
11Empirical Examples

Empirical Examples



140

Empirical Examples11

Handbook on Residential Property Prices Indices (RPPIs)

as agricultural land, commercial properties, and units 
found in multi-unit dwellings, which are considered out-
side the scope of the intended index. If this is the case, then 
these observations need to be excluded from the sample 
when measuring price trends for specific types of proper-
ties. Outliers should also be identified and removed from 
the sample if it is believed that they may skew or distort in 
any other way the outcome.

11.6	 A simple numerical example using 5 and 7 price 
observations respectively for periods 1 and 2 (3) will illus-
trate the approach used for measuring the progression of 
the simple mean of house prices for a given geographical 
area, usually for a city or other well-defined area. (4)

Period 1 house prices and mean

KKKKKK 3705/)402366378352350( =++++

Period 2 house prices and mean

KKKKKKKK 3887/)450400380395382350360( =++++++

KKKKKKKK 3887/)450400380395382350360( =++++++

Once the average prices for each period, e.g., a month, a 
quarter or a year, are obtained, it is then straightforward to 
calculate the period-to-period progression (typically in per 
cent) between $370K and $388K. For instance, in this spe-
cific example, average house prices have increased about 
5 % over both periods.

11.7	 The presence of outliers is mitigated when the me-
dian price of properties in the sample is used instead of 
the mean price. For instance, if one or more very expen-
sive houses are sold in a given period, the resulting average 
price will likely not be typical of houses that on the market 
at that time. As was discussed in Chapter 4, the median ap-
proach does not however completely control for period-to-
period compositional shifts in the sample of houses sold. 
In spite of this shortcoming the median is nevertheless a 
very popular residential property price indicator mainly 
because it is simple to compile and is not very data inten-
sive, thus resulting in a timely indicator. Moreover, its in-
terpretation is straightforward.

11.8	 Based on the same data used for calculating the 
mean, the median prices from the example samples for pe-
riods 1 and 2 are found to be respectively $366K and $382K. 
Consequently, the median house price has increased 4.4 % 
over these two periods.

11.9	 The above exercise is repeated below but with a 
more extensive dataset containing 5787  sampled price 
observations for single-family houses drawn from actual 

(3)	 Since the number of transactions will likely vary from period to period, the number of 
price observations in the sample for each period will also vary.

(4)	 Note that most central tendency measures of house prices when published do not 
typically include indicators of statistical quality such as the coefficient of variation or 
standard deviation.

Introduction
11.1	 The purpose of this chapter is to provide addi-

tional empirical examples dealing with the construction of 
house price indices based on the methods that were out-
lined in Chapters 5-9. These are broadly defined as follows: 
measures of central tendency (mean or median), hedonic 
regression methods, repeat sales methods, and methods 
based on appraisal data. The following three sections of this 
chapter illustrate how the first three classes of methods can 
be implemented on very small data sets. Hopefully, work-
ing through these simple examples will enable readers to 
more readily follow the rather terse algebraic descriptions 
of the various methods that were provided in Chapters 5-9.

11.2	 The following section also illustrates various 
methods that can be used to aggregate regional house price 
indices into overall house price indices. This topic was not 
covered in any detail in other chapters of this Handbook.

Central Tendency Methods 
and Stratification Methods

11.3	 Central price tendency estimates, such as mean 
and median prices, for constructing an RPPI are among 
the least data intensive of all the methods currently avail-
able to compilers. The basic mean or median methods only 
need the selling prices of the properties in a given location 
to build a price index. Thus location information will be 
required. In addition, it is usual to stratify by the type of 
dwelling unit and if this is the case, then information on 
the type of dwelling unit will also be required.

11.4	 As a first exercise, an index is constructed using the 
mean price. It consists in calculating the simple average of 
the observed prices for a sample of houses in a given period 
and for a given geographical area. The indicator, which can 
be expressed in monetary terms or in index form, is then 
measured simply as the change (in per cent usually) of the 
average price of the sampled units between two periods. (1)

11.5	 It is important that the sample of houses drawn for 
calculating the price indicator be representative of the tar-
get universe. Therefore some data editing may be required, 
the extent of which will depend on the instructions that the 
data provider received from the compiler and his willing-
ness and ability to deliver the data according to the com-
piler’s stated criteria. (2) For example, the sample of prices 
initially collected may include certain property types, such 

(1)	 Regardless of the form used, expressed either in terms of values or indices, the per cent 
change will be the same.

