de la Ciudad de Mexico, 2018[25]; DICTUC, 2007[26]; U.S. 

Environmental Protection Agency, 2019[27]), which consider primary particulates, as well 

as by source apportionment studies (Padoan and Amato, 2018[28]) which assess secondary 

PM from vehicle exhaust emissions.  

Given its importance as a source of non-exhaust PM10 emissions, road dust resuspension 

should be taken into account in vehicle emissions assessments. As evidenced by the 

literature inventoried in this report, non-exhaust emissions from road dust resuspension 

have been neglected in most studies to date (Van Zeebroeck and De Ceuster, 2013[7]; 

Hooftman et al., 2016[10]; Requia et al., 2018[29]). An exception is Soret et al. (2014[11]), 

who include an emission factor for resuspension of 88 mg/vkm, adjusted for rainfall but 

invariant to vehicle class. Timmers and Achten (2016[9]) have also corrected a base road 

dust EF of 40 mg/vkm used for ICEV, increasing it by 24% on the assumption of a linear 

relationship between vehicle weight and resuspension emissions. As already seen in 

Section 2, a relationship between vehicle weight and road dust emission factor is 

questionable as only aerodynamic features (size and shape) should affect resuspension 

from paved roads. 

Differences in findings are driven by differences in PM fractions of primary and secondary 

emissions, the emission processes under consideration, as well as the methodologies used 

for their estimation. A review of this literature reveals a number of factors that determine 

the amount of particulate matter emitted by BEVs vs. ICEVs.  

Secondary aerosols 

Secondary aerosols (SA) are formed in the atmosphere by gas-particle conversion 

processes such as nucleation, condensation and heterogeneous chemical reactions 

(Ziemann and Atkinson, 2012[30]; Zhang et al., 2007[31]; Carlton, Wiedinmyer and Kroll, 



   87 

NON-EXHAUST PARTICULATE EMISSIONS FROM ROAD TRANSPORT © OECD 2020 

  

2009[32]). Secondary aerosols are therefore not included in emission inventory and their 

contribution can only be estimated through PM chemical speciation (offline or online) or 

by air quality modelling. Only eight studies accounted for secondary PM from ICEVs when 

comparing their environmental burden with that of BEVs, using air quality modelling  

(Nopmongcol et al., 2017[18]; Ke et al., 2017[5]; Razeghi et al., 2016[33]; Tobollik et al., 

2016[34]; Tessum, Hill and Marshall, 2014[35]; Li et al., 2016[36]; Soret, Guevara and 

Baldasano, 2014[11]).  

Air quality models still have difficulties, however, in reproducing observed particulate 

matter (PM) concentration levels. This is mostly due to a poor representation of the organic 

aerosols fractions—primary and notably secondary—limiting the capability to assess the 

full air quality impact of ICEVs. Despite the substantial number of studies conducted 

during the last decades, the source apportionment of the secondary organic aerosols (SOA) 

fraction remains difficult, due to the complexity of the physicochemical processes 

involved. The selection and use of appropriate approaches are a major challenge for the 

atmospheric science community. 

3.2. Calculating primary and secondary PM from exhaust 

Primary PM emissions  

For ICEVs, EURO 6-temp emission factors for primary exhaust emissions of PM10 and 

PM2.5 are taken from (Ntziachristos and Samaras, 2018[37]), which is a widely used 

reference for emission reporting in EU. 

Secondary inorganic aerosol (SIA) formation  

While natural sources (seas and volcanoes) dominate SIA at a global scale, SIA at the urban 

scale are mainly due to anthropogenic (combustion) sources. Given the low-sulphur 

content of current fuels used in road transport in most regions of the world (CCAC, 

2016[38]), the road traffic contribution to SIA is generally comprised of NH4NO3 

(ammonium nitrate) formation from NOx (vehicles) and NH3 (mainly from agriculture) 

emissions. This report provides a range of estimates of SIAs from exhaust emissions using 

the LOTOS-EUROS source apportionment tool applied to European countries (as has been 

done for the Netherlands in Hendriks et al.  (2013[39])). LOTOS-EUROS is a CTM model 

incorporating a “labelling” tool, which involves tracking specific emissions from the 

source to the receptor, thus allowing for source apportionment analysis of secondary 

aerosols. The main advantage of this approach with respect to receptor models like PMF, 

is that the full (modelled) NH4NO3 is apportioned, while PMF is typically unable to do so. 

