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5.3	 For products such as high-tech goods, the log-
linear model (5.3) is usually preferred, among other things 
because it most likely reduces the problem of heteroske-
dasticity (non-constant variance of the errors) as prices 
tend to be log-normally distributed (Diewert, 2003b). In 
the housing context, on the other hand, the linear mod-
el has much to recommend. In Chapter 3, the size of the 
structure and the size of the land it is built on were men-
tioned as two important price determining variables. Since 
the value of a property is generally equal to the sum of the 
price of the structure and the price of land, it can be argued 
that land and structures should be included in the model 
in a linear fashion, provided that the data are available. 
Chapter 8 will discuss this issue in more detail, including 
a decomposition of the hedonic price index into land and 
structures components. Unfortunately, not all data sources 
will contain information on lot and structure size. Lot size 
in particular may be lacking. When lot (or structure) size 
is not included as an explanatory variable, many empirical 
studies have found log-linear models to perform reason-
ably well.

5.4	 The characteristics parameters t
kβ  in (5.2) and 

(5.3) are allowed to change over time. This is in line with the 
idea that housing market conditions determine the mar-
ginal contributions of the characteristics: when demand 
and supply conditions change, there is no a priori reason to 
expect that those contributions are constant (Pakes, 2003). 
Yet, it seems most likely that market conditions change 
gradually. Therefore, the simplifying assumption can con-
fidently be made, perhaps only for the short term, that the 
characteristics parameters (but not the intercept term) are 
constant over time. In the log-linear case this would give 
rise to the following constrained version of (5.3):
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As will be seen below, the time dependent intercept terms 
(the t

0β ) can be converted into a constant quality price 
index.

5.5	 Suppose we have data on selling prices and char-
acteristics for the samples )(),...,1(),0( TSSS  of properties 
sold in periods Tt ,...,0=  with sizes )(),...,1(),0( TNNN . 
Under the classic error assumptions, in particular a zero 
mean and constant variance, the parameters of the hedon-
ic models (5.2) and (5.3) can be estimated by Ordinary 
Least Squares (OLS) regression on the sample data of each 
time period separately. The constrained version (5.4) can 
be estimated on the pooled data pertaining to all time pe-
riods, provided that dummy variables are included which 
indicate the time periods (leaving out one dummy to pre-
vent perfect collinearity). The estimating equation for the 
constrained log-linear model (5.4), which is generally re-
ferred to as the time dummy variable hedonic model, thus 
becomes
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Hedonic Modeling  
and Estimation

5.1	 The hedonic regression method recognizes that 
heterogeneous goods can be described by their attributes 
or characteristics. That is, a good is essentially a bundle 
of (performance) characteristics. (1) In the housing con-
text, this bundle may contain attributes of both the struc-
ture and the location of the properties. There is no market 
for characteristics, since they cannot be sold separately, 
so the prices of the characteristics are not independently 
observed. The demand and supply for the properties im-
plicitly determine the characteristics’ marginal contribu-
tions to the prices of the properties. Regression techniques 
can be used to estimate those marginal contributions or 
shadow prices. One purpose of the hedonic method might 
be to obtain estimates of the willingness to pay for, or mar-
ginal cost of producing, the different characteristics. Here 
we focus on the second main purpose, the construction of 
quality-adjusted price indices.

Hedonic Modeling
5.2	 The starting point is the assumption that the price 

t
np  of property n in period t is a function of a fixed num-

ber, say K, characteristics measured by “quantities” t
nkz . 

With T+1  time periods, going from the base period 0  to 
period T, we have
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,...,0 Tt =

where t
nε  is a random error term (white noise). In order 

to be able to estimate the marginal contributions of the 
characteristics using standard regression techniques, equa-
tion (5.1) has to be specified as a parametric model. The 
two best-known hedonic specifications are the fully linear 
model
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and the logarithmic-linear model
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where t
0β  and t

kβ  are the intercept term and the character-
istics parameters to be estimated. In both specifications the 
characteristics may be transformations, like logarithms, of 
continuous variables. In practice, many explanatory vari-
ables will be categorical rather than continuous and repre-
sented by a set of dummy variables which take the value of 
1 if a property belongs to the category in question and the 
value of 0 otherwise.

(1)	 The hedonic regression approach dates back at least to Court (1939) and Griliches 
(1961). Lancaster (1966) and Rosen (1974) laid down the conceptual foundations of the 
approach. Colwell and Dilmore (1999) argue that the first published hedonic study was 
a 1922 University of Minnesota master’s thesis on agricultural land values.
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5.8	 Multicollinearity is a well-known problem in he-
donic regressions. A high correlation between some of 
the included variables increases the standard errors of the 
regression coefficients; the coefficients become unstable. 
Again, it is difficult to say a priori how this will affect he-
donic indices. For some purposes, multicollinearity may 
not be too problematic. For example, if we are not so much 
interested in the values of the parameters but merely in the 
predicted prices to be used in the estimation of the over-
all quality-adjusted house price index, then the problem of 
multicollinearity should not be exaggerated. In this case it 
is better to include a relevant variable, even if this would 
cause multicollinearity, than leaving it out as the latter gives 
rise to omitted variables bias. But when the parameter val-
ues are of interest as such, for example when we are trying 
to decompose the property prices into land and structures 
components, then multicollinearity does pose problems. In 
Chapter 8 it will be shown that this is indeed a problem.

5.9	 As with other methods, some data cleaning might 
be necessary. Obvious entry errors should be deleted. Yet 
a cautious approach is called for. Deleting outliers from a 
regression with the aim of producing more stable coeffi-
cients (hence, more stable price indices) is often arbitrary 
and could lead to biased estimates. The use of hedonics 
requires data on all characteristics included in the model. 
Unfortunately, partial non-response is present in many data 
sets. That is, the information on one or more characteris-
tics may be missing for a part of the sample. Procedures 
have been developed to impute the missing data, but again 
it is important to avoid arbitrary choices that can have an 
impact on the results.

5.10	 In the next two sections, the two main hedonic 
approaches, the time dummy approach and the imputa-
tions approach, to constructing quality-adjusted house 
price indices will be discussed. Without denying potential 
econometric problems, our focus will be on the use of least 
squares regression to estimate the models.

Time Dummy Variable 
Method

5.11	 The time dummy variable approach to construct-
ing a hedonic house price index has been used frequently 
in academic studies but not so much by statistical agen-
cies. (4) One advantage of this approach is its simplicity; 
the price index follows immediately from the estimated 

(4)	 This method was originally developed by Court (1939; 109-111) as his hedonic 
suggestion number two. The terminology adopted by us is not uniformly employed in 
the real estate literature. For example, Crone and Voith (1992) refer to the time dummy 
method as the “constrained hedonic” method, Gatzlaff and Ling (1994) call it the “explicit 
time-variable” method, while Knight, Dombrow and Sirmans (1995) name it the “varying 
parameter” method. Other terms also appear in the literature so that statements about 
the relative merits of different hedonic methods require careful interpretation.

where the time dummy variable t
nD  has the value 1 if the 

observation comes from period t  and 0 otherwise; a time 
dummy for the base period 0 is left out. Although unusual, 
it is also possible to specify a time dummy model with the 
untransformed price as the dependent variable. This speci-
fication will be considered in the empirical example given 
at the end of this chapter.

