

PISA 2015 TECHNICAL BACKGROUND

All tables in Annex A are available on line

Annex A1: Construction of indices and missing observations
Annex A2: The PISA target population, the pisa samples and the definition of schools

Annex A3: Technical notes on analyses in this volume
Annex A4: Quality assurance

Note regarding B-S-J-G (China)
B-S-J-G (China) refers to the four PISA participating Chinese provinces of Beijing, Shanghai, Jiangsu, Guangdong.
Note regarding CABA (Argentina)
CABA (Argentina) refers to the Ciudad Autónoma de Buenos Aires, Argentina.
Note regarding FYROM
FYROM refers to the Former Yugoslav Republic of Macedonia.

Notes regarding Cyprus

Note by Turkey: The information in this document with reference to "Cyprus" relates to the southern part of the Island. There is no single authority representing both Turkish and Greek Cypriot people on the Island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the United Nations, Turkey shall preserve its position concerning the "Cyprus issue".
Note by all the European Union Member States of the OECD and the European Union: The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus.

A note regarding Israel

The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law.

ANNEX A1

CONSTRUCTION OF INDICES AND MISSING OBSERVATIONS

Explanation of the indices

This section explains the indices derived from the PISA 2015 student, school, and information and communications technology (ICT) questionnaires used in this volume.

Several PISA measures reflect indices that summarise responses from students, their parents, teachers or school representatives (typically principals) to a series of related questions. The questions were selected from a larger pool of questions on the basis of theoretical considerations and previous research. The PISA 2015 Assessment and Analytical Framework (OECD, 2017a) provides an in-depth description of this conceptual framework. Structural equation modelling was used to confirm the theoretically expected behaviour of most indices and to validate their comparability across countries. For this purpose, a model was estimated separately for each country and collectively for all OECD countries. For a detailed description of other PISA indices and details on the methods, see the PISA 2015 Technical Report (OECD, 2017b).

There are two types of indices used in this volume: simple indices and scale indices.
Simple indices are variables that are constructed through the arithmetic transformation or recoding of one or more items, in exactly the same way across assessments. Here, item responses are used to calculate meaningful variables, such as the recoding of the four-digit ISCO-08 codes into "Highest parents' socio-economic index (HISEI)" or, teacher-student ratio based on information from the school questionnaire.
Scale indices are variables constructed through the scaling of multiple items. Unless otherwise indicated, the index was scaled using a two-parameter item response model (a generalised partial credit model was used in the case of items with more than two categories) and values of the index correspond to Warm likelihood estimates (WLE) (Warm, 1985). For details on how each scale index was constructed, see the PISA 2015 Technical Report (OECD, 2017b). In general, the scaling was done in three stages:

1. The item parameters were estimated from equally-weighted samples of students from all countries and economies; only cases with a minimum number of three valid responses to items that are part of the index were included.
2. The estimates were computed for all students and all schools by anchoring the item parameters obtained in the preceding step.
3. The Warm likelihood estimates were then standardised so that the mean of the index value for the OECD student population was zero and the standard deviation was one, countries being given equal weight in the standardisation process.

Sequential codes were assigned to the different response categories of the questions in the sequence in which the latter appeared in the student, school or parent questionnaires. Where indicated in this section, these codes were inverted for the purpose of constructing indices or scales. Negative values for an index do not necessarily imply that students responded negatively to the underlying questions. A negative value merely indicates that the respondents answered less positively than all respondents did, on average across OECD countries. Likewise, a positive value on an index indicates that the respondents answered more favourably, or more positively, than respondents did, on average in OECD countries. Terms enclosed in brackets $<>$ in the following descriptions were replaced in the national versions of the student, school and parent questionnaires by the appropriate national equivalent. For example, the term <qualification at ISCED level 5A> was translated in the United States into "Bachelor's degree, post-graduate certificate program, Master's degree program or first professional degree program". Similarly the term <classes in the language of assessment> in Luxembourg was translated into "German classes" or "French classes" depending on whether students received the German or French version of the assessment instruments.

In addition to the simple and scaled indices described in this annex, there are a number of variables from the questionnaires that were used in this volume and correspond to single items not used to construct indices. These non-recoded variables have prefix of "ST" for items in the student questionnaire, "SC" for items in the school questionnaire, "PA" for items from the parent questionnaire, "IC" for items from the ICT questionnaire, and " TC " for items from the teacher questionnaire. All the context questionnaires as well as the PISA international database, including all variables, are available through www.oecd.org/pisa.

Student-level simple indices

Student age

The age of a student (AGE) was calculated as the difference between the year and month of testing and the year and month of a student's birth. Data on students' age were obtained from both the questionnaire (ST003) and student tracking forms. If the month of testing was not known for a particular student, the median month for that country was used in the calculation.

Immigration background

The PISA database contains three country-specific variables relating to the country of birth of the student, their mother and their father (COBN_S, COBN_M, and COBN_F). The items ST019Q01TA, ST019Q01TB and ST019Q01TC were recoded into the following categories: (1) country of birth is the same as country of assessment and (2) other. The index of immigrant background (IMMIG) was calculated from these variables with the following categories: (0) non-immigrant students (those students who had at least one parent born in the country), and (1) first- and second-generation immigrant students (those born outside the country of assessment and whose parent(s) were also born in another country, and those born in the country of assessment but whose parent(s) were born in another country). Students with missing responses for either the student or for both parents were assigned missing values for this variable.

Language spoken at home

Students indicated what language they usually speak at home (ST022), and the database includes a derived variable (LANGN) containing a country-specific code for each language. In addition, an internationally comparable variable was derived from this information with the following categories: (1) language at home is the same as the language of assessment for that student and (2) language at home is another language.

Attendance at pre-primary school

Students indicated the age at which they began pre-primary school (ISCED 0) in the student questionnaire (ST125). Students who did not remember whether they attended pre-primary school were not considered in analyses comparing students who attended and who did not attend pre-primary school. This definition differs slightly from the definition of the years of pre-primary school attendance used in PISA 2015 Results (Volume II): Policies and Practices for Successful Schools (OECD, 2016), which defined pre-primary school attendance through a derived variable that also relied on the age at which students began primary school (ISCED 1) (ST126).

Learning time

Learning time in total (TMINS) was computed using information about the average minutes in a <class period> (ST061) and information about the number of class periods per week attended in total (ST060). For convenience purposes, the information on learning time has been transformed into hours.

Index of student interaction in science class

The index of student interaction in science class was constructed from students' responses to question (ST098) on how often various communication-intensive activities take place in science class: "Students are given opportunities to explain their ideas"; "Students spend time in the laboratory doing practical experiments"; "Students are required to argue about science questions"; and "There is a class debate about investigations". Students can respond that these events take place "in all lessons", "in most lessons", "in some lessons", or "never or hardly ever". The index of student interaction in science class is calculated as the number of these activities that students say take place "in all lessons" or "in most lessons", and can vary from 0 to 4 . Higher values indicate that students take part in communication- and interaction-intensive activities more often in science class.

Student-level scale indices

Sense of belonging

The index of sense of belonging (BELONG) was constructed from students' responses to a trend question about their sense of belonging at school. Students reported, on a four-point Likert scale with the response categories "strongly agree", "agree", "disagree", and "strongly disagree", their agreement with the following statements (ST034): "I feel like an outsider (or left out of things) at school"; "I make friends easily at school"; "I feel like I belong at school"; "I feel awkward and out of place in my school"; "Other students seem to like me"; and "I feel lonely at school". The answers to three items were reversed-coded so that higher values in the index indicate a greater sense of belonging.

Life satisfaction

Students' life satisfaction (ST016) level was based on their response to the question "Overall, how satisfied are you with your life as a whole these days". Their responses were limited to integers ranging from 0 (not at all satisfied) to 10 (completely satisfied). Students taking the computer-based questionnaire were asked to move the slider to the appropriate number (closer to 0 or to 10) and thus students could not respond below 0 or above 10 .

Achievement motivation

The index of achievement motivation (MOTIVAT) was constructed from students' responses to a new question developed for PISA 2015 (ST119). Students reported, on a four-point Likert scale with the answering categories "strongly disagree", "disagree", "agree", and "strongly agree", their agreement with the following statements: "I want top grades in most or all of my courses"; "I want to be able to select from among the best opportunities available when I graduate"; "I want to be the best, whatever I do"; "I see myself as an ambitious person"; and "I want to be one of the best students in my class". Higher values indicate that students have greater achievement motivation.

Schoolwork-related anxiety

The index of schoolwork-related anxiety (ANXTEST) was constructed from student responses to question (ST118) over the extent to which they strongly agreed, agreed, disagreed or strongly disagreed with the following statements when asked to think about him or herself: "I often worry that it will be difficult for me taking a test"; "I worry that I will get poor <grades> at school";
"Even if I am well prepared for a test I feel very anxious"; "I get very tense when I study"; and "I get nervous when I don't know how to solve a task at school". Higher values indicate that students have more schoolwork-related anxiety.

Exposure to bullying

The index of bullying (BEINGBULLIED) was constructed from students' reports on how often ("never or almost never"; "a few times a year"; "a few times a month"; "once a week or more") the following happened (ST038): "Other students left me out of things on purpose"; "Other students made fun of me"; "I was threatened by other students"; "Other students took away or destroyed things that belonged to me"; "I got hit or pushed around by other students"; and "Other students spread nasty rumours about me". Higher values indicate that students are exposed to bullying more often.

Index of valuing relationships

The index of valuing relationships (COOPERATE) was constructed from students' responses to question (ST082) over the extent to which they strongly agreed, agreed, disagreed or strongly disagreed with the following statements: "I am a good listener"; "I enjoy seeing my classmates be successful"; "I take into account what others are interested in"; and "I enjoy considering different perspectives". Higher values indicate that students responded more affirmatively to these statements.

Index of valuing teamwork

The index of valuing teamwork (CPSVALUE) was constructed from students' responses to question (ST082) over the extent to which they strongly agreed, agreed, disagreed or strongly disagreed with the following statements: "I prefer working as part of a team to working alone"; "I find that teams make better decisions than individuals"; "I find that teamwork raises my own efficiency"; and "I enjoy co-operating with peers". Higher values indicate that students responded more affirmatively to these statements.

Index of ICT use at school

The index of ICT (information and communications technology) use at school (USESCH) was constructed using students' responses to question (IC011) regarding how often they use digital devices for the following activities: "<chatting online> at school"; "using email at school"; "browsing the Internet for schoolwork"; "downloading, uploading or browsing material from the school's website (e.g. <Intranet>)"; "posting [their] work on the school's website"; "playing simulations at school"; "practicing and drilling, such as for foreign language learning or mathematics"; "doing homework on a school computer"; and "using school computers for group work and communication with other students". Students could respond that they performed these activities "never or hardly ever", "once or twice a month", "once or twice a week", "almost every day" or "every day". Higher values indicate that students use ICT more often at school.

Index of students' perceived ICT competence

The index of students' perceived ICT competence (COMPICT) was constructed using students' responses to question (IC014) regarding their comfort with various digital devices. They were asked to state whether they "strongly agree", "agree", "disagree", or "strongly disagree" with the following statements: "I feel comfortable using digital devices that I am less familiar with"; "If my friends and relatives want to buy new digital devices or applications, I can give them advice"; "I feel comfortable using my digital devices at home"; "When I come across problems with digital devices, I think I can solve them"; "If my friends and relatives have a problem with digital devices, I can help them". Higher values indicate that students feel more comfortable and competent with digital devices and ICT.

Scaling of indices related to the PISA index of economic, social and cultural status

The PISA index of economic, social and cultural status (ESCS) was derived, as in previous cycles, from three variables related to family background: highest parental education (PARED), highest parental occupation (HISEI), and home possessions (HOMEPOS) including books in the home. PARED and HISEI are simple indices, described above. HOMEPOS is a proxy measure for family wealth.

Household possessions

In PISA 2015, students reported the availability of 16 household items at home (ST011) including three country-specific household items that were seen as appropriate measures of family wealth within the country's context. In addition, students reported the amount of possessions and books at home (ST012, ST013).

