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in OECD and European countries. It first describes the increase in all-cause 

mortality – i.e. excess mortality – across subnational regions between 

January and December 2020. Subsequently, it investigates the regional 

factors associated with higher excess mortality, looking at demographic, 

socio-economic, institutional and environmental features of regions. Results 

show that excess mortality has a significant spatial dimension, with the 

hardest hit regions having excess mortality rates that were, on average, 17 

percentage points higher than the least affected regions in the same 

country. During the first year of the pandemic, lower health system capacity, 

followed by population density, air pollution, share of elderly population and 

lower institutional quality were associated with higher excess mortality. 

While health system capacity and population density have been strongly 

associated to excess mortality throughout the COVID-19 crisis, trust in 

government and air pollution showed stronger correlations with excess 

mortality in the later phases of the pandemic. Finally, prolonged remote 

working, particularly after two-months, is also associated with lower excess 

mortality. 
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The COVID-19 crisis was declared a pandemic by the World Health Organisation on 11 March 2020. Since 

then, nearly four million deaths across the globe have been accredited to COVID-19 as of July 2021. 

One million of those deaths were reported in the OECD countries in this study during 2020 (Ritchie et al., 

2021[2]), the period covered in this paper.1 Official declarations of deaths from COVID-19 however vary 

across countries, reflecting not only differences in the success in containing the impact of the pandemic, 

but also differences in definitions used to accredit deaths to the COVID-19 disease and internal capacities 

or policies (including testing strategies) to identify it as a cause of death. Beyond the deaths directly 

attributable to the COVID-19 virus, the pandemic has potential knock-on effects for deaths due to other 

means. On the one hand, there might be additional deaths that would not have occurred outside the 

pandemic, e.g. because of the strain put on health care systems due to the surge in hospitalisations – in 

particular those requiring intensive care. On the other hand, behavioural changes and lockdown measures 

might have reduced deaths that would have occurred due to other sources, e.g. the 2020 “flu season” was 

less severe than in prior years and the number of road fatalities decreased compared to prior years.2 

A better way to compare the human deaths associated with the COVID-19 pandemic across and within 

countries is to consider excess mortality, i.e. above average deaths. In OECD countries, compared to the 

average for 2018 and 2019, the total number of deaths was 14% higher in 2020, corresponding to over 

1.5 million excess deaths. 

Significant differences exist across countries as do differences within countries. Indeed, differences within 

countries are larger than those across countries. In Spain, Mexico and Colombia, for example, excess 

mortality in 2020 in the most affected region was 40, 60 and 90 percentage points higher respectively, than 

in the least affected one. This compares with the 47-percentage point gap observed between the most and 

least affected OECD country (Figure 1). 

Building on data from official registers of deaths, this paper examines the patterns of excess mortality 

across regions in 33 OECD and three other European countries (Bulgaria, Malta and Romania) during 

2020, and investigates the role that specific place-based factors may have played. 

While a fast growing literature is already integrating the subnational lens to analyse the drivers of the 

spatially heterogeneous health impact of the COVID-19 pandemic, only limited research has looked at this 

issue from an international perspective. This paper contributes to filling this gap. To the authors’ 

knowledge, there are no similar studies covering a large set of countries with a subnational focus and using 

consistent indicators and geographical definitions. The use of all-causes excess mortality provides 

important advantages in terms of international comparability, as this measure does not suffer from 

differences in COVID-19 testing policies nor differences in reporting of COVID-19 deaths.3 

                                                
1 The statistical overview does not include Costa Rica, Iceland, Ireland, Slovenia and Turkey due to lack of subnational 

data at the time of writing. Bulgaria, Malta and Romania are included. For the regression analysis Colombia, Israel, 

Lithuania and New Zealand are excluded due to lack of relevant covariates. 

2 https://www.webmd.com/cold-and-flu/news/20210225/what-happened-to-flu-season (accessed 7 July 2021) and 

https://ec.europa.eu/transport/modes/road/news/2021-04-20-road-safety-statistics-2020_en (accessed 7 July 2021). 

3 Advantages and limitations of using excess mortality statistics have been discussed by Morgan et al., (2020[47]). 

1 Introduction 

https://www.webmd.com/cold-and-flu/news/20210225/what-happened-to-flu-season
https://ec.europa.eu/transport/modes/road/news/2021-04-20-road-safety-statistics-2020_en
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The analysis takes a broad set of place-based characteristics into account to understand spatial patterns 

of excess mortality. Regional indicators in many domains – including socio-demographics, health system 

capacity, environmental quality, as well as institutional and geographical features – are used to analyse 

the spatial distribution of excess deaths. Most of these indicators come from the OECD Regional Statistics 

database (OECD, 2021[3]). 

Results indicate that regions with stronger health system capacity – an index combining the availability of 

hospital beds and active physicians relative to population – experienced lower excess mortality since the 

first months of the pandemic. On average, an increase of one standard deviation in the health capacity 

index (e.g. around five more hospital beds per 1 000 people or two more doctors per 1 000 people) is 

associated to a decrease of 1.8-3.4 percentage points in excess mortality. This negative association has 

been strong and significant throughout 2020. In line with expectations and with results of other studies, 

excess mortality was higher – all else being equal – in denser and more polluted regions and those with 

older populations. In addition, trust in government was associated with a lower health impact, highlighting 

the role played by institutional quality, as found in the recent literature (Rodríguez-Pose and Burlina, 

2021[4]). Finally, prolonged remote working is also associated with lower excess mortality, particularly after 

two-months of remote working. More precisely, reducing home-to-work mobility today by 25% with respect 

to pre-pandemic levels (January 2020) would lead to a decrease in excess mortality of 1-2.5 percentage 

points in two months. 

The remainder of the paper is organised as follows: Section 2 presents the indicators used in the analysis 

and provides an assessment of the geographical patterns of excess mortality. Section 3 describes the data 

sources and empirical specifications. Section 4 discusses the results, and section 5 provides some 

concluding remarks. 
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Excess mortality during the COVID-19 pandemic 

The association of the increase in all-causes mortality – i.e. excess mortality – with COVID-19 requires 

caution. However, excess mortality provides a robust indicator of the human losses caused by the 

pandemic as it avoids problems of misreporting of COVID-19 deaths due to low levels of testing (OECD, 

2020[1]), as well as differences in definitions and measurement capacities across and, sometimes, within 

countries. 

Excess mortality can be broken down by different periods of 2020. This study distinguishes twelve 

sub-periods by considering January (when the first cases of COVID-19 appeared in most OECD countries), 

January-February, January-March, and so on until January-December (just before vaccination rollouts 

started in most countries). Excess mortality data are derived from official registers of deaths provided by 

national statistical offices or health ministries.4 

The COVID-19 pandemic has hit certain parts of countries harder than others within the first twelve months 

of 2020. In 2020, subnational regions in 36 OECD and European countries registered on average 14% 

more deaths than the average number of deaths of the previous two years (2018-2019).5 Increases in 

deaths were highly concentrated in specific regions. For example, New York (United States), Lombardy 

(Italy), Madrid (Spain), Mexico City (Mexico) and Amazonas (Colombia) experienced 30% to 90% more 

deaths in 2020 than in 2018-2019 – at least 20 percentage points higher than the average excess mortality 

in their respective country. 

Considering a reduced sample of regions – consisting of 342 large regions (Territorial Level 2, TL2)6 in 32 

countries with a large set of covariates available to undertake a regression analysis (see list of countries 

in Annex C) – the maximum excess mortality for the period January-December 2020 reached 72%. Within 

                                                
4 For more details on the data and metadata see OECD Regions and Cities at a Glance 2020 (OECD, 2020[1]) and the 

related Excess mortality repository (https://github.com/oecd-cfe-eds/ccsa-excess-mortality) (OECD, 2021[7]). 