Some Practical Issues

5.6	 An important issue is the choice of the set of ex-
planatory variables included in the hedonic equation. If 
some relevant variables – characteristics that can be ex-
pected to affect the price of a property (listed in Chapter 
3) – are excluded, then the estimated parameters of the 
included characteristics will suffer from omitted variables 
bias. The bias carries over to the predicted prices computed 
from the regression coefficients and to the hedonic indi-
ces. Each property can be viewed as a unique good, for a 
large part due to its location. But detailed information on 
location and neighbourhood can be hard to obtain (Case, 
Pollakowski, and Wachter, 1991). Other characteristics may 
be unavailable also and some could be difficult to measure 
directly. So it is fair to say that in practice some omitted 
variables bias will always be present when estimating a he-
donic model for housing. (2) The sign and magnitude of the 
bias, and its impact on the price index, are difficult to pre-
dict. The magnitude depends among other things on the 
correlation between the omitted and included variables.

5.7	 The importance of location has led researchers to 
make use of longitude and latitude data of individual prop-
erties in hedonic regressions. This is usually achieved by 
constructing a matrix of distances between all properties in 
the data set and then using appropriate (though rather spe-
cialized) econometric methods to allow for spatial depend-
ence in the estimated equation. Explicitly accounting for 
spatial dependence can ameliorate the omitted locational 
variables problem. Spatial dependence can be captured ei-
ther in the regressors or the error term. The first approach, 
i.e., including location as an explanatory variable using ge-
ospatial data, is the most straightforward one. This can be 
done parametrically or nonparametrically, for example by 
making use of splines, as demonstrated by Hill, Melser and 
Reid (2010). For an elaborate discussion and a review of 
the literature on spatial dependence, the use of geospatial 
data and also on nonparametric estimation, we refer the 
reader to Hill (2011). (3)

(2)	 A related point is that the characteristics of each house in the sample should be 
available in real time. House characteristics can change over time (which is actually 
the reason why they are given a superscript for time t in the hedonic models above). 
Keeping the characteristics fixed implies that the hedonic price index would not be 
adjusted for such quality changes.

(3)	 Colwell (1998) proposed a nonparametric spatial interpolation method which seems 
well adapted to model land prices as a function of the property’s geographical two-
dimensional coordinates.
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does not change. Suppose further that )0(S  and )(tS  
are random or “representative” selections from the hous-
ing stock. In that case the time dummy method implicitly 
aims at a ratio of geometric mean prices for the total stock, 
which is equal to the geometric mean of the individual 
price ratios. (6) Although it is true that the target of meas-
urement may be different for different purposes, it is dif-
ficult to see what purposes a geometric stock RPPI would 
meet. Arithmetic target RPPIs, such as an index that tracks 
the value of the fixed housing stock over time, seem to be 
more appropriate (see also Chapters 4 and 8).

5.15	 The samples of houses traded, )0(S  and )(tS , 
may not be representative for the total housing stock (or 
for the total population of houses sold). A solution could 
be to weight the samples in order to make them representa-
tive. Running an OLS regression on the (pooled) weighted 
data set is equivalent to running a Weighted Least Squares 
(WLS) regression on the original data set. Under the as-
sumption of a constant variance of the errors, econometric 
textbooks do not suggest the use of WLS since this will in-
troduce heteroskedasticity. Note that a WLS time dummy 
method will still generate a geometric index, in this case a 
weighted one.

5.16	 A better option than using WLS regressions could 
be to stratify the samples, run separate OLS regressions on 
the data of the different strata, and then explicitly weight 
the stratum-specific hedonic indices using stock (or sales) 
weights to construct an overall RPPI with an arithmetic 
structure at the upper level of aggregation. This stratified 
hedonic approach has several other advantages as well, as 
will be explained later.

5.17	 A problem with the time dummy method is the 
revision that goes with it. If the time series is extended to 

1+T  and new sample data is added, the characteristics co-
efficients will change. Consequently, the newly computed 
price index numbers for the periods Tt ,...,1=  will differ 
from those previously computed. (7) When additional data 
become available, the efficiency due to the pooling of data 
increases and better estimates can be made. This can ac-
tually be seen as a strength rather than a weakness of the 
method. On the other hand, statistical agencies and their 
users will most likely be reluctant to accept continuous re-
visions of previously published figures.

5.18	 The multiperiod time dummy method therefore 
appears to be of limited use for the production of official 
house price indices although there are ways to deal with 
the problem of revisions. One way would be to estimate 
time dummy indices for adjacent periods t-1  and t and 
then multiply them to obtain a time series which is free of 
revisions. This high-frequency chaining has the additional 
advantage of relaxing the assumption of fixed parameters. 

(6)	 In index number theory such an index is referred to as a Jevons index.
(7)	 In the words of Hill (2004), the time dummy approach violates time fixity.

pooled time dummy regression equation (5.5). Running 
one overall regression on the pooled data of the sam-
ples )(),...,1(),0( TSSS  relating to periods Tt ,...,0=  
(with sizes )(),...,1(),0( TNNN ) yields coefficients 0β̂ , td̂  

),...,1( Tt =  and 
kβ̂  ),...,1( Kk = . The time dummy pa-

rameter shifts the hedonic surface upwards or downwards 
and measures the effect of “time” on the logarithm of price. 
Exponentiating the time dummy coefficients thus controls 
for changes in the quantities of the characteristics and pro-
vides a measure of quality-adjusted house price change be-
tween the base period 0 and each comparison period t. In 
other words, the time dummy index going from period 0 to 
period t is given by (5)

	 )ˆexp(0 tt
TDP δ= � (5.6)

5.12	 Pooling cross-section data preserves degrees of 
freedom. The regression coefficients kβ̂  will therefore 
generally have lower standard errors than the coefficients 

t
kβ̂  that would be obtained by estimating model (5.19) 

separately on the data of the samples )(),...,1(),0( TSSS . 
Although the increased efficiency can be seen as an advan-
tage, it comes at an expense: the assumption of fixed char-
acteristics parameters is a disadvantage of the time dummy 
hedonic method.

5.13	 When using OLS, the time dummy hedonic index 
can be written as (see e.g. Diewert, Heravi and Silver, 2009; 
de Haan, 2010a)
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s
k sNzz  is the sample mean of char-

acteristic k in period s ),0( ts = . Equation (5.7) tells us 
that the time dummy index is essentially the product of 
two factors. The first factor is the ratio of the geometric 
mean prices in the periods t and 0. The second factor, 
∑ =

−
K

k

t
kkk zz

1

0 )](ˆexp[ β , adjusts this ratio of raw sample 
means for differences in the average characteristics 0

kz  and 
t
kz ; it serves as a quality-adjustment factor which accounts 

for both changes in the quality mix and quality changes 
of the individual properties (provided that all relevant 
quality-determining attributes are included in the hedonic 
model). Notice that the time dummy price index simplifies 
to the ratio of geometric mean prices if 0

k
t
k zz = , i.e. if the 

average characteristics in period t and period 0 happen to 
be equal.