HOMEPOS is a summary index of all household items and possessions (ST011, ST012 and ST013). The home possessions scale for PISA 2015 was computed differently than in the previous cycles, to align the IRT model to the one used for all cognitive and non-cognitive scales. Categories for the number of books in the home are unchanged in PISA 2015. The items in ST011 ($1=$ "yes", $2=$ "no") were reverse-coded so that a higher level indicates the presence of the indicator.

Computation of ESCS

For the purpose of computing the PISA index of economic, social and cultural status (ESCS), values for students with missing PARED, HISEI or HOMEPOS were imputed with predicted values plus a random component based on a regression on the other two variables. If there were missing data on more than one of the three variables, ESCS was not computed and a missing value was assigned for ESCS.

The PISA index of economic, social and cultural status was derived from a principal component analysis of standardised variables (each variable has an OECD mean of zero and a standard deviation of one), taking the factor scores for the first
principal component as measures of the PISA index of economic, social and cultural status. All countries and economies (both OECD and partner countries/economies) contributed equally to the principal component analysis, while in previous cycles, the principal component analysis was based on OECD countries only. However, for the purpose of reporting, the ESCS scale has been transformed with zero being the score of an average OECD student and one being the standard deviation across equally weighted OECD countries

Principal component analysis was also performed for each participating country or economy separately, to determine to what extent the components of the index operate in similar ways across countries and economies.

School-level simple indices

School type

Schools are classified as either public or private according to whether a private entity or a public agency has the ultimate power for decision making concerning its affairs (SC013). As in previous PISA surveys, the index on school type (SCHLTYPE) has three categories, based on two questions: SC013 which asks if the school is a public or a private school, and SC016 which asks about the sources of funding. This index was calculated in 2015 and in all previous cycles.

Class size and student-teacher ratio

The average class size (CLSIZE) is derived from one of nine possible categories in question SC003, ranging from " 15 students or fewer" to "more than 50 students".

The student-teacher ratio (STRATIO) was obtained by dividing the number of enrolled students (SC002) by the total number of teachers (TOTAT).

Group-based extracurricular activities at school

School principals were asked to report what extracurricular activities their schools offered to 15-year old students (SC053). The index of group-based extracurricular activities at school was computed as the total number of the following activities that occurred at school: band, orchestra or choir; a school play or school musical; a school yearbook, newspaper or magazine; volunteering or service activities; and sports teams/activities. The index varied from 0 to 5 , with each activity weighted equally.

Proportion of missing observations for variables used in this volume

Unless otherwise indicated, no adjustment is made for non-response to questionnaires in analyses included in this volume. The reported percentages and estimates based on indices refer to the proportion of the sample with valid responses to the corresponding questionnaire items. Table A1.1, available on line, reports the proportion of the sample covered by analyses based on the additional background questionnaire variables used in this volume. Similar tables are available in Annex A1 of PISA Volumes I and III for variables already used in analyses in earlier volumes. Where this proportion shows large variation across countries/economies or across time, caution is required when comparing results on these dimensions.

Tables available online

Table A1.1 Weighted share of responding students covered by analyses of collaborative problem-solving performance based on PISA questionnaires (http://dx.doi.org/10.1787/888933623761)

See also Table A1.3 from PISA Volume I for data on the weighted share of responding students covered by analyses based on the student, school and parent questionnaires: $\underline{\text { http://dx.doi.org/10.1787/888933433112. }}$

In addition, see the following tables from PISA Volume III for data on the weighted share of responding students covered by additional analyses based on the student, educational career and parent questionnaires:

- Table A1.8a Weighted share of responding students covered by analyses based on the student and educational career questionnaires: http://dx.doi.org/10.1787/888933473606
- Table A1.8c Weighted share of responding students covered by analyses based on the parent questionnaire: http://dx.doi. org/10.1787/888933473622

References

OECD (2017a), PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264281820-en.

OECD (2017b), PISA 2015 Technical Report, OECD Publishing, Paris.
OECD (2016), PISA 2015 Results (Volume II): Policies and Practices for Successful Schools, OECD Publishing, Paris, http://dx.doi. org/10.1787/9789264267510-en.

Warm, T.A. (1985), "Weighted Maximum Likelihood Estimation of Ability in Item Response Theory with Tests of Finite Length", Technical Report CGI-TR-85-08, U.S. Coast Guard Institute, Oklahoma City.

ANNEX A2

THE PISA TARGET POPULATION, THE PISA SAMPLES AND THE DEFINITION OF SCHOOLS

Definition of the PISA target population

PISA 2015 provides an assessment of the cumulative outcomes of education and learning at a point at which most young adults are still enrolled in initial education.

A major challenge for an international survey is to ensure that international comparability of national target populations is guaranteed.

Differences between countries in the nature and extent of pre-primary education and care, the age of entry into formal schooling and the institutional structure of education systems do not allow for a definition of internationally comparable grade levels. Consequently, international comparisons of performance in education typically define their populations with reference to a target age group. Some previous international assessments have defined their target population on the basis of the grade level that provides maximum coverage of a particular age cohort. A disadvantage of this approach is that slight variations in the age distribution of students across grade levels often lead to the selection of different target grades in different countries, or between education systems within countries, raising serious questions about the comparability of results across, and at times within, countries. In addition, because not all students of the desired age are usually represented in grade-based samples, there may be a more serious potential bias in the results if the unrepresented students are typically enrolled in the next higher grade in some countries and the next lower grade in others. This would exclude students with potentially higher levels of performance in the former countries and students with potentially lower levels of performance in the latter.

In order to address this problem, PISA uses an age-based definition for its target population, i.e. a definition that is not tied to the institutional structures of national education systems. PISA assesses students who were aged between 15 years and 3 (complete) months and 16 years and 2 (complete) months at the beginning of the assessment period, plus or minus a 1-month allowable variation, and who were enrolled in an educational institution with grade 7 or higher, regardless of the grade level or type of institution in which they were enrolled, and regardless of whether they were in full-time or part-time education. Educational institutions are generally referred to as schools in this publication, although some educational institutions (in particular, some types of vocational education establishments) may not be termed schools in certain countries. As expected from this definition, the average age of students across OECD countries was 15 years and 9 months. The range in country means was 2 months and 18 days $(0.20$ years), from the minimum country mean of 15 years and 8 months to the maximum country mean of 15 years and 10 months.

Given this definition of population, PISA makes statements about the knowledge and skills of a group of individuals who were born within a comparable reference period, but who may have undergone different educational experiences both in and outside school. In PISA, these knowledge and skills are referred to as the outcomes of education at an age that is common across countries. Depending on countries' policies on school entry, selection and promotion, these students may be distributed over a narrower or a wider range of grades across different education systems, tracks or streams. It is important to consider these differences when comparing PISA results across countries, as observed differences between students at age 15 may no longer appear later on as/if students' educational experiences converge over time.
If a country's scores in science, reading or mathematics are significantly higher than those in another country, it cannot automatically be inferred that the schools or particular parts of the education system in the first country are more effective than those in the second. However, one can legitimately conclude that the cumulative impact of learning experiences in the first country, starting in early childhood and up to the age of 15, and encompassing experiences in school, home and beyond, have resulted in higher outcomes in the literacy in the domains that PISA measures.

The PISA target population does not include residents attending schools in a foreign country. It does, however, include foreign nationals attending schools in the country of assessment.

To accommodate countries that requested grade-based results for the purpose of national analyses, PISA 2015 provided a sampling option to supplement age-based sampling with grade-based sampling.

Population coverage

All countries and economies attempted to maximise the coverage of 15 -year-olds enrolled in education in their national samples, including students enrolled in special-education institutions. As a result, PISA 2015 reached standards of population coverage that are unprecedented in international surveys of this kind.

The sampling standards used in PISA permitted countries to exclude up to a total of 5% of the relevant population either by excluding schools or by excluding students within schools. All but 12 countries - the United Kingdom (8.22%), Luxembourg (8.16%), Canada (7.49%), Norway (6.75%), New Zealand (6.54%), Sweden (5.71%), Estonia (5.52%), Australia (5.31%),

Montenegro (5.17\%), Lithuania (5.12\%), Latvia (5.07\%), and Denmark (5.04\%) - achieved this standard, and in 29 countries and economies, the overall exclusion rate was less than 2%. When language exclusions were accounted for (i.e. removed from the overall exclusion rate), Denmark, Latvia, New Zealand and Sweden no longer had an exclusion rate greater than 5\%. For details, see www.oecd.org/pisa.
Exclusions within the above limits include:

- At the school level: schools that were geographically inaccessible or where the administration of the PISA assessment was not considered feasible; and schools that provided teaching only for students in the categories defined under "within-school exclusions", such as schools for the blind. The percentage of 15 -year-olds enrolled in such schools had to be less than 2.5% of the nationally desired target population (0.5% maximum for the former group and 2% maximum for the latter group). The magnitude, nature and justification of school-level exclusions are documented in the PISA 2015 Technical Report (OECD, 2017).
- At the student level: students with an intellectual disability; students with a functional disability; students with limited assessment language proficiency; other (a category defined by the national centres and approved by the international centre); and students taught in a language of instruction for the main domain for which no materials were available. Students could not be excluded solely because of low proficiency or common disciplinary problems. The percentage of 15 -year-olds excluded within schools had to be less than 2.5% of the nationally desired target population.

Table A2.1 describes the target population of the countries participating in PISA 2015. Further information on the target population and the implementation of PISA sampling standards can be found in the PISA 2015 Technical Report (OECD, 2017).

- Column 1 shows the total number of 15-year-olds according to the most recent available information, which in most countries means the year 2014 as the year before the assessment.
- Column 2 shows the number of 15 -year-olds enrolled in schools in grade 7 or above (as defined above), which is referred to as the "eligible population".
- Column 3 shows the national desired target population. Countries were allowed to exclude up to 0.5% of students a priori from the eligible population, essentially for practical reasons. The following a priori exclusions exceed this limit but were agreed with the PISA Consortium: Belgium excluded 0.21% of its population for a particular type of student educated while working; Canada excluded 1.22% of its population from Territories and Aboriginal reserves; Chile excluded 0.04% of its students who live in Easter Island, Juan Fernandez Archipelago and Antarctica; and the United Arab Emirates excluded 0.04% of its students who had no information available. The adjudicated region of Massachusetts in the United States excluded 13.11% of its students, and North Carolina excluded 5.64% of its students. For these two regions, the desired target populations cover 15 -year-old students in grade 7 or above in public schools only. The students excluded from the desired population are private school students.
- Column 4 shows the number of students enrolled in schools that were excluded from the national desired target population, either from the sampling frame or later in the field during data collection.
- Column 5 shows the size of the national desired target population after subtracting the students enrolled in excluded schools. This is obtained by subtracting Column 4 from Column 3.
- Column 6 shows the percentage of students enrolled in excluded schools. This is obtained by dividing Column 4 by Column 3 and multiplying by 100 .
- Column 7 shows the number of students participating in PISA 2015. Note that in some cases this number does not account for 15 -year-olds assessed as part of additional national options.
- Column 8 shows the weighted number of participating students, i.e. the number of students in the nationally defined target population that the PISA sample represents.
- Each country attempted to maximise the coverage of PISA's target population within the sampled schools. In the case of each sampled school, all eligible students, namely those 15 years of age, regardless of grade, were first listed. Sampled students who were to be excluded had still to be included in the sampling documentation, and a list drawn up stating the reason for their exclusion. Column 9 indicates the total number of excluded students, which is further described and classified into specific categories in Table A2.2.
- Column 10 indicates the weighted number of excluded students, i.e. the overall number of students in the nationally defined target population represented by the number of students excluded from the sample, which is also described and classified by exclusion categories in Table A2.2. Excluded students were excluded based on five categories: students with an intellectual disability (the student has a mental or emotional disability and is cognitively delayed such that he/she cannot perform in the PISA testing situation); students with a functional disability (the student has a moderate to severe permanent physical disability such that he/she cannot perform in the PISA testing situation); students with limited proficiency in the assessment language (the student is unable to read or speak any of the languages of the assessment in the country and would be unable to overcome the language barrier in the testing situation - typically a student who has received less than one year of instruction in the languages of assessment may be excluded); other (a category defined by the national centres and approved by the international centre); and students taught in a language of instruction for the main domain for which no materials were available.

