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ANNEX C

Indexes and estimation techniques

Cultural and creative sectors (CCS) and occupations

Table C.1. Cultural and creative sectors included in CCS
NACE Rev. 2 industry code Industry title

18 Printing and reproduction of recorded media

32.12 and 32.2 Manufacture of jewellery and related articles and manufacture of musical instruments

47.61-63 Retail sale of books, newspapers and stationery, music and video recordings in specialised stores

58.11 and 58.13-14 Book publishing and publishing of newspapers, journals and periodicals

58.21 Publishing of computer games

59 Motion picture, video and television programme production, sound recording and music publishing
activities

60 and 63.91 Programming and broadcasting activities and news agency activities

71.11 Architectural activities

74.1-3 Specialised design, photographic, translation and interpretation activities

77.22 Renting of video tapes and disks

90 Creative, arts and entertainment activities

91 Libraries, archives, museums and other cultural activities

Source: Adapted from Eurostat.

OECD REGIONS AND CITIES AT A GLANCE 2022 © OECD 2022 123



ANNEX C. INDEXES AND ESTIMATION TECHNIQUES

Methodology to estimate the share of green areas in FUA urban centres

The share of green areas in FUAs is estimated at the urban centre level, using ESA Worldcover data
(Zanaga et al., 2021[1]), which provides worldwide land cover data for 2020 at a 10 m resolution.
Green areas are defined by the following classes: trees, shrublands and grasslands.

Methodology to estimate the urban heat island intensity

The measure for urban heat island intensity in OECD FUAs was adapted from Chakraborty and Lee
(Chakraborty and Lee, 2019[2]). The suggested methodology is composed of the following steps:

1. Define for each FUA using MODIS yearly land cover data (Friedl and Sulla-Menashe, 2019[3])
“urban” and “non-urban” lands, where “urban” refers to the “urban and built-up lands” class in the
International  Geosphere-Biosphere  Programme (IGBP)  classification,  and  “non-urban”  to  the
remaining classes except “water bodies”.

2. By using the ALOS World 3D (Tadono et al., 2014[4]) digital elevation model (DEM), compute
elevation statistics for “urban” and “non-urban” lands to ensure elevation patterns are similar in
both contexts.

3. Compute land surface temperature using MODIS Terra (Wan, Hook and Hulley, 2015[5]) and Aqua
(Wan, Hook and Hulley, 2021[6]) land surface temperature (LST) daily dataset:

a. Apply quality filters to remove clouds and ensure an average LST error ≤3K.

b. Compute mean temperature in both zones described above. For the “non-urban” land, only
pixels with similar elevation statistics as the “urban” area were considered, namely in the rangez  ̅ − 2σ_z, z  ̅ + 2σ_z , where z is the elevation in the “urban” area.

c. Compute this mean temperature for the whole year, summer and winter. Summer is defined as
1 June to 31 August for the Northern Hemisphere, and 1 December to 28 February for the
Southern hemisphere. Winter is defined reciprocally.

Table C.2. Cultural occupations included in CCS employment statistics
ISCO-08 occupation code Occupation title

216 Architects, planners, surveyors and designers

2353-55 Other language, music and arts teachers

262 Librarians, archivists and curators

264 Authors, journalists and linguists

265 Creative and performing artists

3431-32 Photographers and interior designers and decorators

3433 Gallery, museum and library technicians

3435 Other artistic and cultural associate professionals

3521 Broadcasting and audio-visual technicians

4411 Library clerks

7312 Musical instrument makers and tuners

7313-14 Jewellery and precious-metal, potters and related workers

7315 Glass makers, cutters, grinders and finishers

7316 Sign writers, decorative painters, engravers and etchers

7317-19 Handicraft workers in wood, basketry, textile, leather and those not elsewhere classified

Source: Eurostat.
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4. Finally, the urban heat island intensity is defined as the temperature difference T_u − T_r.
Methodology to estimate soil moisture anomaly