Source apportionment analysis was performed for European countries over one year 

(2018), which provided nitrate and elemental carbon (EC) concentrations (µg/m3) from 

LDV for each country. This allows for the estimation of a range of gas-to-particle 

conversion rates over a quite heterogeneous geographical domain, i.e. covering different 

climatic conditions and anthropogenic source types. The range for SIA emission factors 

was calculated as: 

𝑚𝑎𝑥𝑆𝐼𝐴𝑖𝑗 − 𝑚𝑖𝑛𝑆𝐼𝐴𝑖𝑗 = (𝑚𝑎𝑥
𝑁𝑂3𝑖

𝐸𝐶𝑖

− 𝑚𝑖𝑛
𝑁𝑂3𝑖

𝐸𝐶𝑖

) ∗
𝑁𝑂𝑥𝑗

𝑁𝑂𝑥𝑓𝑙𝑒𝑒𝑡

∗ 1.29 

where NO3i/ECi is the ratio between nitrate and elemental carbon due to LDV emissions 

for ith country, NOxj/NOxfleet is the ratio between the NOx emission factor for the jth vehicle 

type (e.g. diesel EURO6-temp) and the average NOx emission factor for the whole EU 

fleet, estimated based on Ntziachristos and Samaras (2018[37]) for emission factors, CARB 
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(2020[40]) for age composition and OICA (2020[41]) for fuels/classes distribution. The 

constant 1.29 is the molecular mass ratio between ammonium nitrate and nitrate. 

Secondary organic aerosols (SOA) formation 

Similarly to SIA, SOA are known to account for a significant fraction of airborne PM, with 

considerable impacts on air quality. The contribution of SOA to organic aerosols (OA) 

reaches up to 80% under certain atmospheric conditions (Carlton, Wiedinmyer and Kroll, 

2009[32]). Most organic aerosols (OA) in urban and rural atmospheres are speculated to be 

secondary in nature but their exact chemical composition remains uncertain (Shrivastava 

et al., 2007[42]; Zhao et al., 2013[43]). In contrast with SIA, SOA are formed from both 

biogenic (i.e. naturally occurring) and anthropogenic gaseous emission sources, even at the 

urban scale (Griffin et al., 1999[44]; Vidhi and Shrivastava, 2018[45]). Several 

methodologies currently used assess SOA levels and composition, including the elemental 

carbon (EC) tracer method, chemical mass balance method (CMB), SOA tracer method, 

radiocarbon (14C) measurement and positive matrix factorization (PMF). Another group 

of studies uses simulation chambers in which SOA formation is reproduced under 

controlled conditions (Platt et al., 2017[46]).  

In this report, we compiled the chemical factor profile of 26 PMF analyses carried out in 

the US in which authors were able to separate between emissions from gasoline LDVs and 

diesel HDVs (e.g. (Kim and Hopke, 2004[47]; Kim et al., 2003[48]; Kim, Hopke and 

Edgerton, 2004[49]; Wang et al., 2012[50]; Zhao and Hopke, 2006[51]; Gildemeister, Hopke 

and Kim, 2007[52]; Lee and Hopke, 2006[53]). We then applied the EC tracer method, 

applying an average primary OC/EC ratio of 3.7 for gasoline and 0.5 for diesel, 

respectively, considering the age distribution of US fleet in 2000 and ratios of organic 

matter to elemental carbon (OM/EC ratios) from Ntziachristos and Samaras (2018[37]). 

Compiling these factor profiles, we found median values for secondary-to-primary organic 

carbon (SOC/POC) ratios of 0 (i.e. no formation of SOC) for diesel and 0.35 for gasoline 

emissions, respectively. We then multiplied the SOC by a factor of 1.5, following Aiken 

et al. (2008[54]), in order to convert SOC to SOA.  

Estimates of SIA and SOA assume that the area of study as representative of a global 

situation, which is not likely given that secondary aerosol formation does not depend 

linearly on gaseous precursors and is heavily affected by local conditions such as air 

temperature, relative humidity and ambient concentrations of various precursors. There are 

limitations to each approach. SIA could be underestimated given that only modelled nitrate 

is apportioned and that secondary sulphate is not included (relevant for countries using 

high-sulphur diesel (CCAC, 2016[38])). SOA estimates are affected by errors from a 

possible inaccurate apportionment of OC. Moreover, in the United States, diesel is used 

almost exclusively by HDVs which may have a different OM/EC ratio than LDVs (the 

category used in (Ntziachristos and Samaras (2018[37])). We also assume SOC/POC ratios 

to be same between EURO6 vehicles and the pre-2000 fleet. 

 

3.3. Calculating primary PM from non-exhaust sources 

This section develops a methodological approach to compare non-exhaust emissions 

between battery electric and internal combustion vehicles. The comparison is performed 

for three vehicle categories: passenger cars (PCs), sport utility vehicles (SUVs) and light 

commercial vans (LCVs). These categories correspond to the following European 

Nomenclature for Reporting (NFR) categories: “Medium cars,” “Large-SUV-Executive,” 

and “Light Commercial Vehicles < 3.5 t (LCV).” Assumptions regarding vehicle weights 
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follow those estimated by the Argonne National Laboratory from updated vehicle 

specifications for the GREET Vehicle-Cycle model (Argonne National Laboratory, 

2019[55]). 

The benchmark ICEVs considered are diesel and gasoline EURO6d-temp vehicles. 