		Population and sample information												Coverage indices		
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
0	Australia	282888	282547	282547	6940	275607	2.46	14530	256329	681	7736	2.93	5.31	0.947	0.947	0.906
岛	Austria	88013	82683	82683	790	81893	0.96	7007	73379	84	866	1.17	2.11	0.979	0.979	0.834
\bigcirc	Belgium	123630	121954	121694	1597	120097	1.31	9651	114902	39	410	0.36	1.66	0.983	0.981	0.929
	Canada	396966	381660	376994	1590	375404	0.42	20058	331546	1830	25340	7.10	7.49	0.925	0.914	0.835
	Chile	255440	245947	245852	2641	243211	1.07	7053	203782	37	1393	0.68	1.75	0.983	0.982	0.798
	Czech Republic	90391	90076	90076	1814	88262	2.01	6894	84519	25	368	0.43	2.44	0.976	0.976	0.935
	Denmark	68174	67466	67466	605	66861	0.90	7161	60655	514	2644	4.18	5.04	0.950	0.950	0.890
	Estonia	11676	11491	11491	416	11075	3.62	5587	10834	116	218	1.97	5.52	0.945	0.945	0.928
	Finland	58526	58955	58955	472	58483	0.80	5882	56934	124	1157	1.99	2.78	0.972	0.972	0.973
	France	807867	778679	778679	28742	749937	3.69	6108	734944	35	3620	0.49	4.16	0.958	0.958	0.910
	Germany	774149	774149	774149	11150	762999	1.44	6522	743969	54	5342	0.71	2.14	0.979	0.979	0.961
	Greece	105530	105253	105253	953	104300	0.91	5532	96157	58	965	0.99	1.89	0.981	0.981	0.911
	Hungary	94515	90065	90065	1945	88120	2.16	5658	84644	55	1009	1.18	3.31	0.967	0.967	0.896
	Iceland	4250	4195	4195	17	4178	0.41	3374	3966	131	132	3.23	3.62	0.964	0.964	0.933
	Ireland	61234	59811	59811	72	59739	0.12	5741	59082	197	1825	3.00	3.11	0.969	0.969	0.965
	Israel	124852	118997	118997	2310	116687	1.94	6598	117031	115	1803	1.52	3.43	0.966	0.966	0.937
	Italy	616761	567268	567268	11190	556078	1.97	11583	495093	246	9395	1.86	3.80	0.962	0.962	0.803
	Japan	1201615	1175907	1175907	27323	1148584	2.32	6647	1138349	2	318	0.03	2.35	0.976	0.976	0.947
	Korea	620687	619950	619950	3555	616395	0.57	5581	569106	20	1806	0.32	0.89	0.991	0.991	0.917
	Latvia	17255	16955	16955	677	16278	3.99	4869	15320	70	174	1.12	5.07	0.949	0.949	0.888
	Luxembourg	6327	6053	6053	162	5891	2.68	5299	5540	331	331	5.64	8.16	0.918	0.918	0.876
	Mexico	2257399	1401247	1401247	5905	1395342	0.42	7568	1392995	30	6810	0.49	0.91	0.991	0.991	0.617
	Netherlands	201670	200976	200976	6866	194110	3.42	5385	191817	14	502	0.26	3.67	0.963	0.963	0.951
	New Zealand	60162	57448	57448	681	56767	1.19	4520	54274	333	3112	5.42	6.54	0.935	0.935	0.902
	Norway	63642	63491	63491	854	62637	1.35	5456	58083	345	3366	5.48	6.75	0.933	0.933	0.913
	Poland	380366	361600	361600	6122	355478	1.69	4478	345709	34	2418	0.69	2.38	0.976	0.976	0.909
	Portugal	110939	101107	101107	424	100683	0.42	7325	97214	105	860	0.88	1.29	0.987	0.987	0.876
	Slovak Republic	55674	55203	55203	1376	53827	2.49	6350	49654	114	912	1.80	4.25	0.957	0.957	0.892
	Slovenia	18078	17689	17689	290	17399	1.64	6406	16773	114	247	1.45	3.07	0.969	0.969	0.928
	Spain	440084	414276	414276	2175	412101	0.53	6736	399935	200	10893	2.65	3.16	0.968	0.968	0.909
	Sweden	97749	97210	97210	1214	95996	1.25	5458	91491	275	4324	4.51	5.71	0.943	0.943	0.936
	Switzerland	85495	83655	83655	2320	81335	2.77	5860	82223	107	1357	1.62	4.35	0.956	0.956	0.962
	Turkey	1324089	1100074	1100074	5746	1094328	0.52	5895	925366	31	5359	0.58	1.10	0.989	0.989	0.699
	United Kingdom	747593	746328	746328	23412	722916	3.14	14157	627703	870	34747	5.25	8.22	0.918	0.918	0.840
	United States	4220325	3992053	3992053	12001	3980052	0.30	5712	3524497	193	109580	3.02	3.31	0.967	0.967	0.835
	Albania	48610	45163	45163	10	45153	0.02	5215	40896	0	0	0.00	0.02	1.000	1.000	0.841
¢	Algeria	389315	354936	354936	0	354936	0.00	5519	306647	0	0	0.00	0.00	1.000	1.000	0.788
\%	Argentina	718635	578308	578308	2617	575691	0.45	6349	394917	21	1367	0.34	0.80	0.992	0.992	0.550
-	Brazil	3803681	2853388	2853388	64392	2788996	2.26	23141	2425961	119	13543	0.56	2.80	0.972	0.972	0.638
	B-S-J-G (China)	2084958	1507518	1507518	58639	1448879	3.89	9841	1331794	33	3609	0.27	4.15	0.959	0.959	0.639
	Bulgaria	66601	59397	59397	1124	58273	1.89	5928	53685	49	433	0.80	2.68	0.973	0.973	0.806
	Colombia	760919	674079	674079	37	674042	0.01	11795	567848	9	507	0.09	0.09	0.999	0.999	0.746
	Costa Rica	81773	66524	66524	0	66524	0.00	6866	51897	13	98	0.19	0.19	0.998	0.998	0.635
	Croatia	45031	35920	35920	805	35115	2.24	5809	40899	86	589	1.42	3.63	0.964	0.964	0.908
	Cyprus*	9255	9255	9253	109	9144	1.18	5571	8785	228	292	3.22	4.36	0.956	0.956	0.949
	Dominican Republic	193153	139555	139555	2382	137173	1.71	4740	132300	4	106	0.08	1.79	0.982	0.982	0.685
	FYROM	16719	16717	16717	259	16458	1.55	5324	15847	8	19	0.12	1.67	0.983	0.983	0.948
	Georgia	48695	43197	43197	1675	41522	3.88	5316	38334	35	230	0.60	4.45	0.955	0.955	0.787
	Hong Kong (China)	65100	61630	61630	708	60922	1.15	5359	57662	36	374	0.65	1.79	0.982	0.982	0.886
	Indonesia	4534216	3182816	3182816	4046	3178770	0.13	6513	3092773	0	0	0.00	0.13	0.999	0.999	0.682
	Jordan	126399	121729	121729	71	121658	0.06	7267	108669	70	1006	0.92	0.97	0.990	0.990	0.860
	Kazakhstan	211407	209555	209555	7475	202080	3.57	7841	192909	0	0	0.00	3.57	0.964	0.964	0.912
	Kosovo	31546	28229	28229	1156	27073	4.10	4826	22333	50	174	0.77	4.84	0.952	0.952	0.708
	Lebanon	64044	62281	62281	1300	60981	2.09	4546	42331	0	0	0.00	2.09	0.979	0.979	0.661
	Lithuania	33163	32097	32097	573	31524	1.79	6525	29915	227	1050	3.39	5.12	0.949	0.949	0.902
	Macao (China)	5100	4417	4417	3	4414	0.07	4476	4507	0	0	0.00	0.07	0.999	0.999	0.884
	Malaysia	540000	448838	448838	2418	446420	0.54	8861	412524	41	2344	0.56	1.10	0.989	0.989	0.764
	Malta	4397	4406	4406	63	4343	1.43	3634	4296	41	41	0.95	2.36	0.976	0.976	0.977
	Moldova	31576	30601	30601	182	30419	0.59	5325	29341	21	118	0.40	0.99	0.990	0.990	0.929
	Montenegro	7524	7506	7506	40	7466	0.53	5665	6777	300	332	4.66	5.17	0.948	0.948	0.901
	Peru	580371	478229	478229	6355	471874	1.33	6971	431738	13	745	0.17	1.50	0.985	0.985	0.744
	Qatar	13871	13850	13850	380	13470	2.74	12083	12951	193	193	1.47	4.17	0.958	0.958	0.934
	Romania	176334	176334	176334	1823	174511	1.03	4876	164216	3	120	0.07	1.11	0.989	0.989	0.931
	Russia	1176473	1172943	1172943	24217	1148726	2.06	6036	1120932	13	2469	0.22	2.28	0.977	0.977	0.953
	Singapore	48218	47050	47050	445	46605	0.95	6115	46224	25	179	0.39	1.33	0.987	0.987	0.959
	Chinese Taipei	295056	287783	287783	1179	286604	0.41	7708	251424	22	647	0.26	0.67	0.993	0.993	0.852
	Thailand	895513	756917	756917	9646	747271	1.27	8249	634795	22	2107	0.33	1.60	0.984	0.984	0.709
	Trinidad and Tobago	17371	17371	17371	0	17371	0.00	4692	13197	0	0	0.00	0.00	1.000	1.000	0.760
	Tunisia	122186	122186	122186	679	121507	0.56	5375	113599	3	61	0.05	0.61	0.994	0.994	0.930
	United Arab Emirates	51687	51518	51499	994	50505	1.93	14167	46950	63	152	0.32	2.25	0.978	0.977	0.908
	Uruguay	53533	43865	43865	4	43861	0.01	6062	38287	6	32	0.08	0.09	0.999	0.999	0.715
	Viet Nam	1803552	1032599	1032599	6557	1026042	0.63	5826	874859	0	0	0.00	0.63	0.994	0.994	0.485

Notes: For a full explanation of the details in this table please refer to the PISA 2015 Technical Report (OECD, 2017).
The figure for total national population of 15 -year-olds enrolled in Column 2 may occasionally be larger than the total number of 15 -year-olds in Column 1 due to differing data sources.
For Mexico, in 2015, the Total population of 15-year-olds enrolled in grade 7 or above is an estimate of the target population size of the sample frame from which the 15 -year-olds students were selected for the PISA test. At the time Mexico provided the information to PISA, the official figure for this population was 1573952 .

* See note at the beginning of this Annex.