Water content in the superficial layers of the soil is important for water supply and vegetation health.
Soil moisture anomaly is a suitable indicator for monitoring the intensity of agricultural droughts. This
publication measures agricultural droughts in terms of cropland soil moisture anomaly using the
Copernicus Climate Data Store ERA5-Land monthly average data product (European Centre for
Medium-range  Weather  Forecasts,  2022[7]).  It  is  a  global  gridded  product  with  a  0.1°  spatial
resolution (~ 11.1 km) from 1950 to the present and provides land variables related to the energy and
water cycles over several decades. It contains per-pixel information of the monthly average volume of
water in the surface soil layer of 0 to 7 cm deep, expressed as m3 of water per m3 of soil. The
Copernicus annual 300 m land cover (CCI-LC) (European Space Agency Climate Change Initiative,
2019[8]) enables to get cropland boundaries. Cropland here includes: cropland, rainfed, irrigated or
post-flooding; mosaic cropland (>50%)/ natural vegetation (tree, shrub, herbaceous cover) (<50%);
and mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%). Once soil
moisture grid cells for each year are selected based on cropland land cover, cropland soil moisture
anomaly  is  obtained  by  computing  the  percentage  change  based  on  the  reference  period
(1981-2010).

Methodology to estimate public transport accessibility

Public transport accessibility is measured using Open Street Map (OSM) (Haklay and Weber, 2008[9])
to get public transport stops. Because of the lack of reliability of OSM in small cities, this publication
only focuses on the largest FUA of each OECD country. The Mapbox isochrone API (Mapbox,
2022[10]) then enables to compute isochrones from these public transport stops to get to all the areas
located within 10‑min walking distance. The Global Human Settlement Population layer 2015 then
enables to get the share of the population in each FUA who has access to public transport in less than
a 10-min walk.

Methodology to estimate exposure to wildfires

Burnt area by land cover was obtained using JRC’s Global wildfire dataset for the analysis of fire
regimes and fire behaviours (Artes Vivancos et al., 2019[11]), based on MODIS burned area product
Collection 6. This dataset provides monthly individual fire perimeters for 2001-20. Burnt areas are
aggregated at the yearly level and then crossed with Copernicus annual 300 m land cover (CCI-LC)
data (European Space Agency Climate Change Initiative, 2019[8]).

Population exposure to wildfires over 2010-20 was computed by merging monthly wildfire perimeters
and by then taking a 5 km buffer. The Global Human Settlement Population layer for 2015 (Schiavina,
Freire and MacManus, 2019[12]) enabled then to compute the population exposed to at least one fire
over 2010‑20.

Methodology to estimate exposure to river floods

Population exposure to river floods was estimated using the River Flood Hazard Maps at European
and  Global  Scale  (Dottori  et  al.,  2021[13]).  For  OECD  countries  located  in  Europe  and  the
Mediterranean Basin,  the regional  map was used,  as the spatial  granularity  is  250 m. For  the
remaining OECD countries, the global map with a spatial  granularity of 1 km was used. These
datasets identify flooded areas for river flood events of different return periods (10 to 500 years). A
return period refers to the estimated time interval between floods of similar intensity. Here a return
period of 100 years is considered. The 100-year return period is calculated based on past events but
the frequency of such climate-related disasters is likely to increase. Changes in flood risk are unevenly
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distributed, with the largest increases in America, Asia and Europe but without higher flood protection
standards, flood events are projected to rise in all continents. Therefore, 100-year floods are likely to
happen more often going forward.

Methodology to estimate population exposure to heat stress

Population exposure to heat stress was estimated using the Universal Thermal Comfort Index (UTCI).
The UTCI considers air temperature, wind, radiation and humidity and enables to assess the impact of
atmospheric conditions on the human body: 32°C < UTCI < 38°C is considered as strong heat stress,
38°C < UTCI < 46°C as very strong heat stress, and UTCI > 46°C as extreme heat stress.

The Copernicus Climate Data Store provides hourly thermal comfort indices grids derived from ERA5
reanalysis (CDS, 2022[14]). The spatial resolution is 0.25°x0.25°. To obtain the population exposure
to strong heat stress, we applied the following steps:

• Compute daily maximum UTCI grids.

• Apply a threshold of 32°C on these daily masks and sum by year to get yearly grids of the number of
days of strong heat stress or worse.

• Compute by large region zonal statistics weighted by population by using the GHSL-POP layers.

• Consider 1981-2010 as the reference period to get the reference average number of days of strong
heat stress and compare this value with recent years.