5 Excess mortality estimates based on a relatively short reference period have drawbacks and advantages. On the 

one hand, using a two-year period (i.e. 2018-19) – compared to, for example, a four-year period (i.e. 2016-19) – is less 

effective to smooth out potential errors and or outliers (e.g. due to other crises or natural disasters) in death registers. 

On the other hand, a two-year period reduces the biases generated by demographic trends – particularly the long run 

increase in life expectancy in most regions. The latter bias would come from the well-documented megatrend of 

demographic change with heterogeneous effects within countries (OECD, 2019[49]; OECD, 2020[1]) rather than from 

unclear sources of errors and outliers, the two-year reference period is therefore chosen in this exercise. 

6 Subnational regions within the 38 OECD countries are classified into two territorial levels reflecting the administrative 

organisation of countries: large regions (territorial level 2 or TL2) and small regions (TL3). 

2 Understanding the geography of 

excess mortality across regions 

https://github.com/oecd-cfe-eds/ccsa-excess-mortality


8    

  
  

this sample, 5% of regions experienced negative or no increase in excess mortality for the same period, 

while excess mortality above 20% and 30% occurred in 20% and 8% of regions, respectively (Figure 1). 

A first approach to understand the geographical patterns of the health impact of the pandemic is to examine 

excess mortality across types of regions, from metropolitan regions to low-density remote regions. To do 

so, we use an OECD classification of small regions (Territorial Level 3, TL3) based on the share of the 

regional population living within or near (up to one-hour drive) a metropolitan area7 (Fadic et al., 2019[5]). 

According to this typology, small regions are classified into metropolitan regions (including large 

metropolitan areas), regions close to a metropolitan area, or regions far from a metropolitan area (which 

can be sub-divided into regions near a small-medium city, or remote regions). 

In most OECD countries, metropolitan regions experienced higher excess mortality than remote regions in 

2020. Across 23 countries with available data for TL3 regions, excess mortality was close to 18% in large 

metropolitan regions compared to 14% in remote regions, on average. This pattern is also observed within 

countries. In 16 out of 23 OECD countries, metropolitan regions recorded higher excess mortality than 

regions far from a metropolitan area. Nevertheless, this gap has not been homogeneous over time. While 

the gap reached its peak by the end of the first wave of the pandemic (June 2020), a process of regional 

convergence during the second half of 2020 – driven by growing excess mortality in remote regions – has 

been closing the gap. This process is in line with the way in which the virus spread across the world. While 

the virus first arrived to countries through their largest and highly connected metropolitan areas (mainly 

through international air travel, see Daon, Thompson and Obolski, (2020[6])), it then spread more widely 

within countries reaching practically all types of places.

                                                
7 Metropolitan areas are captured through the existence of a Functional Urban Area of at least 250 000 inhabitants. 

See Dijkstra, Poelman and Veneri (2019[43]) for a detailed definition of Functional Urban Area.  



Figure 1. Excess mortality in regions of OECD countries, January-December 2020 

Percentage increase in 2020 deaths relative to the 2018-19 average, large regions (TL2) 

 

Source: (OECD, 2021[7]).



Place characteristics and the health impact of the pandemic: A view from the 

literature 

During the first year of the pandemic, many studies investigated potential risk factors for COVID-19 severity 

and death. One of the first risk factors to be identified was old age (WHO, 2020[8]). For people infected with 

SARS-CoV-2, the probability of death increases sharply with age, suggesting that places with larger shares 

of elderly population (e.g. aged 65 or above) are particularly vulnerable to the virus (Kashnitsky and Aburto, 

2020[9]; Dowd et al., 2020[10]). In the OECD area, the share of elderly population is significantly different 

both across and within countries. For example, more than 25% of the population is 65 years or older in 

some regions in Italy, Spain and Portugal, compared to a national average of 21%, while in many regions 

of Mexico and Chile the share of elderly is 10% or less. Within countries, regions with higher shares of 

elderly people tend to be far away from metropolitan areas. In 2019, elderly dependency rates (i.e. the 

number of people aged 65 or over as a share of the working-age population – 15-64 year-olds) were around 

35% in remote regions of OECD countries, 6 percentage points higher than in large metropolitan areas 

(OECD, 2020[1]). 

The capacity of the health system is another crucial factor to consider. Failing to keep the number of 

COVID-19 cases needing medical attention below the capacity of the health system could result in many 

more fatalities due to COVID-19 as well as other diseases (McCabe et al., 2020[11]). In this sense, the 

availability of medical resources – measured in terms of hospital beds and physicians (doctors) per 

inhabitant – is crucial to prevent high excess deaths. For example, some regions in Mexico, Chile and the 

United Kingdom had around one physician per 1 000 people at the beginning of the pandemic, one third 

of the average observed in regions with the lowest physician rates in Austria, the Czech Republic and 

Germany. Such interregional inequality exists also within countries, notably in the United States and the 

Netherlands, as well as across types of regions. Prior to the pandemic, large metropolitan regions tended 

to be better equipped with hospital beds than remote regions, with an average of 9 beds per 1 000 

inhabitants, compared to 5.5 in remote regions (OECD, 2020[1]). 

Morbidity rates could also play a role in making some places more vulnerable to the pandemic. Within the 

first months of the COVID-19 crisis, the World Health Organization highlighted that people with pre-existing 

medical conditions – including high blood pressure, heart and lung diseases, cancer, diabetes and obesity 

– were among the most susceptible to developing severe forms of COVID‑19 if infected with SARS-CoV-2 

(WHO, 2020[8]). While related morbidity rates are not available for OECD regions, prevalence of obesity 

(where data are available) could serve as a proxy to capture some relevant pre-existing health conditions 

of the population. Recent literature shows that obesity is a risk factor for COVID-19 severity, not only by 

increasing the probability of other co-morbidities such as diabetes and high blood pressure, but also 

through a direct channel related to weakened respiratory capacity (Gao et al., 2020[12]; Bermont and 

Díaz Ramírez, 2021[13]). In some regions in Canada, Chile, Mexico and the United States, close to 40% or 

more of the population is obese – at least 8.5 percentage points higher than their national averages and 

twice the OECD average (OECD, 2020[1]). 

In addition to age structure, health pre-conditions and the capacity of the health system, the level of 

environmental quality – as measured by air pollution levels – is another factor that can affect the 

vulnerability of regions to the pandemic. Recent studies have shown that higher exposure to fine particulate 

matter 2.5 (PM2.5) contributes to the airborne transmission of SARS-CoV-2 and to a higher risk of mortality 

due to COVID-19 (Comunian et al., 2020[14]; Cole, Ozgen and Strobl, 2020[15]; Coker et al., 2020[16]; Wu 

et al., 2020[17]). While differences in air pollution across OECD cities are larger across countries than within 

them, two thirds of cities in OECD countries still have exposure to PM2.5 above the 10 mg/m3 (micrograms 

per cubic metre) limit recommended by the WHO (OECD, 2020[1]). In 30 countries, there is at least one 

city with air pollution levels above that threshold. In the sample of regions used for the analysis, exposure 

to PM2.5 varies from 4 mg/m3 in the least affected region to 42 mg/m3 in the most affected one (Table 1). 
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The role of air quality for the health impact of the COVID-19 pandemic might change depending on specific 

geographical characteristics, such as altitude and temperature. Recent studies support the idea that 

infection rates are lower and consequences less severe in regions with high altitudes and high 

temperatures for reasons related to the survival of the virus in such environments and the health conditions 

of people living in those areas (Millet et al., 2020[18]; Wang et al., 2021[19]). Nevertheless, other studies 

suggest that elevation could increase excess deaths by exacerbating the adverse effects of air pollution 

on health (Alvarez, Sosa-Echeverría and Alvarez Sanchez, 2012[20]; Bravo and Urone, 1981[21]). 