StatLink (ailाst http://dx.doi.org/10.1787/888933433129

Table A2.2 Exclusions

	Student exclusions (unweighted)					
	Number of excluded students with functional disability (Code 1)	Number of excluded students with intellectual disability (Code 2)	Number of excluded students because of language (Code 3)	Number of excluded students for other reasons (Code 4)	Number of excluded students because of no materials available in the language of instruction (Code 5)	School-level exclusion rate (\%)
	(1)	(2)	(3)	(4)	(5)	(6)
Q Australia	85	528	68	0	0	681
Austria	8	15	61	0	0	84
\bigcirc Belgium	4	18	17	0	0	39
Canada	156	1308	366	0	0	1830
Chile	6	30	1	0	0	37
Czech Republic	2	9	14	0	0	25
Denmark	18	269	156	70	1	514
Estonia	17	93	6	0	0	116
Finland	2	90	17	8	7	124
France	5	21	9	0	0	35
Germany	4	25	25	0	0	54
Greece	3	44	11	0	0	58
Hungary	3	13	9	30	0	55
Iceland	9	66	47	9	0	131
Ireland	25	57	55	60	0	197
Israel	22	68	25	0	0	115
Italy	78	147	21	0	0	246
Japan	0	2	0	0	0	2
Korea	3	17	0	0	0	20
Latvia	7	47	16	0	0	70
Luxembourg	4	254	73	0	0	331
Mexico	4	23	3	0	0	30
Netherlands	1	13	0	0	0	14
New Zealand	23	140	167	0	3	333
Norway	11	253	81	0	0	345
Poland	11	20	0	3	0	34
Portugal	4	99	2	0	0	105
Slovak Republic	7	71	2	34	0	114
Slovenia	33	36	45	0	0	114
Spain	9	144	47	0	0	200
Sweden	154	0	121	0	0	275
Switzerland	8	42	57	0	0	107
Turkey	1	23	7	0	0	31
United Kingdom	77	690	102	0	1	870
United States	16	120	44	13	0	193
© Albania	0	0	0	0	0	0
Algeria	0	0	0	0	0	0
A Argentina	10	10	1	0	0	21
- Brazil	20	99	0	0	0	119
B-S-J-G (China)	6	25	2	0	0	33
Bulgaria	39	6	4	0	0	49
Colombia	3	4	2	0	0	9
Costa Rica	3	1	0	9	0	13
Croatia	2	75	9	0	0	86
Cyprus*	12	164	52	0	0	228
Dominican Republic	1	3	0	0	0	4
FYROM	7	1	0	0	0	8
Georgia	3	25	7	0	0	35
Hong Kong (China)	0	35	1	0	0	36
Indonesia	0	0	0	0	0	0
Jordan	43	17	10	0	0	70
Kazakhstan	0	0	0	0	0	0
Kosovo	9	13	27	0	0	50
Lebanon	0	0	0	0	0	0
Lithuania	12	213	2	0	0	227
Macao (China)	0	0	0	0	0	0
Malaysia	10	22	9	0	0	41
Malta	8	27	6	0	0	41
Moldova	12	8	1	0	0	21
Montenegro	14	23	5	0	258	300
Peru	4	9	0	0	0	13
Qatar	76	110	7	0	0	193
Romania	1	1	1	0	0	3
Russia	3	10	0	0	0	13
Singapore	3	15	7	0	0	25
Chinese Taipei	3	19	0	0	0	22
Thailand	1	19	2	0	0	22
Trinidad and Tobago	0	0	0	0	0	0
Tunisia	0	0	3	0	0	3
United Arab Emirates	16	24	23	0	0	63
Uruguay	2	4	0	0	0	6
Viet Nam	0	0	0	0	0	0

Exclusion codes:
Code 1: Functional disability - student has a moderate to severe permanent physical disability
Code 2: Intellectual disability - student has a mental or emotional disability and has either been tested as cognitively delayed or is considered in the professional opinion of qualified staff to be cognitively delayed.
Code 3: Limited assessment language proficiency - student is not a native speaker of any of the languages of the assessment in the country and has been resident in the country ess than one year.
Code 4: Other reasons defined by the national centres and approved by the international centre
Code 5: No materials available in the language of instruction
Note: For a full explanation of the details in this table please refer to the PISA 2015 Technical Report (OECD, 2017)
See note at the beginning of this Annex.
StatLink (inist http://dx.doi.org/10.1787/888933433129

		Student exclusion (weighted)					
		Weighted number of excluded students with functional disability (Code 1)	Weighted number of excluded students with intellectual disability (Code 2)	Weighted number of excluded students because of language (Code 3)	Weighted number of excluded students for other reasons (Code 4)	Weighted number of excluded students because of no materials available in the language of instruction (Code 5)	Total weighted number of excluded students
		(7)	(8)	(9)	(10)	(11)	(12)
	Australia	932	6011	793	0	0	7736
U	Austria	74	117	675	0	0	866
	Belgium	33	192	185	0	0	410
	Canada	1901	18018	5421	0	0	25340
	Chile	194	1190	9	0	0	1393
	Czech Republic	40	140	188	0	0	368
	Denmark	122	1539	551	421	11	2644
	Estonia	29	176	13	0	0	218
	Finland	18	858	156	67	58	1157
	France	562	2144	914	0	0	3620
	Germany	423	2562	2357	0	0	5342
	Greece	43	729	193	0	0	965
	Hungary	57	284	114	554	0	1009
	Iceland	9	67	47	9	0	132
	Ireland	213	526	516	570	0	1825
	Israel	349	1070	384	0	0	1803
	Italy	3316	5199	880	0	0	9395
	Japan	0	318	0	0	0	318
	Korea	291	1515	0	0	0	1806
	Latvia	21	115	38	0	0	174
	Luxembourg	4	254	73	0	0	331
	Mexico	842	4802	1165	0	0	6810
	Netherlands	33	469	0	0	0	502
	New Zealand	233	1287	1568	0	24	3112
	Norway	105	2471	790	0	0	3366
	Poland	876	1339	0	203	0	2418
	Portugal	29	818	13	0	0	860
	Slovak Republic	44	567	12	288	0	912
	Slovenia	84	71	92	0	0	247
	Spain	511	7662	2720	0	0	10893
	Sweden	2380	0	1944	0	0	4324
	Switzerland	91	540	726	0	0	1357
	Turkey	43	4094	1222	0	0	5359
	United Kingdom	2724	27808	4001	0	214	34747
	United States	7873	67816	26525	7366	0	109580
	Albania	0	0	0	0	0	0
む	Algeria	0	0	0	0	0	0
ไ	Argentina	579	770	18	0	0	1367
0	Brazil	1743	11800	0	0	0	13543
	B-S-J-G (China)	438	2970	201	0	0	3609
	Bulgaria	347	51	35	0	0	433
	Colombia	181	309	17	0	0	507
	Costa Rica	22	5	0	71	0	98
	Croatia	13	501	75	0	0	589
	Cyprus*	16	212	65	0	0	292
	Dominican Republic	24	82	0	0	0	106
	FYROM	15	4	0	0	0	19
	Georgia	19	170	41	0	0	230
	Hong Kong (China)	0	363	11	0	0	374
	Indonesia	0	0	0	0	0	0
	Jordan	656	227	122	0	0	1006
	Kazakhstan	0	0	0	0	0	0
	Kosovo	28	37	104	0	0	174
	Lebanon	0	0	0	0	0	0
	Lithuania	40	1000	10	0	0	1050
	Macao (China)	0	0	0	0	0	0
	Malaysia	663	1100	580	0	0	2344
	Malta	8	27	6	0	0	41
	Moldova	66	51	1	0	0	118
	Montenegro	27	38	6	0	261	332
	Peru	224	520	0	0	0	745
	Qatar	76	110	7	0	0	193
	Romania	31	63	26	0	0	120
	Russia	425	2044	0	0	0	2469
	Singapore	22	115	43	0	0	179
	Chinese Taipei	78	568	0	0	0	647
	Thailand	114	1830	163	0	0	2107
	Trinidad and Tobago	0	0	0	0	0	0
	Tunisia	0	0	61	0	0	61
	United Arab Emirates	30	75	47	0	0	152
	Uruguay	10	22	0	0	0	32
	Viet Nam	0	0	0	0	0	0

Exclusion codes:
Code 2: Intellectual disability - student has a mental or emotional disability and has either been tested as cognitively delayed or is considered in the professional opinion of qualified staff to be cognitively delayed
Code 3: Limited assessment language proficiency - student is not a native speaker of any of the languages of the assessment in the country and has been resident in the country
Code 4: Other reasons defined by the national centres and approved by the international centre
Code 4: Other reasons defined by the national centres and ap
Code 5: No materials available in the language of instruction.
Note: For a full explanation of the details in this table please refer to the PISA 2015 Technical Report (OECD, 2017)

* See note at the beginning of this Annex.

StatLink 可ist ${ }^{\boldsymbol{T}}$ http://dx.doi.org/10.1787/888933433129

- Column 11 shows the percentage of students excluded within schools. This is calculated as the weighted number of excluded students (Column 10), divided by the weighted number of excluded and participating students (Column 8 plus Column 10), then multiplied by 100 .
- Column 12 shows the overall exclusion rate, which represents the weighted percentage of the national desired target population excluded from PISA either through school-level exclusions or through the exclusion of students within schools. It is calculated as the school-level exclusion rate (Column 6 divided by 100) plus within-school exclusion rate (Column 11 divided by 100) multiplied by 1 minus the school-level exclusion rate (Column 6 divided by 100). This result is then multiplied by 100 .
- Column 13 presents an index of the extent to which the national desired target population is covered by the PISA sample. Australia, Canada, Denmark, Estonia, Latvia, Lithuania, Luxembourg, Montenegro, New Zealand, Norway, Sweden and the United Kingdom were the only countries where the coverage is below 95%.
- Column 14 presents an index of the extent to which 15 -year-olds enrolled in schools are covered by the PISA sample. The index measures the overall proportion of the national enrolled population that is covered by the non-excluded portion of the student sample. The index takes into account both school-level and student-level exclusions. Values close to 100 indicate that the PISA sample represents the entire education system as defined for PISA 2015. The index is the weighted number of participating students (Column 8) divided by the weighted number of participating and excluded students (Column 8 plus Column 10), times the nationally defined target population (Column 5) divided by the eligible population (Column 2) (times 100).
- Column 15 presents an index of the coverage of the 15 -year-old population. This index is the weighted number of participating students (Column 8) divided by the total population of 15 -year-old students (Column 1).

This high level of coverage contributes to the comparability of the assessment results. For example, even assuming that the excluded students would have systematically scored worse than those who participated, and that this relationship is moderately strong, an exclusion rate on the order of 5% would likely lead to an overestimation of national mean scores of less than 5 score points (on a scale with an international mean of 500 score points and a standard deviation of 100 score points). This assessment is based on the following calculations: if the correlation between the propensity of exclusions and student performance is 0.3 , resulting mean scores would likely be overestimated by 1 score point if the exclusion rate is 1%, by 3 score points if the exclusion rate is 5%, and by 6 score points if the exclusion rate is 10%. If the correlation between the propensity of exclusions and student performance is 0.5 , resulting mean scores would be overestimated by 1 score point if the exclusion rate is 1%, by 5 score points if the exclusion rate is 5%, and by 10 score points if the exclusion rate is 10%. For this calculation, a model was used that assumes a bivariate normal distribution for performance and the propensity to participate. For details, see the PISA 2015 Technical Report (OECD, 2017).

Sampling procedures and response rates

The accuracy of any survey results depends on the quality of the information on which national samples are based as well as on the sampling procedures. Quality standards, procedures, instruments and verification mechanisms were developed for PISA that ensured that national samples yielded comparable data and that the results could be compared with confidence.

Most PISA samples were designed as two-stage stratified samples (where countries applied different sampling designs, these are documented in the PISA 2015 Technical Report [OECD, 2017]). The first stage consisted of sampling individual schools in which 15 -year-old students could be enrolled. Schools were sampled systematically with probabilities proportional to size, the measure of size being a function of the estimated number of eligible (15 -year-old) students enrolled. At least 150 schools were selected in each country (where this number existed), although the requirements for national analyses often required a somewhat larger sample. As the schools were sampled, replacement schools were simultaneously identified, in case a sampled school chose not to participate in PISA 2015.
In the case of Iceland, Luxembourg, Macao (China), Malta and Qatar, all schools and all eligible students within schools were included in the sample.

Experts from the PISA Consortium performed the sample selection process for most participating countries and monitored it closely in those countries that selected their own samples. The second stage of the selection process sampled students within sampled schools. Once schools were selected, a list of each sampled school's 15 -year-old students was prepared. From this list, 42 students were then selected with equal probability (all 15-year-old students were selected if fewer than 42 were enrolled). The number of students to be sampled per school could deviate from 42, but could not be less than 20.
Data-quality standards in PISA required minimum participation rates for schools as well as for students. These standards were established to minimise the potential for response biases. In the case of countries meeting these standards, it was likely that any bias resulting from non-response would be negligible, i.e. typically smaller than the sampling error.

A minimum response rate of 85% was required for the schools initially selected. Where the initial response rate of schools was between 65% and 85%, however, an acceptable school-response rate could still be achieved through the use of replacement schools.

This procedure brought with it a risk of increased response bias. Participating countries were, therefore, encouraged to persuade as many of the schools in the original sample as possible to participate. Schools with a student participation rate between 25% and 50% were not regarded as participating schools, but data from these schools were included in the database and contributed to the various estimations. Data from schools with a student participation rate of less than 25% were excluded from the database.

PISA 2015 also required a minimum participation rate of 80% of students within participating schools. This minimum participation rate had to be met at the national level, not necessarily by each participating school. Follow-up sessions were required in schools in which too few students had participated in the original assessment sessions. Student participation rates were calculated over all original schools, and also over all schools, whether original sample or replacement schools, and from the participation of students in both the original assessment and any follow-up sessions. A student who participated in the original or follow-up cognitive sessions was regarded as a participant. Those who attended only the questionnaire session were included in the international database and contributed to the statistics presented in this publication if they provided at least a description of their father's or mother's occupation.