(2)	 Of course the particular circumstances will dictate the extent of the data cleaning. If the 
principal user is also managing the collection of information, then the survey will be 
tailored to his or her needs and the extent of the cleaning will likely be less extensive.
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that were sold that year. A similar graph constructed for 
the remaining years for this example yields similar price 
distributions. (7)

11.10	As for the annual per cent changes, they vary ac-
cording to the measure of central tendency that is used 
here. (8) In some years, the difference in the result between 
the median and mean can be quite small. For instance, in 
2002 the difference is only one tenth of a percentage point 
(8.2 % vs. 8.1 %) with mean recording a slightly higher 
increase. In other years, such as in 2008, the difference is 
more pronounced such as in 2008 when the annual change 
measured using the median price increased by 6.8 % com-
pared to an increase in the mean price of 5.2 %.

(7)	 With these particular data, the mean was always greater than the corresponding 
median. This result need not always hold, particularly with very small samples. 

(8)	 Typically, the mean price will be higher than the corresponding median price. However, 
when mean and median indices are formed, there is no presumption that the mean 
index will increase more rapidly than the median index.

transactions over many years for a small municipality. (5) 
Some descriptive statistics are presented in Table 11.1. 
Note that in this particular case, the mean price of houses 
sold in any year is always higher than the corresponding 
median. For instance, in 2002 the mean is $249 702 against 
236 000 for the median; in 2008 the mean is $365 195 against 
$340 600 for the median. Since for any given year the sam-
ple is characterized by the sale of some higher priced units, 
this result is to be expected. In fact, the distribution of 
prices is right-skewed with a skewness coefficient ranging 
from 1.44 to 1.87 over the various years. (6) Chart 11.1 il-
lustrates the distribution of prices in 2008 for the houses 

(5)	 Note that the required data is obtained for calculating either the median or mean 
prices; the steps involved are quite simple. Most statistical software packages can do 
the entire exercise quite rapidly with little intervention from the compiler.

(6)	 Skewness is a measure of the asymmetry of a distribution. When the degree of skewness 
is zero this means that the distribution is symmetric around its mean. A positive skew 
means that a relatively high number of observations from the sample is concentrated 
on the left of the centre point and vice versa.

Table 11.1. Means, Medians, Percent Changes, Standard Deviations, and Skewness

2002 2003 2004 2005 2006 2007 2008

Observations 777 804 894 808 834 874 796
Standard deviation 64 130 62 042 73 405 76 432 84 587 96 559 96 152
Skewness 1.63 1.51 1.71 1.87 1.58 1.46 1.44
Mean ($) 249 702 270 174 290 686 299 087 315 099 347 009 365 195
Per cent change 8.2% 7.6% 2.9% 5.4% 10.1% 5.2%
Median ($) 236 000 255 000 273 000 280 000 292 000 319 000 340 600
Per cent change 8.1% 7.1% 2.6% 4.3% 9.2% 6.8%

Source: Authors’ calculations based on MLS® data for a Canadian city

Chart 11.1: Distribution of House Prices in 2008
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sample of transactions in any given period, thus resulting 
in some sampling bias. The objective is therefore to design 
the individual strata in such a way that the homogeneity 
of price determining characteristics is balanced against a 
sample size that is sufficiently robust to yield a reliable and 
representative measure of changes in house prices.

11.14	As previously mentioned, the construction of sub-
market (or stratum) price indices that are then aggregated 
to the level of the market of interest will often use median 
prices in practice. Constructing a mixed-adjusted price in-
dex consists in first defining the stratum. The second step is 
to calculate the median price for houses transacted within 
the stratum for the period in question. Thirdly, the median 
prices for all sub-markets must be weighted together into 
an aggregate price measure for the market under study, 
which likely will be a city or even the country as a whole.

11.15	The following provides a simple example of the 
procedure and steps involved with calculating a mixed-
adjustment price index for residential properties. (9)

•	 Step 1: Define the stratum. For the purpose of this exer-
cise, the stratum is a geographical subdivision of a city 
such as the west-zone or centre town. There is no strict 
rule for delineating the stratum in question but geogra-
phy appears to be a popular and obvious choice which 
can, if data permitting, be combined with other housing 
features such as by house type or according to number of 
bedrooms in order to narrow the stratum. (10)

•	 Step 2: Calculate the median price for a stratum such 
as a neighbourhood for the relevant period (month or 
quarter). It is assumed that the median will be the repre-
sentative price of all sales in that stratum. However, the 
mean price could alternatively be used. Repeat this step 
for future periods.