The literature on the drivers of the health impact of the COVID-19 pandemic has also focused on the quality 

of institutions (Rodríguez-Pose and Burlina, 2021[4]). Trust in government can affect people’s behaviours 

to comply with containment measures and medical advice, such as lockdowns, travel restrictions, wearing 

masks (Elgar, Stefaniak and Wohl, 2020[22]) that are key to slow the spread of COVID-19 and related 

deaths. Perception-based indicators such as the percentage of the regional population having confidence 

in the national government could serve as proxies for the quality of institutions and the capacity of regional 

decision makers to effectively coordinate with the national administration, which is crucial to elaborate 

effective policy responses (OECD, 2020[23]). Yet, regional differences in confidence in governments are 

stark across and within OECD countries, particularly in Latin American and Southern European countries. 

During the period 2014-18, the levels of confidence in national governments between the regions with 

highest and lowest confidence levels differed by 15 percentage points on average in OECD countries 

(OECD, 2020[1]). 

Socio-economic characteristics such as educational attainment and material conditions (including 

household income, relative poverty and overcrowded housing) can be relevant factors for COVID-19 

spread and related deaths (Brandily et al., 2021[24]). People with higher socio-economic status are more 

likely to be knowledgeable about COVID-19 (Zhong et al., 2020[25]), as well as to understand, trust and be 

able to follow experts’ advice to cope with the pandemic. They might also be less prone to believe false 

information and to follow science denier leaders – which has been shown to influence individual risky 

behaviour (Ajzenman, Cavalcanti and Mata, 2020[26]). Finally, higher educational attainment tends to be 

associated with jobs that are more amenable to remote working (OECD, 2020[27]), a feature that allows 

workers to better comply with confinement measures. As in other parts of the world, in OECD countries 

adults with higher educational attainment tend to be concentrated in large metropolitan regions, including 

in capital regions (regions hosting the country’s capital city). In the sample considered for this analysis, the 

share of the labour force with at least secondary education ranges from 33% to 98% in the regions with 

the highest and lowest educational attainment of the workforce, respectively (Table 1). 

Other standard regional characteristics such as population size, GDP per capita and population density 

tend to be usual controls in the literature about the drivers of the pandemic’s health impact. Some studies 

classify them as proxies of “regional agglomerations” and highlight that large, dynamic, and highly 

connected cities were among the first to register the arrival of the virus and to experience outbreaks 

(Coelho et al., 2020[28]; Rodríguez-Pose and Burlina, 2021[4]). While some research has shown evidence 

on the association between city size and COVID-19 spread (Stier, Berman and Bettencourt, 2020[29]), the 

role of density per se has been questioned (OECD, 2020[30]). Historically, higher exposure to diseases, 

including viruses, has been among the most important hazards of dense urban settlements (Duranton and 

Puga, 2020[31]; Glaeser, 2020[32]). In the case of COVID-19 – all else being equal – highly dense urban 

areas should, in theory, be at higher risk of spreading the virus due to the close proximity of residents and 

workers. 
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Table 1. Descriptive statistics 

Indicator Mean Standard 

deviation 

Minimum Maximum Sample 

Dependent variable: Excess mortality (%)           

January 2020 -1.74 9.07 -21.01 100 407 

January-February 2020 -0.31 9.24 -25 66.67 407 

January-March 2020 0.46 8.37 -15.03 49.49 407 

January-April 2020 3.66 11.45 -22.89 88.65 407 

January-May 2020 5.37 12.84 -26 105.41 407 

January-June 2020 5.96 13.21 -26.96 127.36 407 

January-July 2020 6.72 14.37 -27.94 131.71 407 

January-August 2020 8.43 14.74 -14.38 126.43 407 

January-September 2020 9.93 13.6 -14.8 110.49 407 

January-October 2020 9.94 13.25 -13.48 107.87 407 

January-November 2020 11.78 12.79 -12.39 95.47 407 

January-December 2020 14.37 12.81 -11.49 88.26 407 

Regional characteristics and controls           

Percentage of elderly population (75+) 7.65 3.11 0.91 16.82 407 

Percentage of youth population (0-14) 18.42 5.55 10.93 43.76 407 

Population density (population-weighted grids, people per square km) 3462.35 3461.59 370 24294 407 

Hospital beds per 1 000 people 4.15 3.1 0.3 22.2 390 

Physicians per 1 000 people 3.08 1.39 0.4 8.4 388 

Health system capacity (score 0-100) 25.61 12.67 0 63.94 388 

Exposure to air pollution PM2.5 (micrograms per cubic metre) 13.25 6.51 4 41.93 405 

Average disposable household income (USD 2015 PPP) 33240.29 19462.09 3514 100115 371 

Percentage of adults with at least secondary education 74.41 17.88 32.7 97.5 374 

GDP per capita (USD 2015 PPP) 36884.85 19143.03 4182 186726 398 

Population (thousands of people) 3178.22 4496.64 29.79 39512.22 407 

Percentage of people that trust in government 39.59 15.08 5.84 85.58 394 

Prevalence of obesity (%) 23.89 9.93 7.6 48.9 266 

Relative poverty rate (disposable income) 20.05 7.67 5.8 57.3 306 

Rooms per inhabitant 1.76 0.55 0.69 3.07 372 

Mean elevation (metres) 533.62 575.68 -3 3225 390 

Average temperature (Celsius degrees) 13.16 5.8 -7.36 27.82 388 

Change in mobility January-February 2020 -1.45 5.72 -16.4 17.9 346 

Change in mobility January-March 2020 -16.15 9.91 -47.68 12.48 346 

Change in mobility January-April 2020 -45.71 13.33 -75.52 -7.7 346 

Change in mobility January-May 2020 -33.46 10.58 -64.73 -0.82 346 

Change in mobility January-June 2020 -21.87 9.98 -58.21 4.68 346 

Change in mobility January-July 2020 -23.14 9.91 -60.23 3.46 346 

Change in mobility January-August 2020 -25.35 8.2 -58.96 11.25 346 

Change in mobility January-September 2020 -18.98 9.37 -69.82 20.48 346 

Change in mobility January-October 2020 -17.5 8.31 -66.92 12.8 346 

Change in mobility January-November 2020 -22.1 9.1 -67.24 16.45 346 

Change in mobility January-December 2020 -28.04 8.84 -71.37 0.86 346 

Note: 407 large regions (TL2) from 33 OECD and 3 non-OECD EU countries (AUS, AUT, BEL, BGR, CAN, CHE, CHL, COL, CZE, DEU, DNK, 

ESP, EST, FIN, FRA, GBR, GRC, HUN, ISR, ITA, JPN, KOR, LTU, LUX, LVA, MEX, MLT, NLD, NOR, NZL, POL, PRT, ROU, SVK, SWE and 

USA). With the exception of the indicators of excess mortality and change in mobility (which cover all months of 2020), regional characteristics 

and controls refer to the latest pre-pandemic year with available data (i.e. 2019 or earlier). 

Source: (OECD, 2021[3]; Gallup, 2020[33]; Jarvis et al., 2008[34]; Google, 2021[35]). 
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Beyond regional characteristics, local policy responses – notably effective confinement and social 

distancing measures – are also key. Since the beginning of the pandemic, countries, regions and cities 

worldwide have been applying different combinations of containment measures such as confinements, 

curfews and travel restrictions (Nouvellet et al., 2021[36]), as well as supporting work-from-home when 

possible for firms and workers. These measures tend to reduce social interactions (and thus the spread of 

the virus) and decrease people’s mobility within and across regions, including daily home-to-work 

commuting. In this sense, the effectiveness of these measures (which depends on both government 

guidelines and people’s compliance) can be proxied through the change in mobility between different 

periods (Pan et al., 2020[37]). In the OECD, regions have decreased their mobility, on average, since the 

beginning of the pandemic. The largest drop in mobility occurred in April 2020 – when home-to-work 

mobility decreased by almost 45% compared to January 2020. Nevertheless, changes in mobility have 

been heterogeneous across places even within the same period. For example, during January-September 

2020 some regions reduced their mobility by twice the average of OECD regions, while other regions 

registered significant increases. In part, the differences reflect the fact that the prevalence of the virus 

varied within countries and so did confinement measures. Differences in mobility may also help explain 

the differentiated health impact of the pandemic across regions, as shown in the following sections. 
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Excess mortality indicators at the regional level8 were estimated using official deaths registers provided by 

national statistical offices or health ministries (OECD, 2020[1]; OECD, 2021[7]), while the main source of 

data for the regional characteristics – including risk factors for COVID-19 – is the OECD Regional Statistics 

database  (OECD, 2021[3]). 