Table A2.3 shows the response rates for students and schools, before and after replacement.

- Column 1 shows the weighted participation rate of schools before replacement. This is obtained by dividing Column 2 by Column 3.
- Column 2 shows the weighted number of responding schools before school replacement (weighted by student enrolment).
- Column 3 shows the weighted number of sampled schools before school replacement (including both responding and non-responding schools, weighted by student enrolment).
- Column 4 shows the unweighted number of responding schools before school replacement.
- Column 5 shows the unweighted number of responding and non-responding schools before school replacement.
- Column 6 shows the weighted participation rate of schools after replacement. This is obtained by dividing Column 7 by Column 8.
- Column 7 shows the weighted number of responding schools after school replacement (weighted by student enrolment).
- Column 8 shows the weighted number of schools sampled after school replacement (including both responding and non-responding schools, weighted by student enrolment).
- Column 9 shows the unweighted number of responding schools after school replacement.
- Column 10 shows the unweighted number of responding and non-responding schools after school replacement.
- Column 11 shows the weighted student participation rate after replacement. This is obtained by dividing Column 12 by Column 13.
- Column 12 shows the weighted number of students assessed.
- Column 13 shows the weighted number of students sampled (including both students who were assessed and students who were absent on the day of the assessment).
- Column 14 shows the unweighted number of students assessed. Note that any students in schools with student-response rates of less than 50% were not included in these rates (both weighted and unweighted).
- Column 15 shows the unweighted number of students sampled (including both students that were assessed and students who were absent on the day of the assessment). Note that any students in schools where fewer than half of the eligible students were assessed were not included in these rates (neither weighted nor unweighted).

Definition of schools

In some countries, subunits within schools were sampled instead of schools, and this may affect the estimation of the betweenschool variance components. In Austria, the Czech Republic, Germany, Hungary, Japan, Romania and Slovenia, schools with more than one study programme were split into the units delivering these programmes. In the Netherlands, for schools with both lower and upper secondary programmes, schools were split into units delivering each programme level. In the Flemish community of Belgium, in the case of multi-campus schools, implantations (campuses) were sampled, whereas in the French community, in the case of multi-campus schools, the larger administrative units were sampled. In Australia, for schools with more than one campus, the individual campuses were listed for sampling. In Argentina and Croatia, schools that had more than one campus had the locations listed for sampling. In Spain, the schools in the Basque region with multi-linguistic models were split into linguistic models for sampling. In Luxembourg, a school on the border with Germany was split according to the country in which the students resided. In addition, the International schools in Luxembourg were split into the students who were instructed in any of the three official languages, and those in the part of the schools that was excluded because no materials were available in the languages of instruction. The United Arab Emirates had schools split by curricula, and sometimes by gender, with other schools remaining whole. Because of reorganisation, some of Sweden's schools were split into parts, with each part having one principal. In Portugal, schools were reorganised into clusters, with teachers and the principal shared by all units in the school cluster.
[Part 1/1]
Table A2.3 Response rates

	Initial sample - before school replacement					Final sample after school replacement					Final sample - students within schools after school replacement				
						Weighted school participation rate after replacement (\%)									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
Q Australia	94	260657	276072	720	788	95	262130	276072	723	788	84	204763	243789	14089	17477
O Austria	100	81690	81730	269	273	100	81690	81730	269	273	87	63660	73521	7007	9868
O Belgium	83	98786	118915	244	301	95	113435	118936	286	301	91	99760	110075	9635	10602
Canada	74	283853	381133	703	1008	79	299512	381189	726	1008	81	210476	260487	19604	24129
Chile	92	215139	232756	207	232	99	230749	232757	226	232	93	189206	202774	7039	7515
Czech Republic	98	86354	87999	339	344	98	86354	87999	339	344	89	73386	82672	6835	7693
Denmark	90	57803	63897	327	371	92	58837	63931	331	371	89	49732	55830	7149	8184
Estonia	100	11142	11154	206	207	100	11142	11154	206	207	93	10088	10822	5587	5994
Finland	100	58653	58782	167	168	100	58800	58800	168	168	93	53198	56934	5882	6294
France	91	679984	749284	232	255	94	706838	749284	241	255	88	611563	693336	5980	6783
Germany	96	764423	794206	245	256	99	785813	794206	253	256	93	685972	735487	6476	6944
Greece	92	95030	103031	190	212	98	101653	103218	209	212	94	89588	94986	5511	5838
Hungary	93	83897	89808	231	251	99	88751	89825	244	251	92	77212	83657	5643	6101
Iceland	99	4114	4163	122	129	99	4114	4163	122	129	86	3365	3908	3365	3908
Ireland	99	61023	61461	167	169	99	61023	61461	167	169	89	51947	58630	5741	6478
Israel	91	105192	115717	169	190	93	107570	115717	173	190	90	98572	108940	6598	7294
Italy	74	383933	516113	414	532	88	451098	515515	464	532	88	377011	430041	11477	12841
Japan	94	1087414	1151305	189	200	99	1139734	1151305	198	200	97	1096193	1127265	6647	6838
Korea	100	612937	615107	168	169	100	612937	615107	168	169	99	559121	567284	5581	5664
Latvia	86	14122	16334	231	269	93	15103	16324	248	269	90	12799	14155	4845	5368
Luxembourg	100	5891	5891	44	44	100	5891	5891	44	44	96	5299	5540	5299	5540
Mexico	95	1311608	1373919	269	284	98	1339901	1373919	275	284	95	1290435	1352237	7568	7938
Netherlands	63	121527	191966	125	201	93	178929	191966	184	201	85	152346	178985	5345	6269
New Zealand	71	40623	56875	145	210	85	48094	56913	176	210	80	36860	45897	4453	5547
Norway	95	58824	61809	229	241	95	58824	61809	229	241	91	50163	55277	5456	6016
Poland	88	314288	355158	151	170	99	352754	355158	168	170	88	300617	343405	4466	5108
Portugal	86	87756	102193	213	254	95	97516	102537	238	254	82	75391	91916	7180	8732
Slovak Republic	93	50513	54499	272	295	99	53908	54562	288	295	92	45357	49103	6342	6900
Slovenia	98	16886	17286	332	349	98	16896	17286	333	349	92	15072	16424	6406	7009
Spain	99	404640	409246	199	201	100	409246	409246	201	201	89	356509	399935	6736	7540
Sweden	100	93819	94097	202	205	100	93819	94097	202	205	91	82582	91081	5458	6013
Switzerland	93	75482	81026	212	232	98	79481	81375	225	232	92	74465	80544	5838	6305
Turkey	97	1057318	1091317	175	195	99	1081935	1091528	187	195	95	874609	918816	5895	6211
United Kingdom	84	591757	707415	506	598	93	654992	707415	547	598	89	517426	581252	14120	16123
United States	67	2601386	3902089	142	213	83	3244399	3893828	177	213	90	2629707	2929771	5712	6376
n Albania	100	43809	43919	229	230	100	43809	43919	229	230	94	38174	40814	5213	5555
¢ Algeria	96	341463	355216	159	166	96	341463	355216	159	166	92	274121	296434	5494	5934
\% Argentina	89	508448	572941	212	238	97	556478	572941	231	238	90	345508	382352	6311	7016
- Brazil	93	2509198	2692686	806	889	94	2533711	2693137	815	889	87	1996574	2286505	22791	26586
B-S-J-G (China)	88	1259845	1437201	248	268	100	1437652	1437652	268	268	97	1287710	1331794	9841	10097
Bulgaria	100	56265	56483	179	180	100	56600	56600	180	180	95	50931	53685	5928	6240
Colombia	99	664664	673817	364	375	100	672526	673835	371	375	95	535682	566734	11777	12611
Costa Rica	99	66485	67073	204	206	99	66485	67073	204	206	92	47494	51369	6846	7411
Croatia	100	34575	34652	160	162	100	34575	34652	160	162	91	37275	40803	5809	6354
Cyprus*	97	8830	9126	122	132	97	8830	9126	122	132	94	8016	8526	5561	5957
Dominican Republic	99	136669	138187	193	195	99	136669	138187	193	195	94	122620	130700	4731	5026
FYROM	100	16426	16472	106	107	100	16426	16472	106	107	95	14999	15802	5324	5617
Georgia	97	40552	41595	256	267	99	41081	41566	262	267	94	35567	37873	5316	5689
Hong Kong (China)	75	45603	60716	115	153	90	54795	60715	138	153	93	48222	51806	5359	5747
Indonesia	98	3126468	3176076	232	236	100	3176076	3176076	236	236	98	3015844	3092773	6513	6694
Jordan	100	119024	119024	250	250	100	119024	119024	250	250	97	105868	108669	7267	7462
Kazakhstan	100	202701	202701	232	232	100	202701	202701	232	232	97	187683	192921	7841	8059
Kosovo	100	26924	26924	224	224	100	26924	26924	224	224	99	22016	22333	4826	4896
Lebanon	67	40542	60882	208	308	87	53091	60797	270	308	95	36052	38143	4546	4788
Lithuania	99	31386	31588	309	311	100	31543	31588	310	311	91	27070	29889	6523	7202
Macao (China)	100	4414	4414	45	45	100	4414	4414	45	45	99	4476	4507	4476	4507
Malaysia	51	229340	446237	147	230	98	437424	446100	224	230	97	393785	407396	8843	9097
Malta	100	4341	4343	59	61	100	4341	4343	59	61	85	3634	4294	3634	4294
Moldova	100	30145	30145	229	229	100	30145	30145	229	229	98	28754	29341	5325	5436
Montenegro	100	7301	7312	64	65	100	7301	7312	64	65	94	6346	6766	5665	6043
Peru	100	468406	470651	280	282	100	469662	470651	281	282	99	426205	430959	6971	7054
Qatar	99	13333	13470	166	168	99	13333	13470	166	168	94	12061	12819	12061	12819
Romania	99	171553	172652	181	182	100	172495	172495	182	182	99	162918	164216	4876	4910
Russia	99	1181937	1189441	209	210	99	1181937	1189441	209	210	97	1072914	1108068	6021	6215
Singapore	97	45299	46620	175	179	98	45553	46620	176	179	93	42241	45259	6105	6555
Chinese Taipei	100	286778	286778	214	214	100	286778	286778	214	214	98	246408	251424	7708	7871
Thailand	99	739772	751010	269	273	100	751010	751010	273	273	97	614996	634795	8249	8491
Trinidad and Tobago	92	15904	17371	141	163	92	15904	17371	141	163	79	9674	12188	4587	5745
Tunisia	99	121751	122767	162	165	99	121838	122792	163	165	86	97337	112665	5340	6175
United Arab Emirates	99	49310	50060	473	477	99	49310	50060	473	477	95	43774	46263	14167	15014
Uruguay	98	42986	43737	217	221	99	43442	43737	219	221	86	32762	38023	6059	7026
Viet Nam	100	996757	996757	188	188	100	996757	996757	188	188	100	871353	874859	5826	5849

* See note at the beginning of this Annex.