Methodology to estimate electricity indicators at the regional level

To estimate the electricity indicators at the regional level, the Global Power Plant Database (GPPD)
(Byers et al., 2021[15]), the International Energy Agency (IEA) electricity and heat database (OECD,
2022[16]) and the harmonised global dataset of wind and solar farm (GWS) locations and power
(Dunnett et al., 2020[17]) are used.

The GPPD provides information on power plants located in 167 countries all over the world, including
the 38 OECD countries. For each power plant, the GPPD provides the geographic co‑ordinates and
the following attributes:

• The energy source: oil, gas, coal, petroleum coke, cogeneration, hydro, wind, waste, biomass,
wave and tidal, geothermal, solar, nuclear and others.

• The generation capacity, which is the maximum power (in megawatts, MW) that the plant can
deliver. The capacity is a facility-specific characteristic and does not change over time, unless
extension or upgrade of the power station, or a shutdown of a part of it.

• The annual electricity generation, which provides the amount of electricity generated over a year (in
GWh). This indicator is reported over the period 2013-19. When no electricity generation was
reported, the annual electricity generation was estimated. The annual generation corresponds to
the gross generation, i.e. the electricity consumption of the power plant for its operation is not
deducted.

• The country where the power plant is registered.

As the coverage of wind and solar power plants in the GPPD was not satisfying, the GWS farm
locations and power was used instead to get the locations of wind and solar power sources.

The International Energy Agency (IEA (IEA, 2022[18])) database includes national-level electricity
generation data by energy source for most OECD countries. The IEA dataset used to estimate
electricity generation indicators at the local level corresponds to the gross electricity production by
energy source in 2019. A breakdown of 53 different sources is available.
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Electricity generation estimates
In  order  to  remain  consistent  across  countries  and  energy  sources,  electricity  generation  was
estimated at the power plant level based on the relative capacity of each power plant (from the GPPD
and GWS) and on the total national electricity generation form each energy source (from the IEA). The
methodology follows the four steps below:

1. Map energy sources from the IEA to the GPPD classification.
The IEA electricity production data provides a higher level of detail in terms of breakdown by energy
source compared to the GPPD data. For this reason, each energy source type recorded in the IEA
database was matched to a source category in the GPPD.

2. Determine the share of national capacity for each power plant.
For each power plant p, located in the country c and generating electricity from the energy source f,
the share of the capacity of the power plant in the national capacity for the source f is calculated as:sℎarep, c, f = capacityp, c, f∑icapacityi, c, f

where i ∈ power plants located in the country c, and generating electricity from the source f.

3. Allocate a part of the national generation to each power plant.
For each power plant p,  generating electricity from source f,  in the country c,  the estimated
generation is calculated as:generationp, c, f = sℎarep, c, f*national generationc, f

Aggregation at local scales
To compute indicators at different geographical scales, a point shapefile was created from the GPPD
and  GWS  databases  using  the  latitude  and  longitude  provided  for  each  facility  –  each  point
representing  a  power  plant.  The  point  shapefile  was  overlapped  with  two  other  shapefiles
corresponding to the boundaries of the subnational geographies available in OECD countries (TL2
and TL3 regions). Thus, each power plant can be associated to a TL2 region and a TL3 region.
Offshore power plants were assigned to the closest region (of the registered host country) based on
the distance to the coast.

Year of reference
All indicators presented in this document refer to the year 2019, which corresponds to the latest year
for which capacity data is available in the GPPD.

Breakdown by energy source categories
The GPPD includes 13 different energy sources. These energy sources were aggregated into 6
categories (coal, gas, oil, nuclear, renewables and others). The energy sources within each category
are comparable in terms of technology, risks and impacts on the environment.

Electricity generation indicators
For each region r, generation data was aggregated into each category i as:generationr,  i =  ∑k  ∈  ipower plant generationr, k
where k ∈ {coal, gas, oil, petroleum coke, cogeneration, nuclear, hydro, wind, waste, biomass, wave,
geothermal,  solar},  i  ∈  { coal,  gas,  oil,  nuclear,  renewables  and  others},  andpower plant generationr, k  is the electricity generation of a power plant located in the region r,

generating electricity from the source type k.

OECD REGIONS AND CITIES AT A GLANCE 2022 © OECD 2022 127



ANNEX C. INDEXES AND ESTIMATION TECHNIQUES

Energy mix indicators
For each region r, the share of each energy source category i is calculated as:sℎarer, i =   generationr,  i∑jgenerationr, j*100
where j ∈ {coal, gas, oil, nuclear, renewables, others}.