5.14	 Suppose for simplicity that the housing stock is 
constant, in the sense that there are no houses entering or 
exiting, and that the quality of the individual properties 

(5)	 The expected value of the exponential of the time dummy coefficient is not exactly 
equal to the exponential of the time dummy parameter. The associated bias is often 
referred to as small sample bias: it diminishes when the sample size grows. Unless the 
sample size is extraordinary small, the bias will be small compared to the standard error 
and can usually be neglected in practice.
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5.21	 Suppose that we were aiming at a sales-based RPPI. 
There are two natural choices for *

kz  in (5.8): the sample av-
erage characteristics of the base period, 0

kz , and the sample 
averages of the comparison period t ),...,1( Tt = , t

kz . The 
usual solution in index number theory is to treat the result-
ing price indices – which are equally valid – in a symmetric 
manner by taking the geometric mean. Setting 0*

kk zz =  in 
(5.8) generates a Laspeyres-type characteristics prices (CP) 
index:

	
∑

∑

=

=

+

+
= K

k
kk

K

k
k

t
k

t

t
CPL

z

z
P

1

000
0

1

0
0

0

ˆˆ

ˆˆ

ββ

ββ
� (5.9)

Setting t
kk zz =*  in (5.8) yields a Paasche-type index:
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By taking the geometric mean of (5.9) and (5.10) the 
Fisher-type characteristics prices index is obtained:

	 [ ] 2/1000 t
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t
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CPF PPP = � (5.11)

5.22	 The characteristics prices method can also ap-
plied in combination with the log-linear model given by 
(5.3). Running separate regressions of this model on the 
sample data for periods 0  and t yields predicted prices 
(after exponentiating) ]ˆexp[)ˆexp(ˆ
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in (5.8) for the linear model, prices can be predicted for a 
standardized house. Using the sample averages of the char-
acteristics in the base period to define the standardized 
house, the geometric counterpart to the Laspeyres-type 
characteristics prices index (5.9) is found:
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The geometric counterpart to the Paasche-type hedonic in-
dex (5.10) is obtained by using the sample averages of the 
characteristics in the comparison period:
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It is, however, not entirely without problems. Drift in the 
index can occur when the data exhibit systematic fluctua-
tions such as seasonal fluctuations. (8)

Characteristics Prices  
and Imputation Methods

5.19	 In the second main approach to compiling a he-
donic price index, separate regressions are run for all time 
periods and the index is constructed by making use of 
the predicted prices based on the regression coefficients. 
Because the implicit characteristics prices are allowed 
to vary over time, this method is more flexible than the 
time dummy variable method. Two variants can be distin-
guished: the characteristics prices approach and the impu-
tations approach. It will be shown that, under certain cir-
cumstances, both approaches are equivalent. We will first 
discuss the characteristics prices approach. (9)

Characteristics Prices Approach

5.20	 To illustrate this approach, suppose as before that 
sample data are available on prices and relevant character-
istics of houses sold in the base period 0 and each compari-
son period t. We will first assume that the linear hedonic 
model (5.2) holds true and is estimated on the data of pe-
riod 0 and period t separately. This yields regression coeffi-
cients s

0β̂  and s
kβ̂  ),...,1( Kk =  for ts ,0= . The predicted 

prices for each individual property are ∑ =
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dicted period 0  and period t prices for a “standardized” 
property with fixed (quantities of) characteristics *

kz . The 
resulting estimated price relative is
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Expression (5.8) is a quality-adjusted price index because 
the characteristics are kept fixed. But different values of *

kz  
will give rise to different index numbers. So what would be 
the preferred choice?

(8)	 An alternative approach would be the use of a moving window. For example, suppose 
we initially estimated a time dummy index on the data of twelve months. Next, we 
delete the data of the first month and add the data of the thirteenth month and 
estimate a time dummy index on this data set, and so on. By multiplying (chaining) the 
last month-to-month changes a non-revised time series is obtained. For an application, 
see Shimizu, Nishimura and Watanabe (2010). In the example for the town of “A”, given at 
the end of this chapter, drift does not seem to be a major problem; the moving window 
method gives much the same results as the multiperiod time dummy regression.

(9)	 Again, the terminology differs between authors. For example, Crone and Voith (1992) 
and Knight, Dombrow and Sirmans (1995) refer to this approach as the “hedonic 
method” (as opposed to the “constrained hedonic” or “varying parameter” method, what 
we have called the time dummy variable approach), while Gatzlaff and Ling (1994) refer 
to it as the “strictly cross-sectional” method.
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Arithmetic Imputation Indices

5.26	 The Laspeyres imputation index imputes period 
t prices for the properties belonging to the base period 
sample )0(S , evaluated at base period characteristics to 
control for quality changes. Using the linear model (5.1), 
the imputed prices are ∑ =
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donic imputation Laspeyres index becomes
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Notice that the quantity associated with each price is 1; ba-
sically, every house is unique and cannot be matched ex-
cept through the use of a model.

5.27	 The hedonic imputation Laspeyres index (5.15) 
is an example of a single imputation index in which the 
observed prices are left unchanged. It can be argued that 
it would be better to use a double imputation approach, 
where the observed prices are replaced by the predicted 
values. This is because biases in the period 0 and period t 
estimates resulting from omitted variables are likely to off-
set each other, at least to some degree; see e.g. Hill, 2011. 
Using ∑ =

+=
K

k nkkn zp
1

000
0

0 ˆˆˆ ββ , the hedonic double imputa-
tion (DI) Laspeyres price index is
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A comparison with equation (5.12) shows that, using the 
linear model, the double imputation index equals the 
Laspeyres-type characteristics prices index. This result 
does not depend on the estimation method. If we would 
use OLS regression to estimate the linear model, then the 
single imputation index would be equal to the double im-
putation index and also coincide with the characteristics 
prices index as in this case ∑ ∑∈ ∈

=
)0( )0(

00 ˆ
Sn Sn nn pp , due to 

the fact that the hedonic model includes an intercept term 
so that the OLS regression residuals sum to zero.

5.28	 The hedonic single imputation Paasche index im-
putes base period prices for the properties belonging to the 
period t sample )(tS , evaluated at period t characteristics. 
Using again the linear model (5.1), these imputed prices 

Taking the geometric mean of (5.12) and (5.13) yields
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where 2/)( 00 t
kk

t
k zzz +=  in (5.14) denotes the mean of the 

average characteristics in the base and comparison period.

5.23	 If the target index is a stock-based rather than a 
sales-based RPPI, the two natural choices for the character-
istics *

kz  in equation (5.8) would be the average stock char-
acteristics of the base period and those of the comparison 
period. The first choice would produce a Laspeyres-type 
stock RPPI, the second choice a Paasche-type stock RPPI. 
Both indices measure the quality-adjusted value change of 
the housing stock, but the results will usually differ. Not 
only does the average quality of the housing stock change 
over time, the Laspeyres-type index ignores new properties 
that entered the housing market whereas the Paasche-type 
index does not take into account disappearing properties.

5.24	 Of course the assumption of known stock averages 
for all property characteristics included in the hedonic 
model is unrealistic. In most situations we have to rely on 
estimates, i.e. on the sample averages 0

kz  and t
kz  which are 

based on the same characteristics data that is used to esti-
mate the hedonic equations. This leads to formulae (5.9) 
and (5.10), or the geometric mean (5.11), which describe 
sales-based RPPIs. Once again we are reminded that sales 
RPPIs can be seen as estimators of stock RPPIs, provided 
that the samples are representative of the total stock. The 
latter is rather doubtful, however, and the usual approach 
is to stratify the samples and weight the estimated stratum 
indices using stock weights.