Grade levels

Students assessed in PISA 2015 are at various grade levels. The percentage of students at each grade level is presented by country in Table A2.4a and by gender within each country in Table A2.4b.
[Part 1/1]
Table A2.4a Percentage of students at each grade level

* See note at the beginning of this Annex

Coverage is too small to ensure comparability (see Annex A4).
StatLink 䓊ist http://dx.doi.org/10.1787/888933433129

Table A2.4b Percentage of students at each grade level

		Boys								Girls											
		7th grade	8th grade	9th grade	10th grade	11th grade		12th grade and above		7th grade		8th grade		9th grade		10th grade		11th grade		12th grade and above	
		\% S.E.	\% S.E.	\% S.E.	\% S.E.	\%	S.E.														
\bigcirc	Australia	0.0 (0.0)	0.2 (0.1)	13.2 (0.4)	73.5 (0.5)	13.1	(0.5)	0.0	(0.0)	0.0	(0.0)	0.1	(0.0)	9.2	(0.3)	75.7	(0.5)	14.9	(0.6)	0.1	(0.1)
U	Austria	0.1 (0.1)	2.0 (0.4)	21.6	71.1 (1.2)	5.2	(0.4)	0.0	(0.0)	0.0	c	2.0	(0.9)	20.0	(1.0)	71.4	(1.3)	6.6	(0.4)	0.0	(0.0)
0	Belgium	0.7 (0.1)	6.7 (0.5)	33.6 (1.0)	57.9 (1.1)	1.2	(0.2)	0.0	c	0.6	(0.1)	6.2	(0.5)	27.7	(0.8)	64.2	(1.1)	1.3	(0.1)	0.0	(0.0)
	Canada	0.1 (0.1)	1.0 (0.2)	11.7 (0.6)	86.5 (0.6)	0.7	(0.1)		(0.0)	0.1	(0.0)	0.4	(0.1)		(0.6)	88.8	(0.6)	0.8	(0.1)	0.0	(0.0)
	Chile	2.2 (0.5)	4.8 (0.8)	$26.4 \quad(0.9)$	64.8 (1.3)	1.8	(0.2)	0.1	(0.1)	1.2	(0.4)	3.5	(0.7)	21.5	(0.8)	71.4	(1.1)	2.4	(0.3)	0.0	,
	Czech Republic	0.6 (0.2)	5.5 (0.5)	52.3 (1.5)	41.5 (1.6)	0.0	(0.0)	0.0	c	0.4	(0.2)	2.2	(0.3)	46.2	(1.5)	51.2	(1.6)	0.0	C	0.0	c
	Denmark	0.3 (0.1)	$21.9 \quad(0.9)$	76.6 (1.0)	1.2 (0.5)	0.0	c	0.0	c	0.1	(0.1)	10.8	(0.5)	87.3	(0.7)		(0.6)	0.0	c	0.0	c
	Estonia	1.3 (0.3)	$23.7 \quad(0.9)$	$74.2 \quad(0.8)$	0.8 (0.3)	0.0	c	0.0	(0.0)	0.2	(0.1)	18.8	(0.8)	79.1	(0.8)	1.9	(0.4)	0.0	c	0.0	c
	Finland	0.4 (0.1)	$15.5 \quad(0.6)$	$83.9 \quad(0.6)$	0.0 (0.0)	0.2	(0.1)	0.0	c	0.5	(0.1)	11.5	(0.5)	87.7	(0.5)	0.0		0.3	(0.2)	0.0	c
	France	0.0 c	1.0 (0.2)	$26.1 \quad(0.9)$	69.6 (1.0)	3.1	(0.3)		(0.1)	0.1	(0.1)	1.0	(0.2)	20.1	(0.6)	75.4	(0.8)	3.3	(0.3)	0.1	(0.0)
	Germany	$0.7 \quad(0.2)$	9.0 (0.5)	50.1 (1.0)	38.8 (1.0)	1.4	(0.4)	0.0	(0.0)	0.3	(0.1)	6.3	(0.6)	44.3	(0.9)	47.5	(1.0)	1.6	(0.6)	0.0	c
	Greece	0.4 (0.2)	1.1 (0.3)	4.7 (1.0)	93.8 (1.2)	0.0	c	0.0	c	0.1	(0.1)	0.2	(0.1)	2.8	(0.8)	96.9	(0.8)	0.0	c	0.0	c
	Hungary	1.8 (0.4)	10.1 (0.6)	$75.6 \quad(0.9)$	12.5 (0.6)	0.0	c	0.0	c	1.6	(0.4)	6.9	(0.8)	76.0	(0.9)	15.5	(0.7)	0.0	c	0.0	c
	Iceland	0.0 c	0.0	0.0	100.0	0.0	c	0.0	c	0.0	,	0.0	c	0.0	C	100.0	c	0.0	c	0.0	c
	Ireland	0.0	2.2 (0.3)	$62.8 \quad(0.9)$	24.1 (1.2)	10.9	(1.0)	0.0	c	0.0	(0.0)	1.4	(0.2)	58.2	(0.9)	29.0		11.3	1.1)	0.0	c
	Israel	0.0	0.1 (0.1)	18.0 (1.2)	80.9 (1.3)	1.1	(0.6)	0.0	c	0.0	c	0.1	(0.0)	14.9	(0.8)	84.4	(0.8)	0.7	(0.1)	0.0	c
	Italy	0.2 (0.1)	1.3 (0.3)	18.1 (0.8)	75.0 (0.9)	5.4	(0.4)	0.0	c	0.1	(0.0)	0.7	(0.2)	12.2	(0.8)	79.3	(1.0)	7.7	(0.5)	0.0	c
	Japan	0.0 c	0.0	0.0	100.0	0.0	C	100.0	c	0.0	C	0.0	c								
	Korea	0.0	0.0	10.1 (1.4)	89.4 (1.4)	0.5	(0.1)	0.0	c	0.0	c	0.0	c		(0.8)	91.5	(0.8)	0.5	(0.1)	0.0	c
	Latvia	1.5 (0.4)	14.7 (0.8)	$81.8 \quad(0.9)$	1.9 (0.3)	0.0	(0.0)	0.0	c	0.4	(0.2)	8.7	(0.7)	87.0	(0.7)		(0.4)	0.0	c	0.0	c
	Luxembourg	0.2 (0.1)	9.4 (0.2)	52.4 (0.3)	37.3 (0.2)	0.7	(0.1)	0.0	c	0.3	(0.1)	6.4	(0.2)	49.4	(0.2)	43.3	(0.2)	0.6	(0.1)	0.0	c
	Mexico	3.1 (0.5)	5.9 (0.6)	32.2 (1.5)	58.0 (1.6)	0.6	(0.2)		(0.0)	1.5	(0.3)	3.7	(0.4)	31.6	(1.7)	62.5	(1.7)	0.4	(0.1)	0.2	(0.1)
	Netherlands	0.0 (0.0)	3.8 (0.4)	45.3 (0.8)	50.2 (0.8)	0.8	(0.3)	0.0	c	0.1	(0.0)	1.9	(0.3)	38.0	(0.7)	59.3	(0.7)	0.7	(0.2)	0.0	(0.0)
	New Zealand	0.0 c	0.0	0.0 c	6.9 (0.5)	88.6	(0.8)	4.5	(0.5)	0.0		0.0	c	0.0	(0.0)		(0.4)	89.1	(0.6)	5.5	(0.6)
	Norway	0.0	0.0	0.8 (0.2)	99.1 (0.2)	0.1	(0.1)	0.0	c	0.0	c	0.0	c	0.3	(0.1)	99.6	(0.1)	0.1	(0.1)	0.0	c
	Poland	0.9 (0.2)	6.8 (0.5)	92.1 (0.6)	0.2 (0.2)	0.0	c	0.0	c	0.4	(0.1)	3.0	(0.3)	95.6	(0.5)		(0.3)	0.0	c	0.0	c
	Portugal	4.2 (0.4)	10.5 (0.7)	$25.4 \quad$ (1.0)	59.6 (1.4)	0.3	(0.1)	0.0	c	2.1	(0.4)	6.4	(0.5)	20.5	(0.9)	70.5	(1.2)	0.5	(0.1)	0.0	c
	Slovak Republic	2.4 (0.4)	4.8 (0.5)	43.5 (1.6)	49.4 (1.8)	0.0	,	0.0	c	1.9	(0.5)	4.3	(0.6)	41.7	(1.8)	51.9	(1.8)	0.1	(0.1)	0.0	c
	Slovenia	0.0 c	0.5 (0.2)	5.4 (0.7)	93.9 (0.7)	0.2	(0.1)	0.0	c	0.0	c	0.2	(0.1)		(0.6)	95.3	(0.6)	0.4	(0.2)	0.0	c
	Spain	0.1 (0.1)	10.7 (0.7)	25.4 (0.8)	63.7 (1.1)	0.1	(0.1)	0.0	c	0.0	c	6.5	(0.5)	21.3	(0.8)	72.1	(1.0)	0.1	(0.1)	0.0	c
	Sweden	0.1 (0.1)	3.5 (0.5)	$95.0 \quad(0.9)$	1.4 (0.7)	0.1	(0.1)	0.0	c	0.2	(0.1)	2.6	(0.4)	94.9	(1.0)	2.3	(0.9)	0.1	(0.1)	0.0	c
	Switzerland	0.7 (0.2)	$13.4 \quad(0.8)$	60.7 (1.1)	24.7 (1.2)	0.5	(0.1)	0.0	c	0.3	(0.1)	10.1	(0.8)	62.0	(1.7)	27.2	(1.9)	0.5	(0.2)	0.0	(0.0)
	Turkey	0.8 (0.3)	3.1 (0.6)	25.4 (1.2)	68.4 (1.6)	2.2	(0.4)	0.1	(0.1)	0.4	(0.2)	2.1	(0.4)	16.1	(1.1)	77.5	(1.3)	3.8	(0.4)	0.1	(0.0)
	United Kingdom	0.0	0.0	0.0	1.9 (0.5)	97.3	(0.6)	0.9	(0.3)	0.0)	0.0	c	0.0	C		(0.2)	97.5	(0.3)	1.1	(0.3)
	United States	0.0	0.5 (0.4)	11.6 (0.8)	72.4 (1.0)	15.3	(0.7)	0.2	(0.1)	0.1	(0.1)	0.5	(0.2)	7.6	(0.6)	72.4	(0.9)	19.4	(0.7)	0.1	(0.0)
	Albania	0.2 (0.2)	0.9 (0.2)	$41.2 \quad(2.7)$	56.3 (2.6)	1.3	(0.9)	0.0	(0.0)	0.1	(0.1)	1.1	(0.3)	30.4	(2.1)	67.1		1.2	(0.5)	0.1	(0.0)
$\stackrel{\text { ® }}{ }$	Algeria	24.4 (1.3)	25.7 (1.2)	32.6 (1.5)	14.7 (1.9)	2.6	(0.7)	0.0	,	12.6	(1.1)	21.0	(1.2)	37.9	(2.0)	24.6	(2.5)	3.9	(0.8)	0.0	c
む	Brazil	4.6 (0.3)	7.8 (0.6)	13.9 (0.6)	36.5 (1.0)	35.3	(0.9)	1.8	(0.2)	2.4	(0.2)	5.0	(0.4)	11.1	(0.6)	35.3	(0.9)	43.0	(0.9)	3.1	(0.2)
	B-S-J-G (China)	1.2 (0.2)	9.9 (0.7)	55.4 (1.7)	31.6 (1.9)	1.9	(0.5)		(0.0)	1.1	(0.2)	8.4	(0.8)	49.6	(1.8)	38.1	(2.2)	2.6	(0.5)	0.1	(0.1)
	Bulgaria	0.6 (0.2)	4.1 (0.8)	91.8 (1.0)	3.5 (0.4)	0.0)	0.0		0.4	(0.2)	1.8	(0.4)	92.7	(0.7)		(0.4)	0.0	c	0.0	
	Colombia	7.2 (0.6)	14.3 (0.8)	25.2 (0.8)	37.1 (0.9)	16.2	(0.8)	0.0	c	3.6	(0.4)	10.5	(0.7)	20.5	(0.9)	42.9	(1.0)	22.5	(0.8)	0.0	c
	Costa Rica	7.8 (0.8)	$16.7 \quad(0.8)$	$34.3 \quad$ (1.2)	41.2 (1.5)	0.1	(0.0)	0.0	c	4.7	(0.7)	11.4	(0.7)	31.8	(1.4)	51.6	(1.8)	0.3	(0.1)	0.2	(0.1)
	Croatia	0.0	0.2 (0.1)	80.5 (0.5)	19.4 (0.5)	0.0	c	0.0	c	0.0	c	0.3	(0.2)	78.0	(0.7)	21.7	(0.7)	0.0	c	0.0	-
	Cyprus*	0.0	0.3 (0.1)	6.6 (0.2)	92.4 (0.2)	0.6	(0.1)	0.0	c	0.0	c	0.3	(0.1)	5.1	(0.2)	93.8	(0.2)	0.8	(0.1)	0.0	c
	Dominican Republic	10.3 (1.1)	16.4 (1.5)	23.3 (1.2)	37.2 (1.4)	11.1	(0.8)	1.7	(0.3)	4.0	(0.6)	11.2	(1.1)	18.1	(0.8)	46.5	(1.1)	17.2	(0.8)	3.0	(0.3)
	FYROM	0.2 (0.2)	0.2 (0.2)	70.9 (0.3)	28.8 (0.2)	0.0		0.0		0.0	c	0.0	c	69.4	(0.3)	30.6	(0.3)	0.0	c	0.0	
	Georgia	0.1 (0.0)	0.9 (0.2)	23.0 (1.0)	75.2 (1.0)	0.8	(0.2)	0.0	c	0.1	(0.1)	0.7	(0.2)	20.9	(0.9)	76.8	(1.0)	1.5	(0.4)	0.0	c
	Hong Kong (China)	1.3 (0.2)	6.4 (0.5)	$28.5 \quad(0.8)$	63.3 (0.9)	0.5	(0.4)	0.0	c	1.0	(0.2)	4.7	(0.4)	23.5	(0.8)	70.2	(0.9)	0.6	(0.6)	0.0	c
	Indonesia	2.5 (0.4)	8.9 (0.9)	44.3 (1.9)	42.1 (2.0)	2.1	(0.4)		(0.0)	1.7	(0.3)	7.2	(1.0)	39.8	(1.9)	48.9	(2.1)	2.4	(0.4)	0.0	c
	Jordan	0.1 (0.1)	0.5 (0.1)	6.6 (0.7)	92.9 (0.7)	0.0	c	0.0	c	0.2	(0.1)	0.7	(0.1)	6.6	(0.6)	92.4	(0.6)	0.0	c	0.0	c
	Kosovo	0.1 (0.1)	0.5 (0.1)	$26.4 \quad(0.9)$	71.5 (1.0)	1.6	(0.3)	0.0		0.0	c	0.7	(0.2)	23.5	(1.0)	73.3	(1.0)	2.5	(0.3)	0.0	c
	Lebanon	4.0 (0.6)	8.2 (0.9)	17.2 (1.4)	63.5 (1.7)	6.9	(0.7)	0.2	(0.1)	3.4	(0.6)	8.3	(1.0)	16.1	(1.2)	61.2	(1.8)	10.8	(1.2)	0.1	(0.1)
	Lithuania	0.2 (0.1)	3.5 (0.3)	87.4 (0.6)	8.8 (0.5)	0.0	(0.0)	0.0		0.0	(0.0)	1.7	(0.2)	85.1	(0.7)	13.1	(0.6)	0.0	(0.0)	0.0	c
	Macao (China)	4.3 (0.2)	$16.4 \quad(0.3)$	$30.8 \quad(0.2)$	48.2 (0.2)	0.4	(0.1)	0.0	c	1.6	(0.2)	8.0	(0.2)	28.7	(0.3)	60.8	(0.3)	0.9	(0.2)	0.0	c
	Malta	0.0 c	0.0	0.5 (0.1)	6.8 (0.3)	92.7	(0.2)	0.0	c	0.0	C	0.0	C	0.1	(0.0)	5.4	(0.2)	94.4	(0.2)	0.1	(0.1)
	Moldova	0.3 (0.1)	8.2 (0.7)	86.3 (0.9)	5.0 (0.9)	0.1	(0.1)	0.0	c	0.2	(0.1)	7.0	(0.6)	82.8	(1.2)	10.1		0.0	c	0.0	c
	Montenegro	0.0 c	0.0	85.2 (0.2)	14.8 (0.2)	0.0	C	0.0	c	0.0	c	0.0	c	82.2	(0.2)	17.8	(0.2)	0.0	C	0.0	c
	Peru	3.0 (0.5)	7.5 (0.5)	$17.9 \quad(0.7)$	48.7 (0.9)	22.9	(1.0)	0.0	c	1.9	(0.3)	5.6	(0.5)	14.0	(0.6)	51.7	(1.0)	26.8	(0.9)	0.0	c
	Qatar	0.8 (0.1)	3.6 (0.1)	$18.0 \quad(0.2)$	59.3 (0.2)	17.6	(0.2)	0.6		1.0	(0.1)	3.4	(0.1)	14.5	(0.1)	62.1	(0.2)	18.4	(0.2)	0.6	(0.1)
	Romania	1.7 (0.4)	$10.7 \quad(0.8)$	74.3 (1.0)	13.3 (0.7)	0.0	c	0.0	c	1.1	(0.4)	7.2	(0.8)	75.3	(1.1)	16.4	(0.8)	0.0	c	0.0	c
	Russia	0.2 (0.1)	7.2 (0.5)	80.1 (1.7)	12.4 (1.7)	0.0	(0.0)	0.0		0.1	(0.1)	6.0	(0.4)	79.3	(1.5)	14.4	(1.6)	0.1	(0.1)	0.0	c
	Singapore	0.1 (0.0)	1.8 (0.3)	8.9 (0.9)	89.1 (1.1)	0.1	(0.1)	0.0	(0.0)	0.0	(0.0)	2.0	(0.4)	6.9	(0.8)	90.8	(1.1)	0.2	(0.1)	0.1	(0.0)
	Chinese Taipei	0.0 c	0.0	36.5 (1.3)	63.5 (1.3)	0.0		0.0	c	0.0	c	0.0	C	34.3	(1.3)	65.7	(1.3)	0.0	,	0.0	c
	Thailand	0.2 (0.1)	0.8 (0.3)	25.4 (1.2)	71.4 (1.2)	2.3	(0.4)	0.0	c	0.3	(0.1)	0.5	(0.2)	22.5	(1.3)	74.1	(1.3)	2.6	(0.4)	0.0	c
	Trinidad and Tobago	3.7 (0.3)	14.2 (0.5)	30.8 (0.5)	48.9 (0.5)	2.4	(0.2)	0.0	c	2.8	(0.2)	7.5	(0.4)	23.8	(0.4)	63.9	(0.5)	2.0	(0.3)	0.0	c
	Tunisia	5.9 (0.5)	13.8 (1.0)	22.0 (1.4)	54.0 (1.9)	4.3	(0.5)	0.0	c	3.0	(0.3)	7.8	(0.7)	17.5	(1.4)	67.0	(1.8)	4.8	(0.5)	0.0	c
	United Arab Emirates	0.7 (0.1)	2.9 (0.4)	11.4 (1.1)	54.0 (1.3)	29.6	(1.0)	1.4	(0.2)	0.4	(0.1)	2.2	(0.5)	9.9	(0.9)	52.8	(0.9)	33.1	(1.1)	1.6	(0.2)
	Uruguay	9.2 (0.8)	$11.2(0.7)$	22.50	56.5 (1.5)	0.5	(0.1)	0.0	c	6.0	(0.7)	8.3	(0.6)	19.0	(0.8)	65.6	(1.1)	1.1	(0.2)	0.0	c
	Viet Nam	0.5 (0.2)	2.3 (0.6)	11.1 (2.6)	86.1 (3.2)	0.0	c	0.0	c	0.1	(0.0)	1.1	(0.4)	4.6	(1.2)	94.2	(1.4)	0.0	(0.0)	0.0	c
	Argentina**	2.3 (0.6)	11.5 (0.9)	27.8 (1.3)	56.0 (1.8)	2.4	(0.3)	0.0	c	1.0	(0.3)	8.1	(0.9)	26.9		60.8	(1.7)	3.2	(0.3)	0.0	c
	Kazakhstan**	0.1 (0.1)	3.1 (0.4)	$62.8 \quad$ (2.3)	33.5 (2.4)	0.5		0.0		0.1	(0.1)	2.3	(0.3)	57.8	(1.7)	39.0	(1.8)	0.7	(0.1)	0.0	
	Malaysia**	0.0	0.0	4.2 (0.8)	95.4 (0.9)	0.4	(0.3)	0.0		0.0		0.0		2.3	(0.5)	97.2	(0.6)	0.4	(0.4)	0.0	