Greenhouse gas (GHG) emissions from electricity generation indicators
GHG emissions indicators are derived from both the electricity generation by energy source and the
emission factors for each energy source. Electricity generation was estimated at the power plant level
for each energy source included in the GPPD as described above. Emission intensity by energy
source comes from the IPPC estimates on GHG emissions of supply technologies.

For each region r, the GHG emissions (in tons of CO2 equivalent) are calculated as:emissionsr = ∑k  ∈  f generationr,   k*emission intensityk
where the emission intensity corresponds to the median value of the lifecycle emissions (in gCO2eq/
kWh), f ∈ {coal, gas, oil, petroleum coke, cogeneration, nuclear, hydro, wind, waste, biomass, wave,
geothermal, solar}.

Emission intensity
For each region r, the emission intensity (in tons of CO2 equivalent per GWh) is calculated as:emission intensityr =   emissionsr∑igenerationr, i
where i ∈ {coal, gas, oil, nuclear, renewables and others}.

Methodology to estimate GHG emissions by sector

GHG emissions at the subnational level were estimated using the Emissions Database for Global
Atmospheric Research (EDGAR) (Crippa et al.,  2021[19]),  version 6.0 of the EC JRC. EDGAR
provides annual sector-specific grid maps for the three main GHGs (CO2, CH4, and N2O) at a 0.1°
spatial resolution (~11 km). Other GHGs, such as fluorinated gases, are not available at the moment.
The different sectors and subsectors covered are:

• Energy industry:

• Energy production: Power industry (IPCC 2006: 1A1a).

• Energy transformation:  Oil  refineries  and transformation  industry  (1A1b,  1A1ci,  1A1cii,
1A5biii; 1B1b, 1B2aiii6, 1B2biii3, 1B1c).

• Energy extraction: Fuel exploitation (oil, coal, natural gas) (1B1a, 1B2aiii2, 1B2aiii3, 1B2bi,
1B2bii).

• Manufacturing industry: Combustion for manufacturing (1A2), chemical processes (2B), iron and
steel production (2C1, 2C2), non-ferrous metals production (2C3 to 2C7), non-energy use of fuels
(2D1, 2D2, 2D4), solvents and products use (2D3, 2E, 2F, 2G), non-metallic minerals production
(2A),  oil  refineries  and transformation industry  (1A1b,  1A1ci,  1A1cii,  1A5biii;  1B1b,  1B2aiii6,
1B2biii3, 1B1c).

• Buildings: Energy for buildings (1A4+1A5).

• Waste: waste water handling (4D), solid waste landfills (4A+4B), solid waste incineration (4C).

• Transport:  Road transportation (1A3b),  aviation (1A3a),  shipping (1A3d),  railways, pipelines,
off‑road transport (1A3c+1A3e).
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• Agriculture: Enteric fermentation (3A1), manure management (3A2), agricultural waste burning
(3C1b),  agricultural  soils  (3C2+3C3+3C4+3C7),  indirect  N2O  emissions  from  agriculture
(3C5+3C6).

• Other: Fossil fuel fires (5B), indirect emissions from NOx and NH3 (5A).

Emissions  from Land Use and Land Cover  Change (LULCC)  are  not  included.  National  GHG
emissions are disaggregated by using subsector-specific geospatial proxies. For example, the road
transport emissions estimates are based on different types of road networks extracted from Open
Street  Map  (Haklay  and  Weber,  2008[9])  (highways,  primary  and  secondary,  residential  and
commercial roads) and different weighting factors for each road type. Road traffic is not directly
considered. For more details about the disaggregation methodology, refer to the OECD Regional
Outlook 2021 (OECD, 2021[20]).

GHG emissions are expressed in CO2 equivalents using 100-year global warming potential from the
IPCC 5th Assessment Report (AR5), i.e. 28 for CH4, and 265 for N2O.