Hedonic Imputation Approach

5.25	 The question arises how the characteristics prices 
method described above relates to the standard (matched-
model) methodology to construct price indices. From an 
index number point of view we can look at the issue in the 
following way. The period t prices of properties sold in pe-
riod 0 cannot be observed and are “missing” because those 
properties, or at least the greater part, will not be resold 
in period t. Similarly, the period 0  prices of the proper-
ties sold in period t are unobservable. To apply standard 
index number formulae these “missing prices” must be 
imputed. (10) Hedonic imputation indices do this by using 
predicted prices, evaluated at fixed characteristics, based 
on the hedonic regressions for all time periods.

(10)	As noted earlier, the hedonic theory dates back at least to Court (1939; 108). Imputation 
was his hedonic suggestion number one. His suggestion was followed up by 
Griliches (1971a; 59-60) (1971b; 6) and Triplett and McDonald (1977; 144). More recent 
contributions to the hedonic imputations literature include Diewert (2003b), de Haan 
(2004) (2009) (2010a), Triplett (2004) and Diewert, Heravi and Silver (2009). In a housing 
context the hedonic imputation method is discussed in detail by Hill and Melser (2008) 
and Hill (2011).
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the double imputation unweighted geometric index, in 
which the base period prices are replaced by predicted val-
ues ]ˆexp[)ˆexp(ˆ
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Similarly, the geometric counterpart to the imputation 
Paasche price index (5.16) is obtained by imputing period 
0 prices for the properties belonging to the period t sample 

)(tS , which are given by ]ˆexp[)ˆexp()(ˆ
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and replacing the observed period t prices by the predic-
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5.31	 When OLS is used to estimate the log-linear re-
gression equations, the denominator of (5.19) and the nu-
merator of (5.20) will equal the geometric sample means 
of the prices in period 0 and period t, respectively, and the 
double imputation indices coincide with single imputation 
indices. Taking the geometric mean of (5.19) and (5.20) 
yields
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where 2/)( 00 t
kk

t
k zzz +=  denotes the mean of the average 

characteristics in periods 0 and t, as before.

5.32	 The symmetric imputation index equation (5.21) 
can be rewritten in a way that is surprisingly similar to 
equation (5.7) for the time dummy index when OLS is used 
to estimate the hedonic equations (see Diewert, Heravi and 
Silver, 2009, and de Haan, 2010a):
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where 2/)ˆˆ(ˆ 00 t
kk

t
k βββ +=  denotes the average value of the 

k-th coefficient in periods 0 and t. Equation (5.22) adjusts 
the ratio of observed geometric mean prices for any differ-
ences in the average sample characteristics. Triplett (2006) 
refers to this as “hedonic quality adjustment”. A compari-
son with equation (5.7) shows that if the sample averages of 

are given by ∑ =
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t
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0 ˆˆ)(ˆ ββ . To save space we will 
only show the double imputation variant. Here, the ob-
served (period t) prices are replaced by their model-based 
predictions ∑ =
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ˆˆˆ ββ . Thus, the hedonic dou-

ble imputation Paasche price index is
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which coincides with the Paasche-type characteristics pric-
es index. If OLS regression is used, then (5.17) is equal to 
the single imputation Paasche index because in this par-
ticular case the numerator equals ∑∈ )(tSn

t
np . It will then 

be unnecessary to estimate the hedonic equations for the 
comparison periods Tt ,...,1= ; estimating the base period 
hedonic equation to obtain the base period imputed values 
will suffice.

5.29	 The hedonic double imputation Fisher index is 
found by taking the geometric mean of (5.16) and (5.17):

	 [ ] 2/1000 t
HDIP

t
HDIL

t
HDIF PPP = � (5.18)

The above imputation indices can be given two interpreta-
tions. They can be viewed either as estimators of the qual-
ity-adjusted value change of the entire housing stock, i.e., 
as stock-based RPPIs, or as estimators of quality-adjusted 
sales-based RPPIs. Under the first interpretation, to pro-
duce approximately unbiased results, each sample should 
be a random or representative selection from the housing 
stock. Sample selection bias problems could be less severe 
under the second interpretation, although this depends on 
the sampling design. (11)

Geometric Imputation Indices

5.30	 The imputation approach can also be applied to 
geometric price index number formulae. Let us start with 
what might be called the geometric counterpart to the im-
putation Laspeyres price index (5.15). For reasons of “con-
sistency” the imputations will now be computed using the 
log-linear hedonic model (5.3) instead of the linear model. 
The imputed period t prices for the properties belonging 
to the base period sample )0(S , evaluated at base period 
characteristics, are ]ˆexp[)ˆexp()0(ˆ

1

0
0 ∑ =

=
K

k nk
t
k

tt
n zp ββ . Hence, 

(11)	If all property transactions are observed, there is no sampling involved from a sales 
point of view, and sample selection bias is not an issue. In many countries the Land 
Registry records all transactions, at least for resold houses. However, such data sets 
usually have limited information on characteristics; see e.g. Lim and Pavlou (2007) or 
Academetrics (2009).
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agency to publish different RPPIs for different market seg-
ments. Users will benefit from this because it is well known 
that different types of houses, different regions, etc. can 
exhibit quite different price trends. Second, stratification 
can be helpful for reducing sample selection bias, including 
bias due to non-response, in particular for a stock-based 
RPPI.

5.37	 When using hedonic regression techniques to ad-
just for quality (mix) changes, stratification is highly rec-
ommended. It is very unlikely that a single hedonic model 
holds true for all market segments, hence separate regres-
sions should be run for different types of properties, dif-
ferent locations, etc. There are in fact two issues involved. 
Perhaps the biggest issue is that different sets of property 
characteristics will be needed for different market seg-
ments. For example, the characteristics that are relevant for 
detached dwelling units differ from those that are relevant 
for high rise apartments, if only because the floor of the 
apartment seems an important price determining variable. 
The second, though probably less important, issue is that 
the parameter values for the same characteristics can dif-
fer across housing market segments. Statistical tests for dif-
ferences in parameter values between sub-samples can be 
found in any econometrics textbook.

5.38	 The stratified hedonic approach can be illustrated 
most easily with reference to the imputation method, es-
pecially in combination with the Laspeyres index formula. 
Recall the third expression on the right-hand side of the 
hedonic single imputation Laspeyres price index (5.15), 
where the period t prices for the houses in the base period 
sample )0(S  are “missing” and imputed (using the estimat-
ed hedonic regression model for period t) by )0(ˆ t

np . Suppose, 
as in Chapter 4, that the total sample is (post) stratified into 
M sub-samples )0(mS . Equation (5.15) can then be rewrit-
ten as
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where ∑ ∑∈ ∈
=

)0( )0(

00
, /)0(ˆ

m mSn Sn n
t
n

t
mHIL ppP  denotes the  

hedonic (single) imputation Laspeyres price index  
between the base period and period t for cell m; 

∑ ∑∈ ∈
=

)0( )0(

000 /
mSn Sn nnm pps  is the corresponding sales 

value share, which serves as the weight for t
mHILP 0

, . Note that 
the last expression of (5.23) has a similar structure as the 
mix-adjusted index given by equation (4.1), but in the pre-
sent case the cell indices are hedonic imputation indices 
rather than unit value indices.

all characteristics stay the same )( 0 t
kk zz = , then the sym-

metric hedonic imputation index and the time dummy 
index coincide and equal the ratio of observed geometric 
mean prices, but this will obviously, rarely happen. Both 
types of hedonic indices also coincide if, for each charac-
teristic, the average coefficient t

k
0β̂  from the two separate 

regressions would be equal to the coefficient kβ̂  from the 
time dummy regression. This is rare as well, but it suggests 
that both approaches generate similar results if the charac-
teristics parameters are approximately constant over time.