*ee note at the beginning of this Annex
Coverage is too small to ensure comparability (see Annex A4).

Reference

OECD (2017), PISA 2015 Technical Report, PISA, OECD Publishing, Paris.

ANNEX A3

TECHNICAL NOTES ON ANALYSES IN THIS VOLUME

Methods and definitions

Relative performance in collaborative problem solving

Relative performance in collaborative problem solving is defined as the difference between a student's actual performance in collaborative problem solving and his or her expected performance, based on performance in other domains:

$$
R P_{i}^{c p s}=y_{i}^{c p s}-E\left(y_{i}^{c p s} \mid y_{i}^{s t m}\right)
$$

where $y_{i}^{c p s}$ represents student i^{\prime} s performance in collaborative problem solving, and $y_{i}^{s r m}$ is a vector of student i^{\prime} 's performance in other domains (such as science, reading and mathematics).

A student's (conditionally) expected performance is estimated using regression models; relative performance is therefore based on residuals from regression models. All analyses of relative performance in this volume derive residuals from linear parametric regression models. However, different regression methods can be used, including ones that allow for curvilinear relationships and non-parametric regression models.

In some analyses, the regression model is calibrated on an international sample of students, in order to compare students' performance across countries. In others, when differences between different groups of students within the same country or economy (for example, within-country gender differences or the relationship between performance and the certain out-ofschool student activities), the regression model is calibrated on national samples. In all cases, ten distinct regression models are estimated to compute ten plausible values of relative performance.

Relative risk

The relative risk is a measure of the association between an antecedent factor and an outcome factor. The relative risk is simply the ratio of two risks, i.e. the risk of observing the outcome when the antecedent is present and the risk of observing the outcome when the antecedent is not present. Figure A3.1 presents the notation that is used in the following.

Figure A3.1 - Labels used in a two-way table

p_{11}	p_{12}	$p_{1 .}$
p_{21}	p_{22}	$p_{2 .}$
$p_{.1}$	$p_{.2}$	$p_{. .}$

$p_{i j}$ represents the probabilities for each cell and is equal to the number of observations in a particular cell divided by the total number of observations. $p_{i,}, p_{j \text {. respectively represent the marginal probabilities for each row and for each column. The marginal }}$ probabilities are equal to the marginal frequencies divided by the total number of students.

Assuming that rows represent the antecedent factor, with the first row for "having the antecedent" and the second row for "not having the antecedent", and that the columns represent the outcome: the first column for "having the outcome" and the second column for "not having the outcome", the relative risk is then equal to:

$$
R R=\frac{\left(p_{11} / p_{1 .}\right)}{\left(p_{21} / p_{2 .}\right)}
$$

Odds ratio

The same notation can be used to define the odds ratio, another measure of the relative likelihood of a particular outcome across two groups. The odds ratio for observing the outcome when an antecedent is present is simply

$$
O R=\frac{\left(p_{11} / p_{12}\right)}{\left(p_{21} / p_{22}\right)}
$$

where p_{11} / p_{12} represents the "odds" of observing the outcome when the antecedent is present, and p_{21} / p_{22} represents the "odds" of observing the outcome when the antecedent is not present.

A logistic regression can be used to estimate the odds ratio: the exponentiated logit coefficient for a binary variable is equivalent to the odds ratio. A "generalised" odds ratio, after accounting for other differences across groups, can be estimated by introducing control variables in the logistic regression.

Statistics based on multilevel models

Statistics based on multilevel models include variance components (between- and within-school variance), the index of intraclass correlation derived from these components, and regression coefficients where this has been indicated. Multilevel models are generally specified as two-level regression models (the student and school levels), with normally distributed residuals, and estimated with maximum likelihood estimation. Where the dependent variable is science, reading, mathematics or collaborative problem-solving performance, the estimation uses ten plausible values for each student's performance on the performance scale. Models were estimated using the Stata \mathbb{R}^{\circledR} (version 14.1) "mixed" module.

In multilevel models, weights are used at both the student and school levels. The purpose of these weights is to account for differences in the probabilities of students being selected in the sample. Since PISA applies a two-stage sampling procedure, these differences are due to factors at both the school and the student levels. For the multilevel models, student final weights (W_FSTUWT) were used. Students' within-school weights correspond to student final weights, rescaled to amount to the sample size within each school. School weights correspond to the sum of final student weights (W_FSTUWT) within each school. This definition of school weights is the same used in the PISA 2012 Initial Report.