•	 Step 3: Estimate the “average” price of houses sold for a 
given period by calculating a sales weighted median of 
the neighbourhood or stratum prices. (11)

11.16	Suppose that data on house sales for two periods 
(0 and 1) and three geographical regions or neighbourhoods 
(A, B and C) have been collected. Suppose prices are meas-
ured in thousands of dollars and that for region A in period 
0, there were 4 sales with prices 290, 450, 250 and 310. Thus, 
the mean price for this period was 325, the median price was 
300 (the arithmetic average of the two middle prices 290 and 
310) and the total expenditure was 1300. For period 1, re-
gion A had 5 sales of 300, 500, 250, 400 and 275. Thus, the 
mean and median price for this period was 345 and 300 re-
spectively and the total period 1 expenditure in region A was 
1725. For region B, there was only one sale in each period: 

(9)	 This example is loosely based on an example in McDonald and Smith (2009).
(10)	This example uses the neighbourhood as the sub-stratum but in reality it can be any 

geographical area for which the compiler is confident that a sufficiently large enough 
sample of transactions is available today and in the future to generate a reliable 
representative price.

(11)	This is assuming that the compiler is using sales as the basis for the weighting.

11.11	As is well known, location plays an important role 
in the determination of not only the level of house prices 
but also in their behaviour over time. Therefore, to im-
prove the reliability of the indicator, a stratified or mix-ad-
justment approach is routinely recommended, provided of 
course that the information for segmenting the market (or 
sample of transactions) is readily available. Geographical 
stratification has the advantage of reducing the effects of 
period-to-period compositional shifts in the housing units 
that characterize the simple mean and median methods. A 
popular approach to segmenting the housing market is to 
group houses according to geographical area, thus ensuring 
a certain degree of homogeneity of the units found within 
the strata; other locational effects on house prices are also 
minimized by this method. Stratification can also benefit 
users by providing them with additional house price indi-
cators for various sub-markets, such as by neighbourhood 
or type of house. Goodman and Thibodeau (2003) add that 
there is also a practical reason for grouping house by loca-
tion in that geographic variables are almost always includ-
ed in databases on housing transactions. This information 
should, when available, be leveraged since stratification 
makes efficient use of these data.

11.12	Some countries, such as Australia (Branson 2006), 
have taken advantage of the traditionally strong relation-
ship between price and location that typifies residential 
real estate by stratifying the sample of properties according 
to geographical area or other submarket structures. This 
can be a viable, albeit imperfect, alternative (or compro-
mise solution) for measuring constant quality price change 
in the absence of the resources and the data needed to ap-
ply some of the more sophisticated methods for construct-
ing an RPPI such as hedonic regressions. In fact, Prasad 
and Richards (2008) construct a measure of median house 
prices for six Australian capital cities where the markets are 
stratified according to long-term price movements. Using 
a database of over 3 million observations, the authors find 
that their approach to measuring changes in house prices, 
(i.e., using the median approach but stratified by zone as 
defined by long term price trends), will generate results 
that are comparable to those using more sophisticated and 
data intensive methods such as hedonics or repeat sales.

11.13	Stratifying by geography thus likely ensures that 
the cluster of observations within each group (or stratum) 
is more homogeneous than observations from the entire 
population. Stratification can be extended to include, in 
addition to geography, other price determining factors 
such as house type and/or number of bedrooms. Grouping 
of houses by geography and other criteria will result in a 
sample of even more homogeneous properties, which is a 
desirable outcome for mitigating fluctuations in the index 
that are caused by compositional shifts in the sample that 
occur over time. One potential drawback however with 
this approach is that the compiler must be aware that a 
too finely defined stratum can sometimes generate a thin 
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11.17	Suppose that the median price in each region cor-
responds to houses of comparable quality over the two pe-
riods being compared. Since it is desirable to have price 
times volume equal to expenditure in each period for each 
region, once a constant quality price concept has been cho-
sen, the corresponding volume should equal expenditures 
divided by price. Using the median price in each region 
as a constant quality price for each time period leads to 
the data on expenditures (the tv ), prices (the tp ) and vol-
umes or implied quantities ttt pvq /=  that are listed in 
Table 11.2 below.