5.33	 If the characteristics parameters can be assumed 
constant over time, the average coefficients t

k
0β̂  in equa-

tion (5.22) can be replaced by the base period coefficients 
0ˆ
kβ . In that case there would be no need to run a regres-

sion in each time period, and we would in fact be using the 
non-symmetric imputation price index given by equation 
(5.13). (12) The base period regression could be run on a 
bigger data set to increase the stability of the coefficients. It 
is advisable to regularly check if the coefficients have sig-
nificantly changed and to update them when necessary.

5.34	 As mentioned earlier, geometric price indices are 
less suitable as estimators of quality-adjusted RPPIs. This is 
not to say that they should never be used. In conjunction 
with stratification, the use of (5.21) could produce satisfac-
tory results since this would combine quality adjustment 
(using a log-linear hedonic regression model) and a sym-
metric index number formula within the different strata 
with mix adjustment across strata. The stratified hedonic 
approach will be discussed in the next section.

Stratified Hedonic Indices
5.35	 Chapter 4 dealt with stratification or mix adjust-

ment. Stratification is a simple and powerful tool to ad-
just for changes in the quality mix of the properties sold. 
However, some quality mix changes within the strata are 
likely to remain, as essentially every property is a unique 
good, and some unit value bias could therefore occur. A 
more detailed stratification scheme may be unfeasible, 
especially when the number of observations is relatively 
small. Provided that the necessary data on characteristics 
are available, it could be worthwhile to work with a less 
fine stratification scheme and use hedonic regression at the 
stratum level to adjust for quality mix changes. This two-
stage approach combines hedonics at the lower (stratum) 
level and explicit weighting at the upper level to form an 
overall RPPI.

5.36	 Two advantages of stratification have been men-
tioned earlier. First, stratification enables the statistical 

(12)	In Europe this type of hedonic quality adjustment is called “hedonic re-pricing”, 
especially in case the sample size is fixed (Destatis, 2009).
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•	 While the method is essentially reproducible, different 
choices can be made regarding the set of characteristics 
included in the model, the functional form, possible 
transformations of the dependent variable (14), the sto-
chastic specification, etc., which could lead to varying 
estimates of overall price change. Thus, a lot of metadata 
may be required.

•	 The general idea of the hedonic method is easily under-
stood but some of the technicalities may not be easy to 
explain to users.

5.43	 The overall evaluation of the hedonic regression 
method is that it is probably the best method that could be 
used in order to construct constant quality RPPIs for vari-
ous types of property. (15) We are in favor of the (double) 
imputation variant because this is the most flexible hedon-
ic approach and because this approach is analogous to the 
standard matched-model methodology to construct price 
indices.

5.44	 In the next three sections, the various hedonic re-
gression methods will be illustrated using the data for the 
town of “A” that was described at the end of Chapter 4. The 
following two sections show the results of time dummy he-
donic regressions, using the log of the selling price as the 
dependent variable and using the untransformed selling 
price, respectively. The last section illustrates the hedonic 
imputation method. All of the resulting price indices are 
for the sales of detached houses; some results using the data 
for the town of “A” for indices of the stock of houses will be 
postponed until Chapter 8.

Time Dummy Models Using 
the Logarithm of Price  
as the Dependent Variable

The Log Linear Time Dummy Model

5.45	 Recall the description of the data for the Dutch 
town of “A” on sales of detached houses. In quarter t, there 
were N(t) sales of detached houses in “A” where t

np  is the 
selling price of house n sold during quarter t. There is in-
formation on three characteristics of house n sold in pe-
riod t: t

nL  is the area of the plot in square meters (m2); t
nS  is 

the floor space area of the structure in m2 and t
nA  is the age 

in decades of house n in period t. Using these variables, the 

(14)	For example, the dependent variable could be the sales price of the property or its 
logarithm or the sales price divided by the area of the structure and so on.

(15)	This evaluation agrees with that of Hoffmann and Lorenz (2006; 15): “As far as quality 
adjustment is concerned, the future will certainly belong to hedonic methods.” 
Gouriéroux and Laferrère (2009) have shown that it is possible to construct an official 
nationwide credible hedonic regression model for real estate properties.

5.39	 Equation (5.23) shows that if the imputed prices 
)0(ˆ t

np  for all houses in the sample )0(S  are based on one 
overall hedonic regression, then the aggregate hedonic 
imputation Laspeyres index can be written in the form of 
a stratified index. But this is just another way of writing 
things, not what is meant by a stratified hedonic approach. 
Also, as argued above, the use of a common model is very 
unrealistic. So instead of running one big hedonic regres-
sion, separate regressions should be performed on the data 
of the sub-samples in each time period to obtain imputed 
(period t) prices and imputation cell indices. That would 
lead to a stratified Laspeyres-type hedonic imputation 
index.

5.40	 It would be preferable to estimate a stratified 
Fisher hedonic index rather than a Laspeyres one. This is 
perfectly feasible for a sales RPPI but may not be feasible 
for a stock RPPI, as was already mentioned in Chapter 3, 
since up-to-date census data on the number of properties 
is often lacking.

Main Advantages  
and Disadvantages

5.41	 This section summarizes the advantages and dis-
advantages of hedonic regression methods to construct an 
RPPI. The main advantages are:

•	 If the list of available property characteristics is suffi-
ciently detailed, hedonic methods can in principle adjust 
for both sample mix changes and quality changes of the 
individual properties.

•	 Price indices can be constructed for different types of 
dwellings and locations through a proper stratification 
of the sample. Stratification has a number of other ad-
vantages as well.

•	 The hedonic method is probably the most efficient meth-
od for making use of the available data.

•	 The imputation variant of the hedonic regression meth-
od is analogous to the matched model methodology that 
is widely used in order to construct price indices.

5.42	 The main disadvantages of hedonic regression are:
•	 It may be difficult to control sufficiently for location if 

property prices and price trends differ across detailed re-
gions. However, a stratified approach to hedonic regres-
sions will help overcome this problem to some extent.