The main explanatory variables included in the analysis are the share of elderly population (age structure), 

the physician and hospital bed rates (health system capacity), population density (proximity of people), 

exposure to air pollution (environmental risk factors), and trust in government (quality of institutions). 

Relevant controls are GDP per capita and, in some cases, the total resident population (in natural log). A 

set of additional controls were initially included in the analysis, but finally excluded due to high 

multi-collinearity with core explanatory variables or limited regional coverage (see Annex A for more 

details). These controls include the share of young population, average household income, percentage of 

labour force with at least secondary education, obesity rates, relative poverty rates, average rooms per 

inhabitant, average temperature, and average elevation. The indicators of trust in government, mean 

temperature and elevation, and change in mobility were estimated using different sources, namely Gallup 

World Poll (Gallup, 2020[33]), Google’s Earth Engine Data Catalog (Jarvis et al., 2008[34]; NCEP, 2021[38]) 

and Google’s COVID-19 Community Mobility Reports (Google, 2021[35]), respectively. All other indicators 

are sourced from the OECD Regional Statistics database (OECD, 2021[3]). 

Estimating the associations between regional characteristics and higher excess 

mortality 

The baseline model consists of a simple linear regression of excess mortality (dependent variable) against 

a core set of pre-pandemic regional characteristics (explanatory variables and controls). After examining 

the pairwise correlation between an exhaustive set of potential explanatory variables to avoid issues of 

multi-collinearity (see Annex A), the preferred set of regional characteristics is further limited and defined 

as in Equation 1. All regressions include country fixed-effects – to account for country time-invariant 

institutional and geographical characteristics – and correct for heteroscedasticity. 

                                                
8 Deaths in most countries are only reported by region of occurrence (with the exception of Germany that reported 

only by region of residence). The former definition is not robust to high interregional mobility, particularly for small 

regions (i.e. TL3 regions). For example, if – seeking for better medical care – many sick people travel from their region 

of residence to a region with higher health system capacity and die there, regional indicators on excess mortality would 

be biased. Nevertheless, considering the relative large area of TL2 regions (the main unit of analysis) – and thus that 

intra-country mobility is more likely to happen within these large regions – this should not highly affect the results. 

3 Data sources and empirical 

specification 
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𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑗𝑎𝑛−𝑚

= 𝛼 ∗ 𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑆ℎ𝑟 + 𝛽 ∗ 𝐻𝑒𝑎𝑙𝑡ℎ𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟 + 𝛾 ∗ 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟 + 𝛿 ∗ 𝐴𝑖𝑟𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑟

+ 𝜑 ∗ 𝐺𝐷𝑃𝑝𝑐𝑟 + 𝜃 ∗ 𝑇𝑟𝑢𝑠𝑡𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑟 + 𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐹𝐸 + 휀𝑟,𝑗𝑎𝑛−𝑚 

 

[ 1 ] 

𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑚 is the percentage increase in 2020 deaths relative to the 2018-19 average in region 𝑟 

and for the period between January 2020 and month 𝑚, 2020. While an arguably preferred period for 

excess mortality would be around January-June 2020, the analysis also looks into shorter (e.g. January-

March 2020) and longer periods (e.g. January-December 2020) to capture cumulative effects. The period 

January-June 2020, also referred to as the pandemic’s first wave, is likely preferred in the sense that it 

balances potential biases from measurement error in the dependent variable and from unobserved factors 

due to omitted variables. More specifically, the first 6 months of the pandemic give enough time for a 

meaningful quantification of excess mortality while it reduces the effect of differences in date of first 

COVID-19 case. In addition, compared to the largest period, a 6-month period is likely to be less sensitive 

(arguably more exogenous) to unobserved responses and behaviours arising over time (such as 

governments increasing medical capacity and resources). 

𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑆ℎ𝑟 is the share of elderly population (aged 75 or above), while 𝐻𝑒𝑎𝑙𝑡ℎ𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟 is a normalised 

index (from 0 to 100) that aggregates both the number of active physicians per 1 000 people and the 

number of hospital beds per 1 000 people (following the max-min normalisation method (OECD, 2019[39]))9. 

To minimise biases generated by administrative boundaries and consequent inaccuracy of measuring 

densities, 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟 provides the population-weighted average of the population in each of the one-km2 

cells within the region 𝑟. 𝐴𝑖𝑟𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑟 stands for the (population-weighted) exposure to fine particulate 

matter 2.5 (PM2.5, measured in micrograms per cubic metre or mg/m3). 𝐺𝐷𝑃𝑝𝑐𝑟  is the GDP per capita in 

USD 2015 PPP, while 𝑇𝑟𝑢𝑠𝑡𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑟 refers to the percentage of regional population with confidence 

in the national government. The set of country fixed-effects is denoted as 𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐹𝐸, and the error term 

as 휀𝑟.  

In a second step, the analysis looks into the potential spatial autocorrelation of the residuals, as a latent 

source of estimation biases. To deal with this issue, we estimate a spatial autoregressive model that 

controls for spatially autoregressive errors (hereafter SAR-E model) using a weighting matrix 𝑊 – which is 

the inverse-distance matrix for each pair of regions in the sample (see Equation 2). 

𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑗𝑎𝑛−𝑚

= 𝛼 ∗ 𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑆ℎ𝑟 + 𝛽 ∗ 𝐻𝑒𝑎𝑙𝑡ℎ𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟 + 𝛾 ∗ 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟 + 𝛿 ∗ 𝐴𝑖𝑟𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑟

+ 𝜑 ∗ 𝐺𝐷𝑃𝑝𝑐𝑟 + 𝜃 ∗ 𝑇𝑟𝑢𝑠𝑡𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑟 + 𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐹𝐸 + (1 − 𝜌𝑊)−1휀𝑟,𝑗𝑎𝑛−𝑚 

 

[ 2 ] 

One limitation of the baseline and SAR-E models is that they can only account for country-wide 

containment measures for a given period of time (through country-fixed effects). Nevertheless, there are 

cases where lockdown measures also varied across places within the same country. Observed monthly 

reductions in home-to-work mobility can capture differences in containment efforts at the regional level and 

over time. The following section provides a panel model specification that accounts for such differences, 

as observed from Google’s COVID-19 Community Mobility Reports (Google, 2021[35]), using a balanced 

panel of regions for the months of 2020.  

                                                
9 The health capacity index uses equal weights to aggregate the number of active physicians per 1 000 people and 

the number of hospital beds per 1 000 people, as there is no prior information to suggest one element is more relevant 

than the other. Only for two regions where the indicator of hospital beds rate was missing, we set the normalised value 

of active physicians rate as the health capacity index. Excluding these two regions from the sample (available upon 

request) does not affect the results. 
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Assessing the role of mobility in reducing excess mortality 

To explore the relationship between changes in excess mortality and efforts in reducing home-to-work 

mobility, we define panel models with regional fixed effects, where 𝛥𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑚 stands for the 

change in excess mortality (in percentage points) in region 𝑟 and month 𝑚 with respect to month 𝑚 − 1, 

more precisely 𝛥𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑚 can be expressed as 𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑚 − 𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑚−1. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑟,𝑚−𝑙 measures the (percent change) home-to-work mobility in region 𝑟 and month 𝑚 with 

respect to the average mobility registered in January 2020 (benchmark mobility). To minimise issues of 

reverse causality between mobility change and excess mortality – and consistently with expected delayed 

effects of containment measures – the 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑟,𝑚−𝑙 variable is also lagged one month or more 

(the specifications show time lags up to three months, i.e. 𝑙 ∈ {0,1,2,3}) relative to the dependent variable 

(which can go from April to December 2020). Since this specification exploits the time dimension of the 

panel of regions, it controls for all time-invariant regional characteristics through a set of regional fixed-

effect dummies (𝑅𝑒𝑔𝑖𝑜𝑛𝐹𝐸). 𝑀𝑜𝑛𝑡ℎ𝐹𝐸 denotes either month fixed-effects or country-month fixed-effects 

(depending on the regression), while 휀𝑟,𝑚 stands for the error term – standard errors are clustered at the 

regional level (see Equation 3). 