500  in period 0  and 400  in period 1. Thus, the mean and 
median price in period 0 for region B was 500, which was 
also equal to expenditure in this period. The mean and me-
dian price in period 1 for region B was 400, which was also 
equal to expenditure in this period. For region C, there were 
3 sales in each period. For period 0, the sales were equal to 
200, 300 and 175 and so the median price was 200, the mean 
price was 225  and expenditure was 675. For period 1, the 
sales in region C were equal to 250, 350 and 225 and so the 
median price was 250, the mean price was 275 and expendi-
ture was 825. These are the basic data for the example.

Table 11.2. Regional Expenditures, Prices and Volumes (Implicit Quantities) Using Median Prices  
as the Regional Prices

Period
t
Av

t
Bv t

Cv
t
Ap

t
Bp

t
Cp

t
Aq

t
Bq

t
Cq

0 1300 500 675 300 500 200 4.333 1.000 3.375
1 1725 400 825 300 400 250 5.750 1.000 3.300

Source: Authors’ calculations based on MLS® data for a Canadian city

Note that the regional price indices for period 1 are equal 
to / 01 =AA pp 1.0 , 80.0/ 01 =BB pp , and 25.1/ 01 =CC pp  for 
regions A, B and C respectively. Thus there are widely dif-
fering house price inflation rates in the three regions. 

11.18	At this point, we can apply normal index number 
theory to the problem of aggregating up the regional price 
movements into an overall house price inflation rate. For 
example, Laspeyres and Paasche overall price indices, LP  
and PP , for period 1 can be constructed. The formulae for 
these indices are as follows:

][][ 000000010101
CCBBAACCBBAAL qpqpqpqpqpqpP ++++≡ � (11.1)

][][ 101010111111
CCBBAACCBBAAP qpqpqpqpqpqpP ++++≡ � (11.2)

11.19	The CPI Manual (2004) recommends the con-
struction of superlative indices if price and quantity data 
are available for the periods under consideration, as they 
are in the present situation. Two such superlative indices 
are the Fisher ideal index FP  and the Törnqvist-Theil index 

TP , defined as follows for the period 1 overall indices:

[ ] 2/1
PLF PPP ≡ � (11.3)

)]/ln()(5.0)/ln()(5.0)/ln()(5.0exp[ 011001100110
CCCCBBBBAAAAT ppssppssppssP +++++≡

)]/ln()(5.0)/ln()(5.0)/ln()(5.0exp[ 011001100110
CCCCBBBBAAAAT ppssppssppssP +++++≡

	 )]/ln()(5.0)/ln()(5.0)/ln()(5.0exp[ 011001100110
CCCCBBBBAAAAT ppssppssppssP +++++≡ � (11.4)

where the period t shares of sales in regions A, B and C are 
given by )/( t

C
t
B

t
A

t
A

t
A vvvvs ++≡ , )/( t

C
t
B

t
A

t
B

t
B vvvvs ++≡  and 

)/( t
C

t
B

t
A

t
C

t
C vvvvs ++≡ , respectively. Note that the Fisher 

(1922) index FP  is equal to the geometric average of the 
Laspeyres and Paasche indices, LP  and PP  and that the 
Törnqvist-Theil index TP  is equal to a share weighted 

geometric average of the regional price indices, 01 / AA pp , 
01 / BB pp  and 01 / CC pp , where the weights are the arithmetic 

averages of the period 0 expenditure shares, 0
As , 0

Bs  and 0
Cs ,  

and the period 1 expenditure shares, 1
As , 1

Bs  and 1
Cs .

11.20	The results for the four indices defined by (11.1)-
(11.4) are listed in Table 11.3 below. It should be noted that 
the two superlative indices, FP  and TP , are fairly close to 
each other while the Laspeyres index LP  lies above these 
superlative indices and the Paasche index PP  lies below 
them. This is a typical empirical result.

11.21	Organizations that compile residential property 
price indices tend to use somewhat different formulas 
when aggregating over regions. A common form of ag-
gregation is to use a weighted average of the regional price 
indices to form an overall index, using the sales weights 
of period 0 (or some average of sales weights that pertain 
to periods prior to period 0). Denote the share weighted 
index that uses the sales weights of period 0 by 0P  and the 
share weighted index that uses the sales weights of period 
1 by 1P . The period 1 values (12) for the indices 0P , 1P  and 
the arithmetic average of 0P  and 1P , denoted by AP , are 
defined as follows:

)/()/()/( 010010010
0 CCCBBBAAA ppsppsppsP ++≡ � (11.5)

)/()/()/( 011011011
1 CCCBBBAAA ppsppsppsP ++≡ � (11.6)

10 5.05.0 PPPA +≡ � (11.7)

(12)	The period 0 values for all of the indices defined in this section are set equal to 1.
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1P  is about 1.77 percentage points above FP . This result 
is not unexpected; the indices 0P  and 1P  do not generally 
closely approximate superlative indices and so their use is 
not recommended.