Estimates of UFP particle numbers are not addressed given the scarcity of data and the 

considerable uncertainty regarding EF estimates from non-exhaust processes (Amato, 

2018[56]). Additional assumptions used in the calculation of non-exhaust emission factors 

are reviewed in the subsequent sections.  

 

Internal combustion engine vehicles 

For ICEVs, base emission factors for primary non-exhaust emissions of PM10 and PM2.5 

for brake wear, tyre wear and road wear are taken from Ntziachristos & Boulter (2016[57]), 

which is a widely used reference for emission reporting in the EU.3 PM10 emission factors 

for road dust resuspension are calculated as the median of the lower bounds of observed 

ranges in the literature for light duty vehicles, corresponding to 0.009 g/vkm for LDV. 

Because the LDV category includes PCs, SUVs and LCVs, we performed a least squares 

fit model, using fleet-averaged emission factor data from two studies in Barcelona and 

Zurich (Amato et al., 2012[58]; Bukowiecki et al., 2010[59]) and assuming that the 

distribution of these vehicle types in these locations is similar to that in the metropolitan 

area of Milan (ACI Automobile Club d’Italia, 2019[60]).  

When applied to current assumptions regarding each vehicle type, this analysis yields road 

dust EFs of 0.0083, 0.0099, and 0.0113 g/vkm for PC, SUV and LCV respectively. All of 

these values are significantly lower than the 0.040 g/vkm used by Timmers and Achten 

(2016[9]) or the 0.088 g/vkm used by Soret et al. (2014[11]). The reason for this more 

conservative choice is driven by the large variability observed in the literature, which 

reflects the large number of factors influencing EFs (vehicle speed, weight and road dust 

loading among others, see Section 2). Given that the highest values were found where 

additional sources of road dust are present (e.g. dust sources on the roadside, road 

shoulders, sanding/salting and use of studded tyres), road dust loadings appear to be most 

responsible for the variability in EFs in the literature. The estimate of non-exhaust EF used 

in this analysis can therefore be considered a lower bound, as it does not take into account 

additional sources of road dust emissions that are likely to be present in certain regions.  

We base the PM2.5 component of road dust emissions on the PM10 estimate via the 

application of a mean PM2.5/PM10 ratio of 0.34 (standard deviation of 0.27) that 

characterises road dust contributions, as found in the literature (Chan et al 1999; (Achilleos 

et al., 2016[61]; Chan et al., 2008[62]; Cheng et al., 2015[63]; Srimuruganandam and Shiva 

Nagendra, 2012[64]; Gummeneni et al., 2011[65]; Guttikunda et al., 2013[66]; Perrone et al., 

2012[67]; Almeida et al., 2005[68]; Amato et al., 2009[69]; Amato et al., 2014[70]). 

Battery electric vehicles 

Emission factors for BEVs are calculated based on evidence about the quantitative 

relationships between various vehicle characteristics and the PM emissions generated by 

brake, tyre, and road wear, and road dust resuspension. As described in Section 1, vehicle 

weight is the main determinant of wear emissions. In a first step therefore, quantitative 

relationships between vehicle weight and each non-exhaust emissions generation process 

are estimated based on the available literature. Emission factors are then calculated by 
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applying the assumed weight of BEVs in each vehicle category to these estimated 

relationships (see Table 3.1  and Table 3.2) 

A lack of robust quantitative evidence characterises the literature concerning the 

relationship between brake wear and vehicle weight. This relationship was therefore 

estimated using existing estimates of brake wear emission factors for medium-sized cars 

and LCVs, assuming their respective mean weights according to the GREET model 

(Argonne National Laboratory, 2019[55]). 

The relationship between vehicle weight and tyre wear is estimated using a range of values 

found in the literature. Emission factors are first estimated using a linear relationship, 

similar to (Chen and Prathaban, 2013[256]; Aatmeeyata, Kaul and Sharma, 2009[257]; 

Wang et al., 2017[258]; Li et al., 2012[259]; Simons, 2016[260]). They are also estimated 

using a non-linear relationship based on results from Salminen (2014[261]) and Ngeno and 

Mohammadi (2015). In the absence of a functional form proposed, a power-law function 

is used, following the approach for brake wear as described in Table 3.1 and Table 3.2 

No robust relationships for road wear emission factors as a function of ve hicle weight 

were found in the literature. Although a power law of 4 has been proposed for HDV loads 

(ACEA, 2015), applying this relationship to LDVs is not recommended. Following 

EMEP/EEA, all vehicle classes are therefore assumed to have the same road wear emission 

factors. For road dust resuspension, the OLS model described in Table 3.1 and Table 3.2 

estimate 19% and 36% higher road dust EFs for SUV and LCV categories relative to PCs, 

likely due to their larger size.  