•	 The method is data intensive since it requires data on all 
relevant property characteristics, so it is relatively expen-
sive to implement. (13)

(13)	However, as will be seen from the Dutch example given below, just having information 
on location, type of property, its age, its floor space area and the plot area may explain 
most of the variation in the selling price.
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The Log Linear Time Dummy Model 
with Quality Adjustment of Structures

5.49	 If age A interacts with the quantity of structures S 
in a multiplicative manner, an appropriate explanatory var-
iable for the selling price of a house would be SA)1( dg −  
(i.e., geometric depreciation where δ is the decade geomet-
ric depreciation rate) or SA)1( dg −  (straight line deprecia-
tion where δ is the decade straight line depreciation rate) 
instead of the additive specification AS dg + . In what fol-
lows, the straight line variant of this class of models will 
be estimated (19). Thus, the log linear time dummy hedonic 
regression model with quality adjusted structures becomes
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n

t
n

t
n SALp ετδγβα ++−++= )1(ln � (5.25)

t = 1,...,14; n = 1,...,N(t); 01 ≡t

5.50	 Regression model (5.25) was run using the 14 quar-
ters of sales data for the town of “A”. Note that a single com-
mon straight line depreciation rate δ is estimated. The es-
timated decade (net) depreciation rate (20) was %94.11ˆ =δ  
(or around 1.2 % per year), which is very reasonable. As 
was the case with model (5.24), if a house with the same 
characteristics in two consecutive periods t and t+1 could 
be observed, the corresponding price relative (neglecting 
error terms) )exp(/)exp( 1 tt tt +  can serve as the chain link 
in a price index; see Figure 5.1 and Table 5.1 for the result-
ing index, labeled 2HP . The 2R  for this model was .8345, 
a bit lower than the previous model and the log likelihood 
was 1354.9, which is quite a drop from the previous log 
likelihood of 1407.6. (21)

5.51	 It appears that the imposition of more theory – 
with respect to the treatment of the age of the house – has 
led to a drop in the empirical fit of the model. However, 
it is likely that this model and the previous one are mis-
specified (22): they both multiply together land area times 
structure area to determine the price of the house while 
it is likely that an additive interaction between L and S is 
more appropriate than a multiplicative one.

(19)	This regression is essentially linear in the unknown parameters and hence it is very easy 
to estimate.

(20)	It is a net depreciation rate because we have no information on renovation expenditures, 
i.e., δ is equal to gross wear and tear depreciation of the house less average expenditures 
on renovations and repairs.

(21)	The levels type 2R  for this model was 2*R = .7647, which again is quite a drop from 
the corresponding levels  2R  for the previous log price model.

(22)	If the variation in the independent variables is relatively small, the difference in indexes 
generated by the various hedonic regression models considered in this section and the 
following two sections is likely to be small since virtually all of the models considered 
can offer roughly a linear approximation to the “truth”. But when the variation in the 
independent variables is large, as it is in the present housing context, the choice of 
functional form can have a substantial effect. Thus a priori reasoning should be applied 
to both the choice of independent variables in the regression as well as to the choice of 
functional form. For additional discussion on functional form issues, see Diewert (2003a).

standard log linear time dummy hedonic regression model is 
defined by the following system of regression equations: (16)
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n ASLp ετδγβα +++++=ln � (5.24)

t = 1,...,14; n = 1,...,N(t); 01 ≡t
where tt  is a parameter which shifts the hedonic surface in 
quarter t upwards or downwards as compared to the sur-
face in quarter 1. (17)

5.46	 It is easy to construct a price index using the log line-
ar time dummy hedonic model (5.24). Exponentiating both 
sides of equation (5.24), and neglecting the error term, yields 

)exp()][exp()][exp()])[exp(exp( tt
n

t
n

t
n

t
n ASLp τα δγβ= . If we  

could observe a property with the same characteristics in 
the base period 1 and in some comparison period )1(>t ,  
then the corresponding price relative (again neglecting 
error terms) would simply be equal to )exp( tt . For two 
consecutive periods t and t+1, the price relative (again ne-
glecting error terms) would equal )exp(/)exp( 1 tt tt + , and 
this can serve as the chain link in a price index. Figure 5.1 
shows the resulting index, labeled as 1HP  (hedonic index 
no. 1), and Table 5.1 lists the index numbers. The 2R  for 
this model was .8420, which is quite satisfactory for a he-
donic regression model with only three explanatory vari-
ables. (18) For later comparison purposes, note that the log 
likelihood was 1407.6.

5.47	 A problem with this model is that the underlying 
price formation model seems implausible: S and L inter-
act multiplicatively in order to determine the overall house 
price whereas it seems most likely that lot size L and house 
size S interact in an approximately additive fashion to de-
termine the overall house price.

5.48	 Another problem with the regression model (5.24) 
is that age is entered in an additive fashion. The problem 
is that we would expect age to interact directly with the 
structures variable S as a (net) depreciation variable and 
not interact directly with the land variable L, because land 
does not depreciate. In the following model, this direct in-
teraction of age with structures will be made.

(16)	The estimating equation for the pooled data set will include time dummy variables 
to indicate the quarters. For all the models estimated for the town of “A”, it is assumed 
that the error terms e

n
t are independently distributed normal variables with mean 0 

and constant variance. Maximum likelihood estimation is used in order to estimate the 
unknown parameters in each regression model. The nonlinear option in Shazam was 
used for the actual estimation.

(17)	The 15 parameters a, t 1,...,t 14 correspond to variables that are exactly collinear in the 
regression (5.24) and thus the restriction t1 = 0 is imposed in order to identify the 
remaining parameters.

(18)	Later on in this chapter and in Chapter 8, some hedonic regressions will be run that use 
prices 

t
np  as the dependent variables rather than the logs of the prices. To facilitate 

comparisons of goodness of fit across models, we will transform the predicted values 
for the log price models into predicted price levels by exponentiating the predicted 
prices and then calculating the correlation coefficient between these predicted price 
levels and the actual prices. Squaring this correlation coefficient gives us a levels type 
measure of goodness of fit for the log price models which is denoted by 2*R . For this 
particular model, 2*R = .8061.
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5.54	Using the data for the Dutch town of “A”, the es-
timated decade (net) depreciation rate was 1050.0ˆ =d  
(standard error 0.00374). If both sides of (5.27) were 
exponentiated and the error terms were neglected, the 
house price t

np  would equal )exp(][])[exp( * tt
n

t
n SL τα γβ , 

where *t
nS  denotes quality adjusted structures as defined 

by (5.26). So if we could observe a house with the same 
characteristics in two consecutive periods t and t+1, the 
corresponding price relative (neglecting error terms) 
would be equal to )exp(/)exp( 1 tt tt +  and this again can 
serve as the chain link in a price index; see Figure 5.1 and 
Table 5.1 for the resulting index, labeled 3HP . The 2R  for  
this model was .8599 (the levels measure of fit was 

2*R = .8880), which is an increase over models (5.25) and 
(5.26); the log likelihood was 1545.4, a big increase over 
the log likelihoods for the other two models (1407.6 and 
1354.9).

5.55	The house price series generated by the three 
log-linear time dummy regressions described in this sec-
tion, 1HP , 2HP  and 3HP , are plotted in Figure 5.1 along 
with the chained stratified sample mean Fisher index, 

FCHP . These four house price series are listed in Table 
5.1. All four indices capture the same trend but there can 
be differences of over 2 percent between them in some 
quarters. Notice that all of the indices move in the same 
direction from quarter to quarter with decreases in quar-
ters 4, 8, 12 and 13 except that 3HP  – the index that cor-
responds to the log log time dummy model – increases 
in quarter 12.

5.52	 Note that, given the depreciation rate δ, quality ad-
justed structures (adjusted for the aging of the structure) 
for each house n in each quarter t can be defined as follows:
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t
n SAS )1(* d−≡ � (5.26)

t = 1,...,14; n = 1,...,N(t)

The Log Log Time Dummy Model  
with Quality Adjustment  
of Structures for Age

5.53	 In the remainder of this section, quality adjusted 
(for age) structures, SA)1( d− , will be used as an explana-
tory variable, rather than the unadjusted structures area, 
S. The log log model is similar to the previous log linear 
model, except that now, instead of using L and SA)1( d−  
as explanatory variables in the regression model, the loga-
rithms of the land and quality adjusted structures areas are 
used as independent variables. Thus the log log time dummy 
hedonic regression model with quality adjusted structures is 
the following: (23)
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t = 1,...,14; n = 1,...,N(t); 01 ≡t

(23)	This hedonic regression model turns out to be a variant of McMillen’s (2003) consumer 
oriented approach to hedonic housing models. His theoretical framework draws on the 
earlier work of Muth (1971) and is outlined in Diewert, de Haan and Hendriks (2010). See 
also McDonald (1981).