Methodology to estimate emissions from key manufacturing sectors

European Union Emission Trading System (EU-ETS, 2020[21]) emissions and ORBIS (Pinto Ribeiro,
Menghinello and De Backer, 2010[22]) data were used to estimate emissions in key manufacturing
sectors. EU-ETS emissions data cover high emissions installations and provide the exact location of
each installation. They cover most emissions in refined petroleum and coke, chemicals, basic metals
and other non-metallic minerals. However, publicly available ETS emissions data provide limited
information on the sectoral origin of emissions within manufacturing and this information does not
follow NACE sectors. Most ETS emissions are attributed to fuel combustion with no breakdown. ETS
emissions have been mainly attributed to NACE sectors according to the main activity of businesses
owning installations using ORBIS business data.

For more details on the methodology, refer to Regional Industrial Transitions to Climate Neutrality:
Identifying vulnerable regions (OECD, forthcoming[23])

Methodology to estimate regional energy intensity in European large regions

Regional energy intensity estimates were obtained using the following Eurostat datasets:

• Energy supply and use by NACE Rev. 2 activity (env_ac_pefasu) (Eurostat, 2022[24]).

• SBS data by NUTS 2 regions and NACE Rev. 2 (from 2008 onwards) (sbs_r_nuts06_r2) (Eurostat,
2021[25]).

National  energy  consumption  data  by  NACE  sector  for  European  countries  provided  in
env_ac_pefasu were disaggregated using the NUTS-2 employment data by NACE sector given in
sbs_r_nuts06_r2.

Methodology to estimate land use in cities

Land use in cities was estimated by using publicly available satellite imagery (Sentinel-1 and -2) and a
Deep Learning image segmentation model (U-Net). The model was trained on the Copernicus Urban
Atlas (EEA, 2020[26]) to automatically detect land use patterns on satellite images aggregated at the
yearly level. Population estimates are obtained using the GHSL-POP layer (2022 release) for 2020

OECD REGIONS AND CITIES AT A GLANCE 2022 © OECD 2022 129



ANNEX C. INDEXES AND ESTIMATION TECHNIQUES

(JRC, 2022[27]). For more details on the methodology, refer to “Monitoring land use in cities using
satellite imagery and deep learning” (Banquet et al., 2022[28]).

Methodology to estimate the potential for remote working

The assessment of regions’ capacity to adapt to remote working is based on the diversity of tasks
performed in different types of occupations and is structured in two steps.

The first step requires classifying each occupation based on the tasks required and according to the
degree to which those tasks can be performed remotely. Such a classification is based on a recent
study by Dingel and Neiman (2020[29]), which is built from the O*NET surveys conducted in the
United States. The second step relies on data from labour force surveys and consists of assessing the
geographical  distribution  of  different  types  of  occupations  and  subsequently  matching  those
occupations with the classification performed in the first step. Combining the two data sets allows for
assessing the number of workers who can perform their tasks from home as a share of the total
employment in the region.

This assessment does not consider the specific regulations or arrangements that each country applies
to remote working and which affect the actual share of people working remotely. For example,
limitations in the days of remote working for cross-border workers are not reflected in the estimates
presented here.

Theil entropy index
Definition

Regional disparities are also measured by a Theil entropy index, which is defined as:Tℎeil = ∑i = 1N yiy− ln yiy−
where N  is  the number of  regions in the OECD, yi  is  the variable of  interest  in the i-th  region
(i.e. household income, life expectancy, homicide rate, etc.) and y− is the mean of the variable of
interest across all regions.

The Theil index can be easily decomposed into two components: i) the disparities within subgroups of
regions – where for example a subgroup is identified by a set of regions belonging to a country; ii) the
disparities between subgroups of regions (i.e. between countries). The sum of these two components
is equal to the Theil index.

In order to decompose the Theil index, let us start by assuming m groups of regions (countries). The
decomposition will assume the following form:Tℎeil = ∑j = 1M ∑i = 1N sjyijyj− ln yijy−j + ∑j = 1M sjln yjy−
where the first term of the formula is the within part of the decomposition equal to the weighted
average of the Theil  inequality indexes of each country. Weights, si,  are computed as the ratio
between the country average of the variable of interest and the OECD average of the same variable.
The second term is the between a component of the Theil index and represents the share of regional
disparities that depends on the disparities across countries.

Interpretation
The Theil index ranges between zero and ∞, with zero representing an equal distribution and higher
values representing a higher level of inequality.
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The index assigns equal weight to each region regardless of its size; therefore, differences in the
values of the index among countries may be partially due to differences in the average size of regions
in each country.
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