𝛥𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑚 = 𝜏 ∗ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑟,𝑚−𝑙 + 𝑅𝑒𝑔𝑖𝑜𝑛𝐹𝐸 + 𝑀𝑜𝑛𝑡ℎ𝐹𝐸 + 휀𝑟,𝑚 [ 3 ] 
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Overall, the results show that lower health system capacity, higher population density, air pollution, share 

of elderly population and lower institutional quality are significantly associated with higher excess mortality 

at the regional level. A breakdown of excess mortality by sub-periods of the year 2020 reveals that health 

system capacity and population density have been strongly associated with excess mortality from the first 

months of the COVID-19 crisis until the end of 2020. On the other hand, higher shares of elderly population 

and lower shares of trust in government appeared to be significantly correlated with higher excess deaths 

only during the first wave of the pandemic (January-June 2020). Air pollution was also strongly associated 

with higher excess mortality, although mainly in later and longer periods including the second wave. A 

novel result from the analysis shows that lower home-to-work mobility was associated with lower excess 

mortality, notably with a delay of two months. This suggests that policies that support remote working can 

be effective to reduce the health impact of the pandemic. 

The two sets of regression results presented in Table 2 and Table 3 focus on excess mortality for different 

periods ranging from January-March 2020 to January-December 2020. Both models include selected core 

place-based characteristics that minimise issues of multi-collinearity and maximise the geographical 

coverage (342 regions from 32 countries, see full list of countries in Annex C). These pre-pandemic 

regional characteristics relate to the preparedness or vulnerabilities of regions to cope with the COVID-19 

pandemic. The first specification is a linear regression estimated using OLS (baseline model, Table 2). 

Given that the observations in this empirical framework are spatial units, often close to each other, we 

address possible issues caused by the lack of spatial independence in the residuals. More specifically, we 

provide a second specification – a spatial autoregressive model – which includes spatially lagged errors 

using a weighting matrix (SAR-E model) (Table 3). The main results yielded by these models also hold 

when testing a generalised additive specification (GAM model) (see Annex Table B.1). The latter 

specification controls for spatial heterogeneity using bivariate spline functions whose arguments are the 

geographical coordinates (Basile et al., 2014[40]). 

The coefficients of both the baseline and the spatial specifications show that at the regional level the most 

significant and persistent association is between excess mortality and health system capacity. On average, 

an increase of one standard deviation in terms of this index is associated to a decrease between 1.8 and 

3.4 percentage points of excess mortality, depending on the period. Changes in population density also 

appear to be significant and strong in magnitude. A one standard deviation increase in weighted population 

density is associated to an increase of 2.3-4.7 percentage points in excess mortality. 

Higher levels of GDP per capita, another common feature of regions hosting economically dynamic and 

internationally connected metropolitan areas, was positively correlated with higher excess mortality – even 

in January-March 2020, the first period where excess mortality shifted from negative values to slightly 

positive values due to the COVID-19 pandemic, on average. While the association was particularly strong 

during the first wave of the pandemic, the magnitude of the coefficient shrank by the end of the year. This 

finding is in line with other studies documenting that the virus first spread throughout the world via large, 

dynamic and highly internationally connected metropolis (Daon, Thompson and Obolski, 2020[6]). Once 

the virus entered the metropolitan regions of most countries, it started spreading across other types of 

regions. 

4 Results 
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Results also reveal significant associations of both the share of elderly population and the level of trust in 

government with excess mortality. In terms of magnitudes, an increase of three percentage points (or one 

standard deviation) in the share of elderly population is associated to an increase of 2.6-3.3 points in 

excess mortality. At the same time, an increase of 15 percentage points (or one standard deviation) in the 

share of population having confidence in the government is associated to a decrease of 1.6-3 percentage 

points in excess mortality. 

In line with recent literature, the findings also support the existence of a positive association between 

exposure to air pollution and higher excess mortality during the first year of the pandemic. The association 

appears robust to different specifications, notably starting in June, and meaningful in terms of magnitude. 

More precisely, an increase of one standard deviation in exposure to PM2.5 (i.e. around 6 mg/m3) is 

associated with an increase in excess mortality of 1.3-2.6 percentage points. These coefficients are in line 

with other studies that register elasticities between 8% and 16% depending on the region (OECD, 2020[41]). 

For example, using negative binomial regressions on a sample of municipalities in Northern Italy, 

Coker et al., (2020[16]) found that an increase of one mg/m3 in PM2.5 is associated to an increase of 9% in 

excess mortality. When applying negative binomial specifications to the sample of OECD regions (for 

comparison purposes)10, we find an elasticity of around 11%. 

From the time perspective, the results indicate that health system capacity and population density have 

been consistently associated with excess mortality since the fourth month of the pandemic (i.e. 

January-April 2020), while share of elderly, trust in institutions, and air pollution appear to be significant (at 

the 95%) only after the fourth or fifth month (i.e. May and June). This suggests that the role of a larger 

share of elderly population started to be associated with excess mortality only after the virus had spread 

more systematically within countries. While at the very beginning, population density and GDP per capita 

– notably through a faster spread of the virus in large, dynamic and highly internationally connected 

metropolitan regions – were likely the factors driving the health impact of the pandemic. In the first period, 

during the peak of the emergency, the capacity of health systems to cope with the outbreak was already 

playing a crucial role in preventing deaths. Finally, once the pandemic had spread across the world, other 

place-based factors – including environmental and institutional quality – might have started to shape the 

spatial patterns of excess mortality. 

Finally, the results of the panel model reveal a positive and significant association between lagged mobility 

and excess mortality. Put differently, a decrease in home-to-work mobility is linked to lower excess mortality 

in the following months – particularly after two and three months (delayed effects). Reducing mobility today 

by 25% with respect to pre-pandemic levels would lead to a decrease in excess mortality of 1-2.5 

percentage points in two months. These results are robust to including either time or time-country fixed-

effects (Table 4), and stable when controlling for spatially lagged error terms (see spatial panel model in 

Annex Table B.2). Unsurprisingly, contemporaneous mobility is negatively correlated to excess mortality 

due to an issue of reverse causality. When the virus is hitting harder (e.g. increased rates of cases and 

deaths), governments tend to implement stronger containment measures that reduce mobility in the same 

period. Nevertheless, the benefits of reducing mobility today are only expected to pay off (in terms of 

excess mortality) several weeks after implementation in large part reflecting the needed time to bring the 

basic reproduction number of SARS-CoV-211 to a level lower than one, as well as the lag between time of 

                                                
10 Coker et al.,  (2020[16]) use a negative binomial specification as their dependent variable is the number of excess 

deaths (count) at the municipal level. In this paper, which uses larger geographical units (TL2 regions), the dependent 

variable % increase in excess deaths is more appropriate, and thus a negative binomial model is not needed. 