   91 

NON-EXHAUST PARTICULATE EMISSIONS FROM ROAD TRANSPORT © OECD 2020 

  

Table 3.1 Estimation methods used in the calculation of PM2.5 non-exhaust emissions for BEVs 

Source Estimation Method 

Brake wear 

0.25 * 2x10-7 * Weightj 1.290 
 

Model estimated using EF values for PC and LDV from Ntziachristos and Boulter (2016[57]) 
(0.0029 g/km and 0.0046 g/km, respectively) and weights for vehicle classes j from (Argonne 

National Laboratory, 2019[55]). A 75% reduction in brake wear from RBS is also assumed.  

Tyre wear 

Model 1 
 

3x10-7 Weightj 1.326 
 

Power law model estimated using EF values 
for PC and LDV from Ntziachristos and 

Boulter (2016[57]) (0.0064 g/km and 0.0101 
g/km, respectively) and weights for vehicle 

classes j from (Argonne National Laboratory, 
2019[55]). 

 
 

Model 2 

 

For PCs and SUVs: 0.0031 * Weightj 

For LCVs: 0.0035 * Weightj 

 

Linear model estimated using EFs from 
Ntziachristos and Boulter (2016[57]) and 

weights for vehicle classes j from (Argonne 
National Laboratory, 2019[55]). 

  

Road wear 
N/A 

 
Values are taken from Ntziachristos and Boulter (2016[57]) (0.0041 for all vehicle classes) 

Road dust 
resuspension 

0.34 * EFjPM10 
 

A ratio of PM2.5/PM10 emissions from road dust is applied to EFjPM10, the PM10 EF from road 
dust suspension for vehicle class j (last row in Table 3.1), according to the mean found in the 

literature (Chan et al 1999; Achilleos et al 2016; Wahlin et al 2006; Cheng et al 2015; 
Srimuruganandam and Shiva Nagendra 2012a and 2012b; Gummeneni et al 2011; 

Guttikunda et al., 2013; Perrone at al., 2012; Almeida et al., 2005; Amato et al., 2009b and 
2014a). 

Note: Base EFs are assumed the same for diesel and gasoline-fuelled vehicles. Tables 3.5, 3.7, and 3.9 in 

(Ntziachristos and Boulter, 2016[57]) contain estimates of the mass fraction of TSP (gPM/gTSP) and Tables 

3.4, 3.6, and 3.8 in (Ntziachristos and Boulter, 2016[57]) contain estimates of TSP emission factors (gTSP/vkm). 

See Table 3.3 for weight assumptions. 
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Table 3.2 Estimation methods used in the calculation of PM10 non-exhaust emissions for BEVs 

Source Estimation Method 

Brake wear  

0.25 × 6x10-7 × Weightj 1.290 

 

Model is estimated using EF values for PC and LDV from Ntziachristos and Boulter 
(2016[57]) (0.0074 and 0.0015 g/km, respectively) and weights for vehicle classes j from 

(Argonne National Laboratory, 2019[55]). A 75% reduction in brake wear from RBS is also 
assumed following the mean of the estimates in the literature. 

 

Tyre wear Model 1 

 

4x10-7 Weightj 1.326 

 

Power law model estimated using EF 
values for PC and LDV from Ntziachristos 
and Boulter (2016[57]) (0.0064 and 0.0101 
g/km, respectively) and weights for vehicle 

classes j from (Argonne National 
Laboratory, 2019[55]). 

Model 2 

 

For PCs and SUVs: 0.0044 * Weightj 

For LCVs: 0.0049 * Weightj 

 

Linear model estimated using EFs from 
Ntziachristos and Boulter (2016[57]) and 

weights for vehicle classes j from (Argonne 
National Laboratory, 2019[55]). 

 

Road wear  

N/A 

 

Values are taken from Ntziachristos and Boulter (2016[57]) for ICEV vehicles          (0.0075 
for all vehicle classes) 

 

Road dust 
resuspension  

 

Final EFs are calculated for each class based on an optimisation tool that minimises the 
difference between observed total LDV emissions per day at three locations (Bukowiecki 

et al., 2010[59]; Amato et al., 2012[71]) and the sum of emissions per day from different 
vehicles categories, assuming a distribution of PCs, SUVs, and LCVs according to vehicle 

stock estimates in Milan (ACI Automobile Club d’Italia, 2019[60]). 

 

Note: Base EFs are assumed to be the same for diesel and gasoline-fuelled vehicles. Tables 3.5, 3.7, 

and 3.9 in (Ntziachristos and Boulter, 2016[57]) contain estimates of the mass fraction of TSP (gPM/gTSP) 

and Tables 3.4, 3.6, and 3.8 in (Ntziachristos and Boulter, 2016[57]) contain estimates of TSP emission 

factors (gTSP/vkm). See Table 3.3 below for weight assumptions. 