The above three indices are also listed in Table 11.3. (13) It 
can be seen that 0P  is equal to LP  and is about 0.26 per-
centage points above the Fisher index FP  in period 1, while 

(13)	Fisher (1922; 466) showed that P
0
 defined by (11.5) is equal to the Laspeyres index P

L
 

defined by (11.1). Fisher also attributed the index P
1
 defined by (11.6) to Palgrave.

Table 11.3. Overall House Price Indices using Median Prices and Alternative Formulae to Aggregate  
over Regions A, B and C

Period FP TP LP PP 0P 1P AP GLP GPP

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 1.02515 1.02425 1.02778 1.02253 1.02778 1.04280 1.03529 1.01590 1.03267

Source: Authors’ calculations based on MLS® data for a Canadian city

11.22	Two additional indices are listed in Table 11.3: the 
geometric Laspeyres and Paasche price indices, GLP  and GPP . 
The period 1 values for these indices are defined as follows:

)]/ln()/ln()/ln(exp[ 010010010
CCCBBBAAAGL ppsppsppsP ++≡

	 )]/ln()/ln()/ln(exp[ 010010010
CCCBBBAAAGL ppsppsppsP ++≡ � (11.8)

)]/ln()/ln()/ln(exp[ 011011011
CCCBBBAAAGP ppsppsppsP ++≡

	
)]/ln()/ln()/ln(exp[ 011011011

CCCBBBAAAGP ppsppsppsP ++≡ � (11.9)

Thus, the period 1 values for each of these two indices are 
equal to share weighted geometric averages of the regional 
price indices, 01 / AA pp , 01 / BB pp  and 01 / CC pp , where GLP  
uses the regional share weights pertaining to period 0, 0

As , 
 0

Bs  and 0
Cs , and GPP  uses the regional share weights per-

taining to period 1, 1
As , 1

Bs  and 1
Cs . From Table 11.3 it can 

be seen that the geometric Laspeyres index GLP  is approxi-
mately 1 percentage point below the superlative indices FP  
and TP  while the geometric Paasche index GPP  is approxi-
mately 1 percentage point above the superlative indices. (14) 

(14)	It can be verified that the geometric mean of P
GL

 and P
GP

 is exactly equal to P
T
. Thus if 

P
GL

 is below P
T
, then P

GP
 will necessarily be above P

T
.

Hence, the use of the geometric Laspeyres or Paasche 
formulae cannot be recommended when constructing 
aggregates of regional price indices; these formulae are 
unlikely to closely approximate a superlative index, which 
can readily be constructed using regional data on house 
price sales.

11.23	The above methods for aggregating over re-
gional price indices assumed that median prices in each 
region correspond to houses of comparable quality over 
the two periods being compared. Now suppose that in-
stead of using median prices in each region to represent 
constant quality house prices, it was decided to use mean 
prices in each region. Again, since it is desirable to have 
price times volume equal to expenditure in each period 
for each region, once it is decided to use mean prices 
as the constant quality a price concept, the correspond-
ing volume should equal expenditures divided by price. 
Thus using the mean price in each region as a constant 
quality price for each time period leads to the data on 
regional expenditures (the tv ), prices (the tp ) and vol-
umes (or implied quantities ttt pvq /= ) that are listed in  
Table 11.4 below.

Table 11.4. Regional Expenditures, Prices and Volumes (Implicit Quantities) Using Mean Prices  
as the Regional Prices

Period t
Av

t
Bv

t
Cv

t
Ap

t
Bp

t
Cp

t
Aq

t
Bq

t
Cq

0 1300 500 675 325 500 225 4 1 3
1 1725 400 825 345 400 275 5 1 3

Source: Authors’ calculations based on MLS® data for a Canadian city
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11.24	Using means instead of medians as the con-
stant quality price in each region changes the regional 
price indices. The mean-based period 1  regional price 
indices are equal to 06154.1325/345/ 01 ==AA pp , 

80.0500/400/ 01 ==BB pp , and 22.1225/275/ 01 ==CC pp  
for regions A, B and C respectively. Again, there are widely 

differing house price inflation rates in the three regions 
when mean prices are used in place of median prices.