11 The basic reproduction number (R0) of SARS-CoV-2 is the expected number of new SARS-CoV-2 cases directly 

generated by one case of SARS-CoV-2 in a population where all individuals are susceptible to infection. In the absence 

of interventions, a virus with an R0 greater than one would keep increasing the number of cases in the population. On 

the contrary, if R0 is lower than one the contagion is expected to stop spreading. Different studies have estimated an 
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infection, hospitalisation (if any) and time of death. In addition, our preferred panel specifications – those 

controlling for time and country-month fixed-effects (which to a certain extent should capture country-

specific containment restrictions over time) (Table 4, columns 4-12) – suggest that earlier reductions in 

home-to-work mobility are more effective at preventing increases in excess mortality. 

                                                
R0 for SARS-CoV-2 around 3, particularly at early stages of the pandemic when interventions and knowledge about 

the virus were limited (D’Arienzo and Coniglio, 2020[48]). 



Table 2. Regression results: Baseline model 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dependent variable: Excess mortality (%) January-
March 2020 

January-April 
2020 

January-May 
2020 

January-June 
2020 

January-July 
2020 

January-
August 2020 

January-
September 

2020 

January-
October 2020 

January-
November 

2020 

January-
December 

2020 

Percentage of elderly population (75+) 0.0888 0.813* 1.088** 0.944** 0.654* 0.421 0.317 0.254 0.280 0.443  
(0.244) (0.491) (0.458) (0.420) (0.369) (0.330) (0.305) (0.282) (0.286) (0.313) 

Health system capacity (score 0-100) -0.0814 -0.233** -0.251*** -0.269*** -0.274*** -0.252*** -0.224*** -0.179*** -0.155*** -0.162***  
(0.0529) (0.0912) (0.0898) (0.0835) (0.0773) (0.0687) (0.0609) (0.0526) (0.0511) (0.0535) 

Population density (population-weighted) 0.000135 0.00122** 0.00161*** 0.00158*** 0.00117** 0.00102** 0.000991** 0.000956*** 0.000958*** 0.00110***  
(0.000253) (0.000563) (0.000540) (0.000533) (0.000491) (0.000431) (0.000383) (0.000338) (0.000315) (0.000359) 

Exposure to air pollution PM2.5 (mg per m3) 0.204 0.254 0.268 0.375** 0.430** 0.374** 0.266 0.274* 0.290** 0.305**  
(0.198) (0.214) (0.196) (0.178) (0.186) (0.178) (0.162) (0.140) (0.135) (0.134) 

GDP per capita (2015 USD PPP) 0.000109*** 0.000253*** 0.000248*** 0.000220*** 0.000224*** 0.000195*** 0.000165*** 0.000128*** 0.000104*** 8.79e-05***  
(3.81e-05) (6.20e-05) (5.05e-05) (4.24e-05) (5.31e-05) (5.13e-05) (4.36e-05) (3.52e-05) (3.31e-05) (3.19e-05) 

Trust in government (%) -0.0543 -0.0461 -0.152* -0.200** -0.184** -0.146* -0.125 -0.0899 -0.0579 -0.0350  
(0.0463) (0.0680) (0.0804) (0.0800) (0.0851) (0.0845) (0.0778) (0.0723) (0.0689) (0.0722) 

Observations 342 342 342 342 342 342 342 342 342 342 

R-squared 0.438 0.466 0.510 0.512 0.605 0.684 0.700 0.755 0.756 0.739 

Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adj. R-squared 0.370 0.401 0.450 0.453 0.557 0.646 0.663 0.725 0.726 0.707 

Note: Robust standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. 
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Table 3. Regression results: Spatial model 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dependent variable: Excess mortality (%) January-
March 2020 

January-April 
2020 

January-May 
2020 

January-June 
2020 

January-July 
2020 

January-
August 2020 

January-
September 

2020 

January-
October 2020 

January-
November 

2020 

January-
December 

2020 

Percentage of elderly population (75+) 0.0886 0.804* 0.957** 0.880** 0.659* 0.443 0.332 0.254 0.272 0.442  
(0.257) (0.418) (0.411) (0.392) (0.383) (0.356) (0.326) (0.291) (0.282) (0.293) 

Health system capacity (score 0-100) -0.0834 -0.230*** -0.227*** -0.249*** -0.255*** -0.233*** -0.208*** -0.165*** -0.143** -0.148**  
(0.0530) (0.0857) (0.0829) (0.0784) (0.0763) (0.0710) (0.0653) (0.0584) (0.0565) (0.0585) 

Population density (population-weighted) 0.000139 0.00122*** 0.00156*** 0.00151*** 0.00110*** 0.000949*** 0.000922*** 0.000892*** 0.000905*** 0.00101***  
(0.000193) (0.000313) (0.000304) (0.000290) (0.000283) (0.000263) (0.000241) (0.000216) (0.000209) (0.000217) 

Exposure to air pollution PM2.5 (mg per m3) 0.207** 0.248 0.202 0.327** 0.386** 0.332** 0.226* 0.233** 0.251** 0.264**  
(0.101) (0.165) (0.165) (0.158) (0.156) (0.145) (0.132) (0.118) (0.114) (0.119) 

GDP per capita (2015 USD PPP) 0.000109*** 0.000249*** 0.000212*** 0.000193*** 0.000204*** 0.000180*** 0.000153*** 0.000120*** 9.73e-05*** 8.38e-05**  
(2.85e-05) (4.67e-05) (4.70e-05) (4.46e-05) (4.35e-05) (4.05e-05) (3.72e-05) (3.32e-05) (3.21e-05) (3.33e-05) 

Trust in government (%) -0.0542 -0.0452 -0.127** -0.159*** -0.142** -0.111** -0.0968* -0.0662 -0.0398 -0.0135  
(0.0399) (0.0651) (0.0641) (0.0615) (0.0603) (0.0560) (0.0513) (0.0457) (0.0443) (0.0461) 

SAR error correlation 0.0305 0.487 1.203*** 1.775*** 2.367*** 2.329*** 2.018*** 1.896*** 1.921*** 2.403***  
(0.559) (0.681) (0.113) (0.287) (0.569) (0.554) (0.413) (0.336) (0.332) (0.590) 

Observations 342 342 342 342 342 342 342 342 342 342 

Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Pseudo R-squared 0.438 0.466 0.468 0.503 0.600 0.681 0.697 0.752 0.752 0.734 

Note: Robust standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. All regressions control for spatially lagged error terms using the weighting matrix 𝑊, which is the inverse-distance matrix for each 

pair of regions in the sample. 
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Table 4. Regression results: Panel model 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

  Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Change in 
excess 

mortality 

Relative mobility (%) -0.147*** -0.156*** -0.111*** -0.103*** -0.148*** -0.181*** -0.139*** -0.122*** -0.173*** -0.232*** -0.192*** -0.177***  
(0.0128) (0.0141) (0.0133) (0.0127) (0.0183) (0.0211) (0.0188) (0.0179) (0.0447) (0.0544) (0.0500) (0.0468) 

Relative mobility (%) (1-month lag) 
 

0.0494*** 0.0202** 0.0338*** 
 

0.0707*** 0.00951 0.0284 
 

0.130*** 0.0532 0.0599   
(0.0113) (0.00969) (0.0120) 

 
(0.0199) (0.0183) (0.0185) 

 
(0.0420) (0.0376) (0.0380) 

Relative mobility (%) (2-month lag) 
  

0.0573*** 0.0430*** 
  

0.104*** 0.0537*** 
  

0.115*** 0.0754*    
(0.0103) (0.00973) 

  
(0.0156) (0.0164) 

  
(0.0425) (0.0392) 

Relative mobility (%) (3-month lag) 
   

0.0242*** 
   

0.0918*** 
   

0.0670**     
(0.00836) 

   
(0.0147) 

   
(0.0289) 

Observations 3,078 3,078 3,078 3,078 3,078 3,078 3,078 3,078 3,078 3,078 3,078 3,078 

R-squared 0.118 0.133 0.149 0.153 0.144 0.153 0.170 0.183 0.568 0.572 0.576 0.577 

Number of id 342 342 342 342 342 342 342 342 342 342 342 342 

Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Month FE No No No No Yes Yes Yes Yes No No No No 

Country-Month FE No No No No No No No No Yes Yes Yes Yes 

Adj. R-squared 0.118 0.132 0.148 0.151 0.142 0.150 0.167 0.180 0.528 0.533 0.537 0.538 

Note: Changes in excess mortality are measured in percentage points. Standard errors clustered at the regional level. ***p<0.01, **p<0.05, *p<0.1.