Table 3.3 Vehicle weight assumptions (kg) 

Vehicle class ICEV BEV 100 Difference BEV 300 Difference 

PC 1453 1517 +4 % 1949 +34 % 

SUV 1775 1866 +5 % 2437 +37 % 

LCV 2051 2185 +6 % 2904 +41 % 

Source: (Argonne National Laboratory, 2019[55]) 

The extra weight of BEVs with respect to ICEVs, relevant for the calculation of brake and 

tyre wear emission factors, is based on updated vehicle specifications for the GREET 

Vehicle-Cycle model developed by the Argonne National Laboratory (2019[55]) . Both 

BEVs with a 100-mile range (BEV 100) and a 300-mile range (BEV 300) are considered 

in the analysis. BEVs with a longer range are heavier due to the weight of the battery. 

Lighter weight BEVs with a shorter range are between 4% and 6% heavier than ICEVs, 

while heavier BEVs are between 34 and 41% heavier than ICEVs across vehicle classes. 
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Other estimates in the literature have placed the difference within this range, at around 20-

25%  (Van Zeebroeck and De Ceuster, 2013[7]; Timmers and Achten, 2016[9]). 

 

3.4. Particulate matter emitted by conventional and electric vehicles  

3.4.1. Total PM emission factors  

Estimations of exhaust and non-exhaust emission factors for passenger cars (PCs), SUVs, 

and LCVs are listed in Table 3.4 and Table 3.5. Between 95 and 98% of primary PM10 

emissions come from non-exhaust sources and between 74 and 96% of total (primary + 

secondary) PM10 are emitted by EURO 6-temp ICEV. These shares are similarly high for 

PM2.5: 88-96% of primary PM2.5 emissions come from non-exhaust sources and 65-93% 

of total PM2.5 are emitted by ICEVs. The non-exhaust share of total PM is generally lower 

for diesel ICEVs than gasoline since the contribution of diesel to secondary aerosols is 

higher than that of gasoline. There are small differences between vehicle categories, with 

90.6% of PM10 and 85% of PM2.5 from ICEV PCs originating from non-exhaust sources, 

93% and 88% for SUVs and 95% and 91% for LCVs.  

Table 3.4 PM2.5 emission factors across EURO-6-temp and BEV vehicle classes (g/vkm) 

  
PC SUV LCV   

Diesel Gasoline 
BEV 
100 

BEV 
300 

Diesel Gasoline 
BEV 
100 

BEV 
300 

Diesel Gasoline 
BEV 
100 

BEV 
300 

Non-
exhaust 

low 0.0121 0.0121 0.0100 0.0115 0.0133 0.0133 0.0113 0.0135 0.0165 0.0165 0.0134 0.0164 

high 0.0165 0.0165 0.0147 0.0169 0.0193 0.0193 0.0174 0.0206 0.0226 0.0226 0.0200 0.0241 

Exhaust 
(total) 
  

low 0.0020 0.0017   0.0020 0.0017   0.0013 0.0013   

high 0.0088 0.0026   0.0088 0.0026   0.0071 0.0020   

Primary  0.0015 0.0016   0.0015 0.0016   0.0009 0.0012   

Secondary              

SOA   0.0003    0.0003    0.0002   

SIA low 0.0005 0.0001   0.0005 0.0001   0.0004 0.0001   
 

high 0.0073 0.0010   0.0073 0.0010   0.0062 0.0008   

Total PM 
  

low 0.0141 0.0137 0.0100 0.0115 0.0153 0.0150 0.0113 0.0135 0.0178 0.0178 0.0134 0.0164 

high 0.0253 0.0192 0.0147 0.0169 0.0281 0.0219 0.0174 0.0206 0.0297 0.0246 0.0200 0.0241 

Percent 
non-
exhaust 

low 85.7% 87.8%   86.9% 88.9%   92.6% 92.9%   

high 65.3% 86.3%   68.7% 88.2%   76.1% 91.9%   

 

Table 3.5 PM10 emission factors across EURO 6-temp ICEV and BEV vehicle classes (g/vkm) 

  
PC SUV  LCV   

Diesel Gasoline 
BEV 
100 

BEV 
300 

Diesel Gasoline 
BEV 
100 

BEV 
300 

Diesel Gasoline 
BEV 
100 

BEV 
300 

Non-
exhaust 
PM 

low 0.0296 0.0296 0.0243 0.0270 0.0346 0.0346 0.0281 0.0317 0.0404 0.0404 0.0326 0.0376 

high  0.0296 0.0296 0.0244 0.0276 0.0349 0.0349 0.0286 0.0333 0.0404 0.0404 0.0326 0.0388 

Exhaust 
PM (total) 

low 0.0033 0.0018   0.0033 0.0018   0.0024 0.0014   

high  0.0103 0.0028   0.0103 0.0028   0.0084 0.0022   

Primary  0.0015 0.0016   0.0015 0.0016   0.0009 0.0012   

Secondary   0.0003    0.0003    0.0002   

SOA              

SIA low 0.0018 0.0002   0.0018 0.0002   0.0015 0.0002   
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high  0.0088 0.0012   0.0088 0.0012   0.0075 0.0010   