11.25	Using means instead of medians, the various over-
all price indices defined by formulae (11.1) to (11.9) can be 
calculated. The following counterpart to Table 11.3  is ob-
tained using these formulae applied to the data in Table 11.4.

Table 11.5. Overall House Price Indices using Mean Prices and Alternative Formulae to Aggregate  
over Regions A, B and C  

Period FP TP LP PP 0P 1P AP GLP GPP

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 1.05305 1.05222 1.05253 1.05357 1.05253 1.07101 1.06177 1.04187 1.06267

Source: Authors’ calculations based on MLS® data for a Canadian city

It can be seen that the use of mean prices instead of median 
prices for each region has led to very different indices; the 
superlative indices FP  and TP  are now about 3 percentage 
points higher in period 1. However, the use of mean prices 
has led to Laspeyres and Paasche indices, LP  and PP , that 
are fairly close to their superlative counterparts. Since the 
base period share weighted index 0P  is numerically equal to 

LP , 0P  is also fairly close to FP  and TP . However, the other 
two shared weighted indices, 1P  and AP , are well above the 
superlative indices. Finally, the Geometric Laspeyres index, 
GLP , is well below TP  and the Geometric Paasche index, GPP ,  

is well above TP . In any case, the use of mean prices in the 
housing context is not recommended since the mean price 
of a house in a region is unlikely to hold the quality of the 
houses constant over time.

Hedonic Regression 
Methods

11.26	Chapter 5 discusses the use of hedonic techniques 
for calculating house price indices. There are various ways 
of applying this technique when calculating price indices 
in general and residential property price indices in particu-
lar. The handbook presents three variants of the hedonic 
approach. These are: the time dummy variable method, 
the characteristics prices (or imputation) method, and 
the stratified hedonic method. Compared to the other ap-
proaches, all these hedonic methods are typically more 
data intensive, often requiring more information compared 
to the other approaches for constructing constant quality 
house price indices. This is because, in addition to data on 

prices, some pertinent characteristics (both structural and 
environmental) for each observation that is used in the re-
gression are needed with hedonic methods. In principle, 
the more detailed the set of characteristics is and the larger 
the sample of housing units, the more reliable and accurate 
will be the resulting price index. (15)

11.27	A hedonic model expresses the price of a good as 
a function of its price-determining characteristics (or at-
tributes). Chapter 5 covered two frequently used functional 
forms, which are the linear model and the logarithmic- 
linear (or semi-log) model, although other options (e.g., the 
Box-Cox technique) are often also treated in the literature, 
they are not covered here. The semi-log form is conveni-
ent because the interpretation of the regression coefficients 
is straightforward: once multiplied by 100, the coefficients 
can be interpreted as the percent change in the price of the 
house that results from a unit change in the explanatory 
variable.

11.28	To illustrate as plainly as possible how the various 
hedonic house price indices are constructed, the extensive 
version of the dataset used for calculating the mean and 
median prices above will also be consulted for the follow-
ing examples. To simplify the presentation, the number of 
price-determining characteristics will be limited to four 
(continuous) variables. These are: lot size (land), number 
of bedrooms (rooms), number of bathrooms (bath), and 
age (age). The initial results for a regression using OLS 
with a semi-log functional form for a single year (2008) are 
summarised in Table 11.6.

(15)	Although most hedonic regressions on house prices in the literature will often use 
many more explanatory variables, some studies and the examples in Chapter 5 show 
that reliable hedonic price indices can be obtained with as few as four independent 
variables.
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Table 11.6. Log-linear Regression Results for a Simple Example