This paper provides evidence on the regional characteristics that might be driving the highly unequal impact 

of COVID-19 across space within OECD countries. To minimise issues of misreporting or differences in 

testing policy and cause of death across and indeed within countries the analysis builds on internationally 

comparable measures of excess mortality for different periods of 2020 as a headline measure of health 

impact of the pandemic. 

The results show that several place-based characteristics are associated with spatial differences in excess 

mortality across the large sample of regions considered. Health system capacity is among the strongest 

and most robust predictors, but other features, such as reductions in home-to-work mobility, exposure to 

air pollution and trust in institutions also play a role. In addition, health capacity and population density are 

persistent factors that have been affecting excess mortality since the beginning of the crisis, while other 

regional characteristics appear to be significantly associated with excess mortality only at later stages of 

the pandemic. 

Understanding the main determinants of the geography of excess mortality is crucial to build effective 

policy responses. Results reported in this paper suggest that strong health systems and physical distancing 

measures, including through teleworking efforts, have helped to mitigate the health impact of the pandemic. 

The analysis also provides insights on the relevance of a place-based management of the pandemic – 

including for the rollout of the current COVID-19 vaccination campaigns – which should consider the higher 

vulnerability of areas with relatively lower health resources, higher air pollution and population density, and 

where policies aimed at reducing mobility are more difficult to implement. 

5 Conclusions 
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Annex A. Assessing multi-collinearity between 

regional variables 

A first naïve specification would regress excess mortality against all identified explanatory variables 

available, as in Equation A.1. However, such specification risks to present strong multi-collinearity issues 

which could undermine the reliability of the affected coefficients. 

𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑚

= 𝛼 ∗ 𝐴𝑔𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑟 + 𝛽 ∗ 𝐻𝑒𝑎𝑙𝑡ℎ𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟 + 𝛾 ∗ 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟

+ 𝛿 ∗ 𝐴𝑖𝑟𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑟 + 𝜔 ∗ 𝑆𝑜𝑐𝑖𝑜𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑟 + 𝜌 ∗ 𝐺𝐷𝑃𝑝𝑐𝑟 + 𝜗 ∗ 𝐿𝑛𝑃𝑜𝑝𝑟

+ 𝜃 ∗ 𝑇𝑟𝑢𝑠𝑡𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑟 + 𝜑 ∗ 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑟 + 𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐹𝐸 + 휀𝑟 

 

[ A.1 ] 

𝐴𝑔𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑟 includes the two variables share of elderly population (aged 75 or above) and share of 

youth population (aged 0-14), while 𝐻𝑒𝑎𝑙𝑡ℎ𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟 includes both the number of hospital beds per 

1 000 inhabitants and the number of active physicians per 1 000 people. 𝑆𝑜𝑐𝑖𝑜𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑟 includes the 

percentage of workforce (aged 15-64) with at least secondary education (levels 3 to 8 of the International 

Standard Classification of Education 2011) and average household income (in 2015 USD PPP). 𝐿𝑛𝑃𝑜𝑝𝑟 

stands for the natural log of population, and 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑟 for both the mean average elevation and the 

average yearly temperature. 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟 , 𝐴𝑖𝑟𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑟 and 𝐺𝐷𝑃𝑝𝑐𝑟 are defined as in Section 3.12  

To explore potential issues of multi-collinearity, we first look at the pairwise correlations for the large set of 

regional characteristics (Table A.1). At first glance, the correlation matrix suggests strong linear relations 

between the share of elderly and both the share of youth and the rate of hospital beds. In addition, 

regarding health system capacity, the hospital bed rate is also significantly correlated with the active 

physicians rate. To deal with the latter, we create a normalised index for health capacity (from 0 to 100), 

which aggregates both hospital beds and physicians rates. In terms of economic variables, the set of socio 

economic characteristics (including household income and educational attainment) appears to be highly 

collinear with the GDP per capita. Finally, average temperature is highly correlated with both educational 

attainment and GDP per capita. 

The results of the variance inflation factors (VIF) for the different regional characteristics confirm the 

presence of multi-collinearity, notably driven by the variables share of youth, average household income, 

share of the labour force with at least secondary education, average temperature and, to a lower extent, 

mean elevation (Table A.2, columns 1 and 2). When excluding these variables, a new VIF analysis applied 

to the preferred specification (column 3) suggests that multi-collinearity is no longer an issue in our model.

                                                
12 Previous specifications also included the relative poverty rate (percentage of population with an income below 60% 

of the national income), the average rooms per inhabitant, and the percentage of obese population. These variables 

are already excluded from the analysis, as they were costly in terms of the sample size (while they were also highly 

correlated with GDP per capita and educational attainment of the labour force). Population was also excluded from 

the final specifications based on the interpretability of its coefficient (since the model already controls for the effect of 

agglomerations, through population density, GDP per capita and country-fixed effects) and the VIF analysis. However, 

including population (in natural log) does not affect the main results presented in this paper (available upon request). 



Table A.1. Pearson correlations between regional characteristics 

  Percentage 
of elderly 

population 
(75+) 

Percentage 
of youth 

population 
(0-14) 

Hospital 
beds per 

1 000 people 

Physicians 
per 1 000 

people 

Population 
density 

(population-
weighted 

grids) 

Air pollution 
PM2.5 (mg 

per m3) 

Average 
disposable 
household 

income 

% of labour 
force with at 

least 
secondary 
education 

GDP per 
capita 

Ln of 
population 

Trust in 
government 

(%) 

Mean 
elevation 
(metres) 

Percentage of 
elderly population 
(75+) 

1 
           

Percentage of 
youth population (0-
14) 

-0.839* 1 
          

Hospital beds per 
1 000 people 

0.509* -0.574* 1 
         

Physicians per 
1 000 people 

0.520* -0.585* 0.248* 1 
        

Population density 
(population-
weighted grids) 

-0.283* 0.254* -0.0631 -0.0496 1 
       

Air pollution PM2.5 
(mg per m3) 

-0.259* 0.213* 0.155* -0.217* 0.462* 1 
      

Average disposable 
household income 

0.101 -0.218* 0.0158 0.163* -0.333* -0.572* 1 
     

Percentage of 
labour force with at 
least secondary 
education 

0.108 -0.376* 0.164* 0.250* -0.384* -0.339* 0.607* 1 
    

GDP per capita 0.0888 -0.231* 0.0983 0.310* -0.0867 -0.453* 0.776* 0.541* 1 
   

Ln of population -0.0255 0.0884 0.127* -0.191* 0.270* 0.0386 0.155* 0.0147 0.127* 1 
  

Trust in government 
(%) 

0.0536 -0.146* 0.176* 0.124* -0.201* -0.162* 0.241* 0.250* 0.350* -0.0762 1 
 

Mean elevation 
(metres) 

-0.300* 0.402* -0.274* -0.228* 0.262* 0.146* -0.0811 -0.299* -0.125* -0.120* -0.208* 1 

Average 
temperature 
(Celsius degrees) 

-0.276* 0.438* -0.234* -0.164* 0.300* 0.195* -0.338* -0.592* -0.356* 0.205* -0.248* -0.00716 

Observations 297 
           

Note: *p < 0.05. Observations: 315. 
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Table A.2. Variance Inflation Factor of regional characteristics 

  (1) (2) (3) 

Percentage of elderly population (75+) 15.05 8.15 7.39 

Percentage of youth population (0-14) 20.34     

Health system capacity (score 0-100) 6.26 5.77 5.32 

Population density (weighted) 3.62 3.19 2.53 

Air pollution PM2.5 5.38 4.62 4.71 

Average disposable household income 25.12     

Labour force with at least secondary education 21.86     

GDP per capita 6.01 3.65 3.46 

Ln of population 2.56 2.23   

Trust in government 4.4 4.08 4.4 

Mean elevation 2.32 2.2   

Average temperature 3.91 3.63   

Number of country FE with VIF above 10 2 1 0 

Note: All regressions include country fixed effects. 