Figure 5.1. Log-Linear Time Dummy Price Indices and the Chained Stratified Sample Mean Fisher  
Price Index
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Table 5.1. Log-Linear Time Dummy Price Indices and the Chained Stratified Sample Mean Fisher  
Price Index

Quarter PH1 PH2 PH3 PFCH

1 1.00000 1.00000 1.00000 1.00000
2 1.04609 1.04059 1.03314 1.02396
3 1.06168 1.05888 1.05482 1.07840
4 1.04007 1.03287 1.03876 1.04081
5 1.05484 1.05032 1.03848 1.04083
6 1.08290 1.07532 1.06369 1.05754
7 1.09142 1.08502 1.07957 1.07340
8 1.06237 1.05655 1.05181 1.06706
9 1.10572 1.09799 1.09736 1.08950

10 1.10590 1.10071 1.09786 1.11476
11 1.10722 1.10244 1.09167 1.12471
12 1.10177 1.09747 1.09859 1.10483
13 1.09605 1.08568 1.09482 1.10450
14 1.10166 1.09694 1.10057 1.11189

Source: Authors’ calculations based on data from the Dutch Land Registry

5.56	 Although model (5.27) performs the best of the 
simple hedonic regression models considered thus far, it has 
the unsatisfactory feature that the quantities of land and of 
quality adjusted structures determine the price of a property 
in a multiplicative manner. It is more likely that house prices 
are determined by a weighted sum of their land and quality 
adjusted structures amounts. In the following section, an ad-
ditive time dummy model will therefore be estimated. The 
expectation is that this model will fit the data better.

Time Dummy Hedonic 
Regression Models using 
Price as the Dependent 
Variable

The Linear Time Dummy Hedonic 
Regression Model

5.57	 There are reasons to believe that the selling price 
of a property is linearly related to the plot area of the prop-
erty plus the area of the structure due to the competitive 
nature of the house building industry. (24) If the age of the 
structure is treated as another characteristic that has an 

(24)	See Clapp (1980), Francke and Vos (2004), Gyourko and Saiz (2004), Bostic, Longhofer 
and Redfearn (2007), Davis and Heathcote (2007), Francke (2008), Diewert (2009b), Koev 
and Santos Silva (2008), Statistics Portugal (2009), Diewert, de Haan and Hendriks (2010), 
Diewert (2010) and Chapter 8 below.

importance in determining the price of the property, then 
the following linear time dummy hedonic regression model 
might be an appropriate one:
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t = 1,...,14; n = 1,...,N(t); 01 ≡t

5.58	 The above linear regression model was run using 
the data for the town of “A”. The 2R  for this model was 
.8687, much higher than those obtained in the previous 
regressions (25); the log likelihood was -10790.4 (which 
cannot easily be compared to the previous log likelihoods 
since the dependent variable has changed from the loga-
rithm of price to just price (26).

5.59	 Using the linear model defined by equations (5.28) 
to form an overall house price index is a bit more difficult 
than using the previous log-linear or log log time dummy 
regression models. In the previous section, holding char-
acteristics constant and neglecting error terms, the relative 
price for the same house over any two periods turns out to 
be constant, leading to an unambiguous overall index. In 
the present situation, holding characteristics constant and 
neglecting error terms, the difference in price for the same 
house turns out to be constant, but the relative prices for 
different houses will not in general be constant. Therefore, 
an overall index will be constructed which uses the prices 
generated by the estimated parameters for model (5.28) 

(25)	However, recall that the levels adjusted measure of fit for the log log model described 
by (5.27) was .8880, which is higher than .8687.

(26)	Marc Francke has pointed out that it is possible to compare log likelihoods across two 
models where the dependent variable has been transformed by a known function 
in the second model; see Davidson and McKinnon (1993; 491) where a Jacobian 
adjustment makes it possible to compare log likelihoods across the two models.
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to SA)1( d−  instead of having A and S as completely inde-
pendent variables that enter into the regression in a linear 
fashion.

5.62	 The results for this model were a clear improve-
ment over the results of model (5.28). The log likelihood 
increased by 92  to -10697.8  and the 2R  increased to 
.8789  from the previous .8687. The estimated decade de-
preciation rate was 1119.0ˆ =d  (0.00418), which is reason-
able as usual. This linear regression model has the same 
property as the model (5.28): house price differences are 
constant over time for all constant characteristic models 
but house price ratios are not constant. So again an overall 
index will be constructed which uses the prices generated 
by the estimated parameters in (5.29) and evaluated at the 
sample average amounts of L, S and the average age of a 
house A. The resulting quarterly house prices for this “av-
erage” model were converted into an index, 5HP , which is 
listed in Table 5.2 and charted in Figure 5.2. For compari-
son purposes, 3HP  (the time dummy Log Log model index) 
and FCHP  (the chained stratified sample mean Fisher in-
dex) will be charted along with 4HP  and 5HP . The preferred 
indices thus far are FCHP  and 5HP .

5.63	 It can be seen that again, all four indices capture 
the same trend but there can be differences of over 2 per-
cent between the various indices for some quarters. Note 
that all of the indices move in the same direction from 
quarter to quarter with decreases in quarters 4, 8, 12 and 
13, except that 3HP  increases in quarter 12.

and evaluated at the sample average amounts of L, S and the 
sample average age of a house A. (27) The resulting quarterly 
prices for this “average” house were converted into an index, 

4HP , which is listed in Table 5.2 and charted in Figure 5.2.

5.60	 The hedonic regression model defined by (5.28) is 
perhaps the simplest possible one but it is a bit too simple 
since it neglects the fact that the interaction of age with the 
selling price of the property takes place via a multiplica-
tive interaction with the structures variable and not via a 
general additive factor. In what follows, model (5.28) is re-
estimated using quality adjusted structures as an explana-
tory variable rather than just entering age A as a separate 
stand alone characteristic.

The Linear Time Dummy Model  
with Quality Adjusted Structures 

5.61	 The linear time dummy hedonic regression model 
with quality adjusted structures is described by
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t = 1,...,14; n = 1,...,N(t); 01 ≡t

This is the most plausible hedonic regression model so far. 
It works with quality adjusted (for age) structures S* equal 

(27)	The sample average amounts of L and S were 257.6 m2 and 127.2 m2 respectively 
and the average age of the detached dwellings sold over the sample period was  
1.85 decades. 

Figure 5.2. Linear Time Dummy Price Indices, the Log Log Time Dummy Price Index and the Chained 
Stratified Sample Mean Fisher Price Index
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5.64	 A problem with the hedonic time dummy regres-
sion models considered thus far is that the prices of land 
and quality adjusted structures are not allowed to change 
in an unrestricted manner from period to period. The class 
of hedonic regression models to be considered in the fol-
lowing section does not suffer from this problem.