Total PM 
 

low 0.0328 0.0317 0.0243 0.0270 0.0378 0.0367 0.0281 0.0317 0.0428 0.0420 0.0326 0.0376 

high  0.0399 0.0327 0.0244 0.0276 0.0452 0.0379 0.0286 0.0333 0.0488 0.0428 0.0326 0.0388 

Percent 
non-
exhaust 

 90.1% 93.4%   91.4% 94.3%   94.4% 96.2%   

 74.1% 90.6%   77.2% 92.0%   82.8% 94.5%   

 

3.4.2. Non-exhaust PM emission factors 

Estimated PM2.5 and PM10 emission factors from non-exhaust sources are reported in 

Tables 3.4 and 3.5, respectively. Estimates indicate that both lighter weight and heavier 

weight BEVs emit less PM10 than their ICEV counterparts. However, this is not the case 

for PM2.5. Electric vehicles with a longer range, and therefore a higher weight, emit more 

PM2.5 than ICEV vehicles across all vehicle classes depicts these results graphically and 

Table 3.8 shows the relative differences in particulate matter emitted between BEVs and 

gasoline-fuelled ICEVs for each vehicle class. 

Table 3.6 PM2.5 emission factors from non-exhaust sources across ICEV and BEV vehicle classes (g/vkm) 

  PC SUV LCV 

    ICEV BEV 100 BEV 300 ICEV BEV 100 BEV 300 ICEV BEV 100 BEV 300 

Brake wear 
 

0.0029 0.0006 0.0009 0.0031 0.0008 0.0012 0.0046 0.0010 0.0015 

Tyre wear 

 

low 0.0045 0.0047 0.0060 0.0055 0.0058 0.0075 0.0071 0.0076 0.0100 

high 0.0045 0.0050 0.0069 0.0061 0.0065 0.0093 0.0071 0.0080 0.0117 

Road wear 
 

0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 

Road dust 
 

0.0028 0.0028 0.0028 0.0034 0.0034 0.0034 0.0038 0.0038 0.0038 

Total non-exhaust 
low 0.0121 0.0100 0.0115 0.0133 0.0113 0.0135 0.0165 0.0134 0.0164 

high 0.0165 0.0147 0.0169 0.0193 0.0174 0.0206 0.0226 0.0200 0.0241 

Note: Emission factors for BEV100 and BEV300 are calculated using the weight estimates for BEVs with a range of 100 and 300 miles, 

respectively (Argonne National Laboratory, 2019[55]). The amount of PM from non-exhaust sources produced by gasoline and diesel vehicles 

are assumed to be the same.  

Source: Authors’ calculations, see Table 3.1 

Table 3.7 PM10 emission factors from non-exhaust sources across ICEV and BEV vehicle classes (g/vkm) 

  PC SUV LCV 

    ICEV BEV 100 BEV 300 ICEV BEV 100 BEV 300 ICEV BEV 100 BEV 300 

Brake wear  0.0074 0.0019 0.0026 0.0093 0.0025 0.0035 0.0115 0.0030 0.0044 

Tyre wear 
low 0.0064 0.0066 0.0086 0.0078 0.0082 0.0108 0.0101 0.0107 0.0144 

high 0.0064 0.0067 0.0092 0.0081 0.0087 0.0124 0.0101 0.0108 0.0156 

Road wear  0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 

Road dust  0.0083 0.0083 0.0083 0.0099 0.0099 0.0099 0.0113 0.0113 0.0113 

Total non-exhaust 
low 0.0296 0.0243 0.0270 0.0346 0.0281 0.0317 0.0404 0.0326 0.0376 

high 0.0296 0.0244 0.0276 0.0349 0.0286 0.0333 0.0404 0.0326 0.0388 

Note: Emission factors for BEV100 and BEV300 are calculated using the weight estimates for BEVs with a range of 100 and 300 miles, 

respectively (Argonne National Laboratory, 2019[55]). The amount of PM from non-exhaust sources produced by gasoline and diesel vehicles is 

assumed to be the same. 

Source: Authors’ calculations, see Table 3.2. 
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Figure 3.1. ICEV and BEV non-exhaust PM emission factors by vehicle class 

PM2.5 (left) and PM10 (right) 

 

Note: Emission factors for BEV 100 and BEV 300 are calculated using the conventional weight estimates for a BEV with a range of 100 and 300 

miles, respectively (Argonne National Laboratory, 2019).  

Source: Authors’ calculations, see Table 3.1 and Table 3.2. 
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Table 3.8 Net change in total non-exhaust emission factors of BEVs relative to gasoline ICEVs (percentage) 

  
PC SUV LCV 

PM2.5 BEV 100 -12.8 -11.2 -13.3  
BEV 300 +2.6 +7.5 +7.8 

PM10 BEV 100 -17.8 -18.0 -19.3  
BEV 300 -6.5 -4.5 -5.5 

Note: Reductions are calculated on the basis of the estimated relationship 

between vehicle weight and tyre wear according to Model 1 described in 

Table 3.1 and Table 3.2.  