	 Source |	 SS	 df	 MS	 Number of obs	 =	 796
_____________________________________________	 F( 4, 791)	 =	 156.02
	 Model |	 20.0634692	 4	 5.0158673	 Prob > F	 =	 0.0000
	 Residual |	 25.4293063	 791	 .032148301	 R-squared	 =	 0.4410
_____________________________________________	 Adj R-squared	 =	 0.4382
	 Total |	 45.4927755	 795	 .057223617	 Root MSE	 =	 .1793

	 lprice |	 Coef.	 Std. Err.	 t	 P>|t|	 [95% Conf. Interval]

	 rooms |	 .1156791	 .0098159	 11.78	 0.000	 .0964108	 .1349473
	 bath |	 .0999522	 .0095996	 10.41	 0.000	 .0811086	 .1187958
	 age |	 -.002561	 .0004173	 -6.14	 0.000	 -.0033801	 -.001742
	 land |	 9.39e-06	 1.28e-06	 7.31	 0.000	 6.87e-06	 .0000119
	 _cons |	 12.0647	 .0383342	 314.72	 0.000	 11.98945	 12.13995

Source: Authors’ calculations based on MLS® data for a Canadian city

11.29	From the regression on a sample of 796 price ob-
servations it is found that all four explanatory variables 
have the expected sign and are significantly different from 
0 (using a t-test). The adjusted R-squared (or coefficient of 
determination) is 44 %, i.e., variations in lot size, the num-
ber of bedrooms, bathrooms, and age account for 44 % of 
house price variability. By adding more explanatory vari-
ables to the regression, the R-squared would increase. In 
fact, by adding three independent variables (the presence 
of a fireplace, the presence of a garage, and the age squared 
to account for the non-linearity associated with this vari-
able) improved the adjusted R-squared to 54 %.

11.30	The regression results can be interpreted as 
follows:

•	 An extra square foot of lot size will increase the price of 
the house by 0.000939%, ceteris paribus.

•	 Each additional bedroom adds 11.6% to the price of a 
house, ceteris paribus.

•	 A house with an extra bathroom cost almost 10% more 
than a house without the extra bathroom, ceteris paribus.

•	 By adding one year to the house, its price declines (or the 
housing unit depreciates) by 0.2%, ceteris paribus.

The Latin locution ceteris paribus means “all variables oth-
er than the ones being studied are assumed to be constant”. 
Turning to the variable “number of bedrooms” as an ex-
ample, it cannot be concluded that houses with more bed-
rooms will always cost more; other factors are at play that 
can affect the price of the house such as its location and 
age, and overall quality of its construction. What is meant 
by qualifying the statement by ceteris paribus is that when 
houses vary only in terms of the number of bedrooms for 
instance (i.e., they are comparable in all other respects) 
then those with more bedrooms will cost more.

11.31	What follows are simplified examples of the vari-
ous methods, as discussed in Chapter 5, for calculating he-
donic price indices. The time dummy variable method is 
presented first. All examples use OLS regressions.

The Time Dummy Variable Method

11.32	The time dummy variable method is based on 
the estimation of a logarithmic-linear hedonic regression 
model where the data are pooled across all periods. The 
model is given by equation (6.5) and is repeated here for 
convenience:
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where t
nD  is dummy variable which is equal to one if 

the observation comes from periodt  ),...,1( T=t  and is 
zero otherwise. The time dummy variable for the base pe-
riod  0 – i.e., the start period from which the subsequent 
price changes will be compared – is left out to avoid per-
fect collinearity of all dummies with the intercept term 0β ,  
known as the ‘dummy trap’. With the time dummy vari-
able approach the base period and the subsequent com-
parison periods, Tt ,...,1= , are the same units of time, 
i.e., a month, a quarter, or a year, depending on the par-
ticular circumstances such as the needs of the users or data 
availability.

11.33	The exponential or anti-logarithm of the estimated  
regression coefficient td̂  measures the percent change in 
‘constant quality’ property prices between the base period 
and period t. To understand why )ˆexp( td  is a measure of 
quality adjusted, pure price change, the following steps 
have been worked out. The predicted logarithm of price in 
period 0 for property i, given its base period characteristics, 
0
nkz  ),...,1( Kk = , is
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dependent variable. The right-hand side has the same ex-
planatory variables (except for the time dummy variables) 
that one would find in a one period hedonic regression. In 
this particular case the explanatory variables are: lot size, 
number of bedrooms, number of bathrooms, and age; the 
respective parameters range from 1β  to 4β . Since this is a 
pooled regression, the estimated parameters (or regression 
coefficients) will be constrained over the years for which 
data are used in the regression. The error term t

nε  indicates 
if an observed value is above or below the regression line. 
Also on right-hand side of the equation is the intercept 
term, 0β .