Annex B. Robustness checks 

To test the robustness of the baseline and SAR-E model results, we estimate a generalised additive model 

(GAM). More precisely, the GAM model adds a smooth function 𝑠(𝑙𝑎𝑡, 𝑙𝑜𝑛)𝑟 as an explanatory variable 

(see Equation B.1)13. The arguments of this function are the latitude and longitude geographical 

coordinates of the region’s centroid. 

𝐸𝑥𝑐𝑒𝑠𝑠𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑗𝑎𝑛−𝑚

= 𝛼 ∗ 𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑆ℎ𝑟 + 𝛽 ∗ 𝐻𝑒𝑎𝑙𝑡ℎ𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟 + 𝛾 ∗ 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟 + 𝛿 ∗ 𝐴𝑖𝑟𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑟

+ 𝜑 ∗ 𝐺𝐷𝑃𝑝𝑐𝑟 + 𝜃 ∗ 𝑇𝑟𝑢𝑠𝑡𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑟 + 𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐹𝐸 + 𝑠(𝑙𝑎𝑡, 𝑙𝑜𝑛)𝑟 + 휀𝑟,𝑗𝑎𝑛−𝑚  

 

[ B.1 ] 

The results of the GAM specification (Table B.1) confirm the robustness of the main OLS and SAR-E 

coefficients.14 In particular, the coefficients for health capacity, population density, and trust in government 

appear to be highly stable across both specifications. In the GAM model, only the share of elderly 

population became non-significant, as the smooth function might be capturing the spatial heterogeneity of 

the link between excess mortality and the proportion of elderly people in each region. However, the 

coefficients related to air pollution gained statistical significance and magnitude, notably in the last and 

longer periods (average increase of 25% with respect to the OLS estimates). 

Table B.1. Regression results: GAM model 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dependent 
variable: Excess 
mortality (%) 

January-
March 
2020 

January-
April 
2020 

January-
May 
2020 

January-
June 
2020 

January-
July 2020 

January-
August 
2020 

January-
September 

2020 

January-
October 

2020 

January-
November 

2020 

January-
December 

2020 

Percentage of 
elderly population 
(75+) 

-0.036 0.235 0.492 0.433 0.301 0.178 0.105 0.111 0.12 0.093 

 
(0.28) (0.467) (0.466) (0.453) (0.439) (0.404) (0.37) (0.332) (0.327) (0.353) 

Health system 
capacity (score 0-
100) 

-0.059 -0.218** -0.246*** -0.240*** -0.227*** -0.198** -0.177** -0.150** -0.128** -0.138** 

 
(0.056) (0.091) (0.09) (0.087) (0.084) (0.077) (0.071) (0.065) (0.063) (0.065) 

Population density 
(population-
weighted) 

0.0001 0.001*** 0.002*** 0.002*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

 
(0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002) 

Exposure to air 
pollution PM2.5 
(mg per m3) 

0.275** 0.293 0.289 0.427** 0.494*** 0.444*** 0.342** 0.338*** 0.358*** 0.217 

 
(0.11) (0.182) (0.181) (0.176) (0.17) (0.156) (0.143) (0.129) (0.127) (0.14) 

                                                
13 The term 𝑠(𝑙𝑎𝑡, 𝑙𝑜𝑛) is a smooth spatial trend surface based on thin plate regression splines, which account for the 

interaction between latitude and longitude. See Wood (2003[44]) for more details. On the use of GAM for similar regional 

analyses see, for example, Basile et al., (2014[40]) and Veneri (2018[45]). 
14 When applying Moran’s test (1950[46]) to the residuals of the baseline model, the null hypothesis of independent 

and identically distributed (i.d.d.) residuals is rejected (p-value<0.1). On the other hand, when performing the test on 

both the SAR-E and GAM model’s residuals, the i.d.d. hypothesis is not rejected (p-value>0.1). 
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GDP per capita 
(2015 USD PPP) 

0.0001*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0001*** 0.0001*** 0.0001*** 0.0001** 0.0001 

 
(0.00003) (0.0001) (0.0001) (0.00005) (0.00005) (0.00004) (0.00004) (0.00004) (0.00004) (0.00004) 

Trust in 
government (%) 

-0.039 -0.015 -0.118* -0.170** -0.166** -0.137** -0.118** -0.086* -0.064 -0.067 

 
(0.043) (0.071) (0.071) (0.069) (0.066) (0.061) (0.056) (0.051) (0.05) (0.052) 

Observations 342 342 342 342 342 342 342 342 342 342 

Adj. R-squared 0.397 0.44 0.496 0.505 0.624 0.705 0.711 0.747 0.748 0.752 

Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Log-likelihood -
1084.519 

-
1249.877 

-
1247.127 

-
1234.318 

-1219.37 -1190.65 -1163.045 -
1133.503 

-1123.314 -1130.341 

Note: ***p<0.01, **p<0.05, *p<0.1. All regressions include a smooth function, whose arguments are the latitude and longitude geographical 

coordinates. 

To further examine the robustness of the panel model results (Table 4), we estimate a spatial 

autoregressive model for panel data (Kapoor, Kelejian and Prucha, 2007[42]). This model builds on the 

region fixed-effects panel specification presented by Equation 3 and adds the weighting matrix 𝑊 

(previously described in Section 3) to model the spatial dependence of the error terms. The results of the 

spatial panel model (Table B.2) suggest good stability for the effect of two- and three-month lagged 

mobility, particularly when including several lags in mobility. 

Table B.2. Regression results: Spatial panel model 

  (1) (2) (3) (4) 

  Change in excess 
mortality 

Change in excess 
mortality 

Change in excess 
mortality 

Change in excess 
mortality 

Relative mobility (%) -0.110*** -0.126*** -0.0830*** -0.0756***  
(0.00999) (0.00980) (0.0112) (0.0112) 

Relative mobility (%) (1-month lag) 
 

0.0482*** 0.0213** 0.0402***   
(0.00920) (0.00983) (0.0109) 

Relative mobility (%) (2-month lag) 
  

0.0635*** 0.0465***    
(0.00911) (0.0100) 

Relative mobility (%) (3-month lag) 
   

0.0308***     
(0.00816) 

SAR error correlation 2.127*** 2.251*** 2.348*** 2.398***  
(0.0567) (0.0635) (0.0657) (0.0681) 

Observations 3,078 3,078 3,078 3,078 

Number of groups 342 342 342 342 

Region FE Yes Yes Yes Yes 

Pseudo R-squared 0.0890 0.116 0.139 0.132 

Note: Changes in excess mortality are measured in percentage points. ***p<0.01, **p<0.05, *p<0.1. All regressions control for spatially lagged 

error terms using the weighting matrix 𝑊, which is the inverse-distance matrix for each pair of regions in the sample.



Annex C. Sample for the regression analysis 

Table C.1. Number of regions by country included in the regression analysis 

Country (ISO code) Number of large regions (TL2) 

AUS 8 

AUT 9 

BEL 3 

BGR 6 

CAN 10 

CHE 7 

CHL 15 

CZE 8 

DEU 16 

DNK 5 

ESP 18 

EST 1 

FIN 4 

FRA 13 

GBR 12 

GRC 13 

HUN 8 

ITA 21 

JPN 10 

KOR 7 

LUX 1 

LVA 1 

MEX 32 

MLT 1 

NLD 12 

NOR 7 

POL 16 

PRT 7 

ROU 8 

SVK 4 

SWE 8 

USA 51 

 