Source: Author’s calculations. 

Results show that reductions in non-exhaust emission factors are greater for lighter weight 

BEVs than for heavier weight BEVs. Indeed, BEV 100 vehicles are estimated to emit 11-

19% less non-exhaust emissions than their conventional gasoline-fuelled counterparts 

across all vehicle classes. However, this is not the case for BEV 300 vehicles. Heavier EVs 

lead to marginal reductions in PM10 emissions of 4.5-6.5%, and increase PM2.5 emissions 

across all vehicle classes by 2.6-7.8%.  

As shown in Figure 3.2, the relative importance of the sources of non-exhaust emissions 

varies by drivetrain and vehicle class. Road dust resuspension is the greatest source of 

PM10 emissions in all vehicle categories, representing 28% and 30-35% of total PM10 

emissions from non-exhaust for ICEVs and BEVs, respectively. Road wear represents 19-

25% of PM10 emissions for ICEVs and 19-31% for BEVs. Tyre wear represents 22-25% 

of PM10 from non-exhaust sources for ICEV vehicles, and 27-40% for BEVs. The greatest 

difference in composition across ICEVs and BEVs is the portion of non-exhaust emissions 

that come from brake wear. For ICEVs, 25-28% of non-exhaust PM10 emissions are due 

to brake wear, whereas for BEVs, only 8-11% of total non-exhaust PM10 emissions are 

due to brake wear. 

While road dust makes up a significantly smaller proportion of non-exhaust PM2.5 

emissions, the same general patterns hold for changes in the composition of non-exhaust 

emissions across ICEV and BEV vehicle categories for PM2.5. Road dust comprises an 

estimated 20% of total non-exhaust PM2.5 emissions for ICEVs, and 18-23% for BEVs. 

Road wear is responsible for 21-28% of non-exhaust PM2.5 for ICEVs and 19-32% for 

BEVs. Tyre wear represents 40-56% of non-exhaust PM2.5 emissions for BEVs. Finally, 

brake wear represents 19-23% of PM2.5 non-exhaust emissions from BEVs. 

Moving from BEV100 vehicles to BEV300 vehicles shifts the composition of non-exhaust 

emissions toward tyre wear, especially for PM2.5 emissions, the majority of which are 

generated by tyre wear for all vehicle classes and drivetrains. Brake wear decreases 

significantly in BEVs relative to ICEVs due to regenerative braking systems. 
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Figure 3.2. Relative share of non-exhaust emission factors for ICEV and BEV vehicle classes (percent) 

PM2.5 (top) and PM10 (bottom) 

 

Note: Calculated on the basis of tyre wear emission factors estimated according to Model 2 as described in Tables 3.1 and 3.2. 

The relative shares of non-exhaust emission sources are similar for gasoline and diesel vehicles. 

Source: Author’s calculations. 

3.4.3. Projections of particulate emissions from non-exhaust sources 

On the basis of the emission factor estimates above4 and projections for global vehicle 

stocks, this section presents estimates of non-exhaust emissions rates per kilometre 

travelled by the global vehicle fleet (tonnes/km) and annual non-exhaust emissions 

between 2017 and 2030. In 2017, the global vehicle fleet emitted an estimated 38.1 tonnes 

of PM10 per kilometre travelled, or 571,881 tonnes, assuming an annual mileage of 15,000 

km/vehicle. Projected emissions are estimated for two scenarios based on different 

assumptions about electric vehicle uptake following the previous penetration scenarios of 

4% and 8% uptake in 2030, similar to those projected by IEA’s New Policies Scenario and 

EV30@30 Scenario (IEA, 2019).  

In both scenarios, increasing travel demand causes non-exhaust emissions to rise 

substantially from 2017 to 2030. However, the reductions in PM emissions made possible 
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by a doubling of electric vehicle uptake over this period are slight. The amount of non-

exhaust emissions emitted per kilometre by the global vehicle fleet in 2030 is estimated to 

be 58.1 tonnes PM10 with a 4% uptake of electric vehicles and 57.2 tonnes PM10 with an 

uptake of 8%. This amounts to 871,500 and 858,000 tonnes of total PM10, respectively.  

Results are even less significant for PM2.5 emissions: global emissions in 2017 are 

estimated to amount to 18.5 tonnes of PM2.5 emitted per kilometre travelled by the global 

vehicle fleet, or 277,500 tonnes in total. Emissions are projected to rise to 28.3 tonnes per 

kilometre with an EV uptake of 4%, amounting to 424,500 tonnes globally. Assuming a 

doubling of EV uptake leads to PM2.5 emissions of 28.0 tonnes per kilometre or 420,000 

tonnes globally. 