Hedonic Imputation 
Regression Models

5.65	 The theory of hedonic imputation indices explained 
earlier is applied to the present situation as follows. For 
each period, run a linear regression of the following form:
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n SALp εdgβa +−++= )1( � (5.30)

t = 1,...,14; n = 1,...,N(t)

Using the data for the town of “A”, there are only four pa-
rameters to be estimated for each quarter: ta , tβ , tg  and 

td  for t = 1,...,14. Note that (5.30) is similar in form to the 
model defined by equations (5.29), but with some signifi-
cant differences:

•	 Only one depreciation parameter is estimated in the mod-
el defined by (5.29) whereas in the present model, there 
are 14 depreciation parameters; one for each quarter.

•	 Similarly, in model (5.29), there was only one a , β  and 
g  parameter whereas in (5.30), there are 14 ta , 14 tβ  
and 14 tg  parameters to be estimated. On the other 
hand, model (5.29) had an additional 13 time shifting 
parameters (the tt ) that required estimation.

Thus the hedonic imputation model involves the estima-
tion of 56 parameters, the time dummy model only 17, so it 
is likely that the hedonic imputation model will fit the data 
much better.

5.66	 In the housing context, precisely matched models 
across periods do not exist; there are always depreciation 
and renovation activities that make a house in the exact 
same location not quite comparable over time. This lack of 
matching, say between quarters t and t+1, can be overcome 
in the following way: take the parameters estimated using 
the quarter t+1 hedonic regression and price out all of the 
housing models (i.e., sales) that appeared in quarter t. This 
generates predicted quarter t+1 prices for the quarter t mod-
els, )(ˆ 1 tpt

n
+ , as follows:
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t = 1,...,13; n = 1,...,N(t)

where tâ , tβ̂ , tĝ  and td̂  are the parameter estimates for 
model (5.30) for t = 1,...,14. Now we have a set of pseudo 
matched quarter t+1 prices for the models that appeared in 
quarter t and the following Laspeyres type hedonic imputa-
tion (or pseudo matched model) index, going from quarter t 
to t+1, can be formed: (28)
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t = 1,...,13

(28)	Due to the fact that the regressions defined by (5.30) have a constant term and are 
essentially linear in the explanatory variables, the sample residuals in each of the regressions 
will sum to zero. Hence the sum of the predicted prices will equal the sum of the actual 
prices for each period. Thus the sum of the actual prices in the denominator of (5.32) will 
equal the sum of the corresponding predicted prices and similarly, the sum of the actual 
prices in the numerator of (5.34) will equal the corresponding sum of the predicted prices.

Table 5.2. Linear Time Dummy Price Indices, the Log Log Time Dummy Price Index and  the Chained 
Stratified Sample Mean Fisher Price Index

Quarter PH4 PH5 PH3 PFCH

1 1.00000 1.00000 1.00000 1.00000
2 1.04864 1.04313 1.03314 1.02396
3 1.06929 1.06667 1.05482 1.07840
4 1.04664 1.03855 1.03876 1.04081
5 1.05077 1.04706 1.03848 1.04083
6 1.08360 1.07661 1.06369 1.05754
7 1.09593 1.09068 1.07957 1.07340
8 1.06379 1.05864 1.05181 1.06706
9 1.10496 1.09861 1.09736 1.08950

10 1.10450 1.10107 1.09786 1.11476
11 1.10788 1.10588 1.09167 1.12471
12 1.10403 1.10044 1.09859 1.10483
13 1.09805 1.08864 1.09482 1.10450
14 1.11150 1.10572 1.10057 1.11189

Source: Authors’ calculations based on data from the Dutch Land Registry
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5.68	 Once the above Laspeyres and Paasche imputa-
tion price indices have been calculated, the corresponding 
Fisher type hedonic imputation index going from period t to 
t+1 can be formed by taking the geometric average of the 
two indices defined by (5.32) and (5.34):

	 [ ] 2/11,1,1, +++ ≡ tt
HIP

tt
HIL

tt
HIF PPP � (5.35)

t = 1,...,13

5.69	 The resulting chained Laspeyres, Paasche and 
Fisher imputation price indices, HILP , HIPP  and HIFP , based 
on the data for the town of “A”, are plotted below in Figure 
5.3 and are listed in Table 5.3. The three imputation indi-
ces are amazingly close. The Fisher imputation index is our 
preferred hedonic price index thus far; it is better than the 
time dummy indices because imputation allows the price 
of land and of quality adjusted structures to change in-
dependently over time, whereas the time dummy indices 
shift the hedonic surface in a parallel fashion. The empiri-
cal results indicate that, at least for the present data set for 
the town of “A”, the Laspeyres imputation index provides 
a close approximation to the preferred Fisher imputation 
index.

As mentioned earlier, the quantity that is associated with 
each price is 1 as each housing unit is basically unique and 
can only be matched through the use of a model.

5.67	 The same method can be applied going backwards 
from the housing sales that took place in quarter t+1; take 
the parameters for the quarter t hedonic regression and 
price out all of the housing models that appeared in quar-
ter t+1 and generate predicted prices, )1(ˆ +tpt

n , for these 
t+1 models:
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t = 1,...,13; n = 1,...,N(t+1)

Now we have a set of “matched” quarter t prices for the 
models that appeared in period t+1 and we can form the 
following Paasche type hedonic imputation (or pseudo 
matched model) index, going from quarter t to t+1:

	
∑

∑
+

=

+

=

+

+

+
≡ )1(

1

)1(

1

1

1,

)1(ˆ1

1
tN

n

t
n

tN

n

t
n

tt
HIP

tp

p
P � (5.34)

t = 1,...,13

Figure 5.3. Chained Laspeyres, Paasche and Fisher Hedonic Imputation Price Indices
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Table 5.3. Chained Laspeyres, Paasche and Fisher Hedonic Imputation Price Indices

Quarter PHIL PHIP PHIF

1 1.00000 1.00000 1.00000
2 1.04234 1.04479 1.04356
3 1.06639 1.06853 1.06746
4 1.03912 1.03755 1.03834
5 1.04942 1.04647 1.04794
6 1.07267 1.07840 1.07553
7 1.08923 1.10001 1.09460
8 1.05689 1.06628 1.06158
9 1.09635 1.10716 1.10174

10 1.09945 1.10879 1.10411
11 1.11062 1.11801 1.11430
12 1.10665 1.11112 1.10888
13 1.09830 1.09819 1.09824
14 1.11981 1.11280 1.11630

Source: Authors’ calculations based on data from the Dutch Land Registry

Figure 5.4. The Fisher Imputation Price Index, the Chained Stratified Sample Mean Fisher Price Index,  
the Linear Time Dummy Price Index and the Log Log Time Dummy Price Index
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5.70	 To conclude: our two “best” indices are the Fisher 
imputation index HIFP  and the stratified chained Fisher in-
dex FCHP . Overall, the imputation index HIFP  should prob-
ably be preferred to FCHP  since the stratified sample indices 
will have a certain amount of unit value bias which will 
most likely be greater than any functional form bias in HIFP .  
These two “best” indices are plotted in Figure 5.4  along 

with the log-log time dummy index 3HP  and the linear 
time dummy index with quality adjusted structures 5HP . 
All of the price indices except 3HP  show downward move-
ments in quarters, 4, 8, 12 and 13 and upward movements 
in the other quarters; 3HP  moves up in quarter 12 instead 
of falling like the other indices.
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