The index of intra-class correlation is defined and estimated as:

$$
100^{*} \frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+\sigma_{b}^{2}}
$$

where σ_{w}^{2} and σ_{b}^{2}, respectively, represent the within- and between-variance estimates.
The results in multilevel models, and the between-school variance estimate in particular, depend on how schools are defined and organised within countries and by the units that were chosen for sampling purposes. For example, in some countries, some of the schools in the PISA sample were defined as administrative units (even if they spanned several geographically separate institutions, as in Italy); in others they were defined as those parts of larger educational institutions that serve 15-year-olds; in still others they were defined as physical school buildings; and in others they were defined from a management perspective (e.g. entities having a principal). The PISA 2015 Technical Report (OECD, 2017) and Annex A2 provide an overview of how schools are defined. In Slovenia, for example, the primary sampling unit is defined as a group of students who follow the same study programme within a school (an education track within a school). So in this case, the between-school variation is actually the within-school, between-track difference. The use of stratification variables in the selection of schools may also affect the estimate of the between-school variation, particularly if stratification variables are associated with between-school differences.

Because of the manner in which students were sampled, the within-school variation includes variation between classes as well as between students.

Effect sizes

Sometimes it is useful to compare differences in an index between groups, such as boys and girls, across countries. A problem that may occur in such instances is that the distribution of the index varies across groups or countries. One way to resolve this is to calculate an effect size that accounts for differences in the distributions. An effect size measures the difference between, say, the collaborative problem-solving performance of male and female students in a given country, relative to the average variation in collaborative problem-solving performance among all students in the country.
The effect size between two subgroups is calculated as:

$$
\frac{m_{1}-m_{2}}{\sqrt{\sigma^{2}}}
$$

where m_{1} and m_{2}, respectively, represent the mean values for the subgroups 1 and 2 and σ^{2} represents the overall (between and within-group) variance.

Concentration of immigrant students

The concentration of immigrant students in schools is equal to the share of students in a school who are immigrants. It is defined as:

$$
C_{i}=\frac{N_{i}^{\text {immig }}}{N_{i}^{\text {immig }}+N_{i}^{\text {non-immig }}}
$$

with $N_{i}^{\text {immig }}$ equal to the number of immigrant students in school i and $N_{i}^{\text {non-immig }}$ equal to the number of non-immigrant students in school i.

Similar concentration indices were defined for advantaged students (those students in the top quarter of the PISA index for economic, social and cultural status [ESCS] in their country or economy), disadvantaged students (those students in the bottom quarter of ESCS in their country or economy) and students who speak a different language at home. The proportion of students with special needs in a school was reported by school principals.

Standard errors and significance tests

The statistics in this report represent estimates of national performance based on samples of students, rather than values that could be calculated if every student in every country had answered every question. Consequently, it is important to measure the degree of uncertainty of the estimates. In PISA, each estimate has an associated degree of uncertainty, which is expressed through a standard error. The use of confidence intervals provides a way to make inferences about the population means and proportions in a manner that reflects the uncertainty associated with the sample estimates. From an observed sample statistic and assuming a normal distribution, it can be inferred that the corresponding population result would lie within the confidence interval in 95 out of 100 replications of the measurement on different samples drawn from the same population.

In many cases, readers are primarily interested in whether a given value in a particular country is different from a second value in the same or another country, e.g. whether girls in a country perform better than boys in the same country. In the tables and charts used in this report, differences are labelled as statistically significant when a difference of that magnitude or larger would be observed less than 5% of the time, if there were actually no difference in corresponding population values. Similarly, the risk of reporting a correlation as significant if there is, in fact, no correlation between two measures, is contained at 5%.
Throughout the report, significance tests were undertaken to assess the statistical significance of the comparisons made.

Gender differences and differences between subgroup means

Gender differences in student performance or other indices were tested for statistical significance. Positive differences indicate higher scores for boys while negative differences indicate higher scores for girls. Generally, differences marked in bold in the tables in this volume are statistically significant at the 95% confidence level.

Similarly, differences between other groups of students (e.g. non-immigrant students and students with an immigrant background) or categories of schools (e.g. advantaged and disadvantaged schools) were tested for statistical significance. The definitions of the subgroups can, in general, be found in the tables and the text accompanying the analysis. Socio-economically (dis) advantaged school are defined as schools in the (bottom) top quarter of the distribution of the average PISA index of economic, social and cultural status (ESCS) across schools within each country/economy. All differences marked in bold in the tables presented in Annex B of this report are statistically significant at the 95% level.

Differences between subgroup means, after accounting for other variables

For many tables, subgroup comparisons were performed both on the observed difference ("before accounting for other variables") and after accounting for other variables, such as the PISA index of economic, social and cultural status of students, gender, and performance in the three core PISA domains of science, reading and mathematics. The adjusted differences were estimated using linear regression and tested for significance at the 95% confidence level. Significant differences are marked in bold.

Performance differences between the top and bottom quartiles of PISA indices and scales

Differences in average performance between the top and bottom quarters of the PISA indices and scales were tested for statistical significance. Figures marked in bold indicate that performance between the top and bottom quarters of students on the respective index is statistically significantly different at the 95% confidence level.

Change in the performance per unit of the index

For many tables, the difference in student performance per unit on the index shown was calculated. Figures in bold indicate that the differences are statistically significantly different from zero at the 95% confidence level.

Relative risk and odds ratio

Figures in bold in the data tables presented in Annex B of this report indicate that the relative risk/odds ratio is statistically significantly different from 1 at the 95% confidence level. To compute statistical significance around the value of 1 (the null hypothesis), the relative-risk/odds-ratio statistic is assumed to follow a log-normal distribution, rather than a normal distribution, under the null hypothesis.

For many tables, "generalised" odds ratios (after accounting for other variables) are also presented. These odds ratios were estimated using logistic regression and tested for significance against the null hypothesis of an odds ratio equal to 1 (i.e. equal likelihoods, after accounting for other variables).

Range of ranks

To calculate the range of ranks for countries, data are simulated using the mean and standard error of the mean for each relevant country to generate a distribution of possible values. Some 10000 simulations are implemented and, based on these values, 10000 possible rankings for each country are produced. For each country, the counts for each rank are aggregated from largest to smallest until they equal 9500 or more. Then the range of ranks per country is reported, including all the ranks that have been aggregated. This means that there is at least 95% confidence about the range of ranks, and it is safe to assume unimodality in this distribution of ranks. This method has been used in all cycles of PISA since 2003, including PISA 2015.

The main difference between the range of ranks (e.g. Figure V.3.4) and the comparison of countries' mean performance (e.g. Figure V.3.3) is that the former takes account of the multiple comparisons involved in ranking countries/economies, while the latter does not. Therefore, sometimes there is a slight difference between the range of ranks and counting the number of countries above a given country, based on pairwise comparisons of the selected countries' performance. For instance, Canada and Finland have similar mean performance and the same set of countries whose mean score is not statistically different from theirs, based on Figure V.3.3; but the rank for Canada can be restricted to be, with 95% confidence, between 2 nd and 6 th among OECD countries, while the range of ranks for Finland is wider (between 2nd and 7th) (Figure V.3.4). Since it is safe to assume that the distribution of rank estimates for each country has a single mode (unimodality), the results of range of ranks for countries should be used when examining countries' rankings.

Standard errors in statistics estimated from multilevel models

For statistics based on multilevel models (such as the estimates of variance components and regression coefficients from two-level regression models) the standard errors are not estimated with the usual replication method, which accounts for stratification and sampling rates from finite populations. Instead, standard errors are "model-based": their computation assumes that schools, and students within schools, are sampled at random (with sampling probabilities reflected in school and student weights) from a theoretical, infinite population of schools and students which complies with the model's parametric assumptions.

The standard error for the estimated index of intra-class correlation is calculated by deriving an approximate distribution for it from the (model-based) standard errors for the variance components, using the delta-method.

References

OECD (2017), PISA 2015 Technical Report, PISA, OECD Publishing, Paris.

ANNEX A4

QUALITY ASSURANCE

Quality assurance procedures were implemented in all parts of PISA 2015, as was done for all previous PISA surveys. The PISA 2015 Technical Standards (www.oecd.org/pisa) specify the way in which PISA must be implemented in each country, economy and adjudicated region. International contractors monitor the implementation in each of these and adjudicate on their adherence to the standards.

The consistent quality and linguistic equivalence of the PISA 2015 assessment instruments were facilitated by assessing the ease with which the original English version could be translated. Two source versions of the assessment instruments, in English and French were prepared (except for the financial literacy assessment and the operational manuals, which were provided only in English) in order for countries to conduct a double translation design, i.e. two independent translations from the source language(s), and reconciliation by a third person. Detailed instructions for the localisation (adaptation, translation and validation) of the instruments for the field trial and for their review for the main survey, and translation/adaptation guidelines were supplied. An independent team of expert verifiers, appointed and trained by the PISA Consortium, verified each national version against the English and/or French source versions. These translators' mother tongue was the language of instruction in the country concerned, and the translators were knowledgeable about education systems. For further information on PISA translation procedures, see the PISA 2015 Technical Report (OECD, 2017).

The survey was implemented through standardised procedures. The PISA Consortium provided comprehensive manuals that explained the implementation of the survey, including precise instructions for the work of school co-ordinators and scripts for test administrators to use during the assessment sessions. Proposed adaptations to survey procedures, or proposed modifications to the assessment session script, were submitted to the PISA Consortium for approval prior to verification. The PISA Consortium then verified the national translation and adaptation of these manuals.

To establish the credibility of PISA as valid and unbiased and to encourage uniformity in administering the assessment sessions, test administrators in participating countries were selected using the following criteria: it was required that the test administrator not be the science, reading or mathematics instructor of any students in the sessions he or she would conduct for PISA; and it was considered preferable that the test administrator not be a member of the staff of any school in the PISA sample. Participating countries organised an in-person training session for test administrators.
Participating countries and economies were required to ensure that test administrators worked with the school co-ordinator to prepare the assessment session, including reviewing and updating the Student Tracking Form; completing the Session Attendance Form, which is designed to record students' attendance and instruments allocation; completing the Session Report Form, which is designed to summarise session times, any disturbance to the session, etc.; ensuring that the number of test booklets and questionnaires collected from students tallied with the number sent to the school (paper-based assessment countries) or ensuring that the number of USB sticks used for the assessment were accounted for (computer-based assessment countries); and sending the school questionnaire, student questionnaires, parent and teacher questionnaires (if applicable), and all test materials (both completed and not completed) to the national centre after the testing.
The PISA Consortium responsible for overseeing survey operations implemented all phases of the PISA Quality Monitor (PQM) process: interviewing and hiring PQM candidates in each of the countries, organising their training, selecting the schools to visit, and collecting information from the PQM visits. PQMs are independent contractors located in participating countries who are hired by the international survey operations contractor. They visit a sample of schools to observe test administration and to record the implementation of the documented field-operations procedures in the main survey.
Typically, two or three PQMs were hired for each country, and they visited an average of 15 schools in each country. If there were adjudicated regions in a country, it was usually necessary to hire additional PQMs, as a minimum of five schools were observed in adjudicated regions.
All quality-assurance data collected throughout the PISA 2015 assessment were entered and collated in a central dataadjudication database on the quality of field operations, printing, translation, school and student sampling, and coding. Comprehensive reports were then generated for the PISA Adjudication Group. This group was formed by the Technical Advisory Group and the Sampling Referee. Its role is to review the adjudication database and reports to recommend adequate treatment to preserve the quality of PISA data. For further information, see the PISA 2015 Technical Report (OECD, 2017).
The results of adjudication and subsequent further examinations showed that the PISA Technical Standards were met in all countries and economies that participated in PISA 2015 collaborative problem-solving assessment except for Malaysia where the PISA assessment was conducted in accordance with the operational standards and guidelines of the OECD. However, the weighted response rate among the initially sampled Malaysian schools (51%) falls well short of the standard PISA response rate of 85%. Therefore, the results may not be comparable to those of other countries or to results for Malaysia from previous years.

Reference

OECD (2017), PISA 2015 Technical Report, PISA, OECD Publishing, Paris.

From:
PISA 2015 Results (Volume V)
Collaborative Problem Solving

Access the complete publication at:

https://doi.org/10.1787/9789264285521-en

Please cite this chapter as:
OECD (2017), "PISA 2015 Technical Background", in PISA 2015 Results (Volume V): Collaborative Problem Solving, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/9789264285521-14-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