 

Figure 3.3. Emission rate estimates for the year 2017 and projected 2030 under alternative EV uptake 

scenarios 

 

Source: Author’s calculations. Projections of non-exhaust emissions are made on the basis of the emission factors estimated 

above and on projections for vehicle stocks. Emission factors from road wear are assumed to be unchanging from 2017 to 

2030. Global vehicle fleet projections are based on those used by the IEA, and the electric vehicle penetration scenarios of 4% 

and 8% uptake are based on the New Policies Scenario and EV30@30 scenarios developed by the IEA (2019[72]). The annual 

distance travelled by each vehicle is assumed to be 15,000 km. 

Other data available also permits an evaluation of the impact of BEV uptake in two specific 

cities: Milan, Italy, and Santiago, Chile. Following the previous projection, BEV uptake 

scenarios of 4% and 8% are used. Assuming that current EV technologies will not change 

until 2030 (e.g. battery weight), these simulations also indicate a minimal impact of BEV 

uptake on total particulate emissions from non-exhaust sources. In Milan (based on 

emission inventories from INEMAR and AMAT for 2014), an uptake of 4% and 8% leads 

to reductions of 0.4% and 0.8% for PM10 emissions and 0.3% and 0.7% for PM2.5 

emissions. In Santiago, high road dust emission factors and a lower percentage of diesel 

cars in the vehicle fleet lead to a negligible reduction of non-exhaust PM emissions with 

the uptake of BEVs (≤0.1%). 
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3.4.4. Influencing factors and implications for policy 

 

Relative to conventional gasoline-fuelled vehicles, electric vehicles emit 11-19% less 

PM10. Reductions in PM2.5 emissions are only observed for lightweight BEVs, which 

generate 11.2-13.3% less PM2.5 from non-exhaust sources. Heavier BEVs, in contrast, 

generate 2.6-7.8% more PM2.5 than their conventional counterparts. Moreover, 

projections of global PM emissions rates from non-exhaust sources show that emissions 

are set to increase, even when considering a relatively high level of electric vehicle 

penetration by that year.  

For EVs, the most important source of PM2.5 emissions is by tyre wear, and the most 

important sources of PM10 are more evenly spread between tyre, road wear and road dust 

resuspension. For both drivetrain types, tyre wear increases with vehicle weight. The share 

of non-exhaust emissions from brake wear falls sharply for EVs relative to ICEVs due to 

regenerative braking. Uncertainty regarding emission factors remains, however, due to a 

lack of experimental data on various sources of wear, and the estimations reported here 

rely on a number of assumptions based on the available evidence (see Tables 3.1 and 3.2).  

A number of other factors beyond those considered in the reported estimates could also 

affect the amount of particulate matter emitted by EVs in real world driving conditions. 

The higher fuel economy of BEVs may, for example, have a rebound effect of increased 

travel demand, which could further undermine projected PM emissions reductions, 

especially if it draws travel demand away from non-motorised modes. EV use can also 

contribute to traffic congestion. While congestion is known to increase exhaust emissions, 

its impact on non-exhaust emissions is not clear given that a higher braking frequency (i.e. 

higher brake wear) could be offset by lower average speed (i.e. lower tyre and road wear 

and lower resuspension). If, could also reduce the benefits of EVs with respect to PM 

emissions, as heavier BEVs are estimated to emit more PM2.5 than their conventional 

counterparts.  

Given that PM, and PM2.5 in particular, is the most harmful pollutant for public health, it 

is clear that the widespread adoption of EVs will not eliminate air pollution concerns due 

to road traffic and that policies addressing non-exhaust emissions are warranted. The body 

of literature is too limited to assess whether the change in composition of the PM emissions 

generated from ICEVs vs. EVs has implications for the risk of mortality and morbidity 

associated with exposure to these emissions. More research is needed on the relative risk 

associated with each traffic source and PM component, as well as possible non-linearities 

in health impacts at different PM exposure levels.    
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1 The vast majority of studies have focused on CO2 emissions (51 papers), followed by NOx (32 

papers), VOCs (18 papers), SO2 (17 papers), and CO (15 papers). 

2 A number of studies have evaluated the impact of EV uptake on well-to-wheel and lifecycle PM 

emissions (Peng et al., 2018[22]; Kantor et al., 2010[19]; Tessum, Hill and Marshall, 2014[35]; Huo 

et al., 2015[12]). This report focuses on particulate emissions during a vehicle’s use phase, i.e. only 

the particulate matter emitted when the vehicle is being driven. 

3 These estimates are characterised by uncertainty on the order of ±50% (Ntziachristos and Boulter, 

2016[57]). Ongoing activities by the UN GRPE-PMP (Particle Measurement Program) and the 

Horizon 2020 EU-funded LOWBRASYS project, as well as the California Air Resources Board, 

will soon produce updated estimates for brake wear emission factors.  

4 Assuming an uptake of BEV100 vehicles and an average annual mileage of 15,000 km per vehicle. 
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