11.35	The regression results using the basic data set are 
listed in Table 11.7. The coefficient of interest is the one 
associated with year 2007, 07δ̂ . Its value is 0.0781548. This 
coefficient is then transformed to arrive at an estimate 
of the price index (or the per cent change in prices) for 
houses between years 2006  and 2007. This transforma-
tion consists in taking the anti-logarithm of coefficient 07δ̂ :  

08129.1)0781548.0exp(06/07 ==TDP . Thus, the per cent 
change in house prices between years 2006 and 2007, hold-
ing constant all the characteristics of the house, is 8.1 %. 
Note that the mean and the median yielded increases of 
10.1 % and 9.2 %, respectively, for this same period.

11.36	If a third period (year 2008) is added, then the 
hedonic regression equation becomes:

t
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Table 11.8 contains the regression output. The value of the 
time dummy coefficient for year 2008 is 0.1332734. Taking 
its anti-logarithm generates a value of e0.1332734 = 1.14, show-
ing an increase in the constant quality house price index 
of 14 % between the base year, 2006 and the most recent 
year, 2008. By contrast, the price progression over the same 
period generated by the mean and median was respectively 
16 % and 17 %.
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In period 1, the predicted logarithm of price must be eval-
uated at the property’s base period characteristics, because 
quality should be held constant, hence
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Taking the differences between the estimates for both pe-
riods yields

	
10*10*1 ˆ)ˆ/ˆln(ˆlnˆln δ==− nnnn pppp � (11.13)

Expression (11.13) does not depend on n. That is, the result 
holds for all houses in the sample. As pointed out in Berndt 
(1991), the estimate of td  can be interpreted as the change 
in the logarithm of price due to the passage of time, hold-
ing all other variables constant. Taking the anti-log of 1d̂  
gives the estimated price index for period 1:

	 )ˆexp( 101 δ=TDP � (11.14)

A similar exercise can be done for all other periods. The 
time dummy price index going from the base period to a 
comparison period t )0( Tt ≤<  therefore is

	 )ˆexp(0 tt
TDP δ= � (11.15)

Obviously, the time dummy hedonic index for the base pe-
riod is equal to 1.

11.34	The following example illustrates the procedure 
for calculating a time dummy price index. Suppose that 
detailed information about the houses that were transacted 
over two years ( 2006=t  to 2007=t ) is available. Using 
the same information as in the basic data set above, the 
data for all periods are combined into the following pooled 
regression equation:
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43210ln � (11.16)

The left-hand side of equation (11.16) has the logarithm 
of the price of house i in year t (2006  or 2007) as the 
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Table 11.8. Results from a Pooled Regression for Years 2006 to 2008

	 Source |	 SS	 df	 MS	 Number of obs	 =	 2504
_____________________________________________	 F(6, 2497)	 =	 366.64
	 Model |	 73.4886776	 6	 12.2481129	 Prob > F	 =	 0.0000
	 Residual |	 83.4154327	 2497	 .033406261	 R-squared	 =	 0.4684
_____________________________________________	 Adj R-squared	 =	 0.4671
	 Total |	 156.90411	 2503	 .06268642	 Root MSE	 =	 .18277

	 lprice |	 Coef.	 Std. Err.	 t	 P>|t|	 [95% Conf. Interval]

	 rooms |	 .0942001	 .0056566	 16.65	 0.000	 .083108	 .1052923
	 bath |	 .1139931	 .0057443	 19.84	 0.000	 .102729	 .1252572
	 age |	 -.0028112	 .0002538	 -11.08	 0.000	 -.0033089	 -.0023135
	 land |	 .0000122	 7.51e-07	 16.28	 0.000	 .0000108	 .0000137
	 d2007 |	 .0781257	 .008856	 8.82	 0.000	 .0607598	 .0954916
	 d2008 |	 .1332734	 .0090681	 14.70	 0.000	 .1154916	 .1510552
	 _cons |	 11.95724	 .0225891	 529.34	 0.000	 11.91295	 12.00154

Source: Authors’ calculations based on MLS® data for a Canadian city

Table 11.7. Results from a Pooled Regression for Years 2006 and 2007

	 Source |	 SS	 df	 MS	 Number of obs	 =	 1708
_____________________________________________	 F( 5, 1702)	 =	 286.64
	 Model |	 48.4501865	 5	 9.6900373	 Prob > F	 =	 0.0000
	 Residual |	 57.5372376	 1702	 .033805663	 R-squared	 =	 0.4571
_____________________________________________	 Adj R-squared	 =	 0.4555
	 Total |	 105.987424	 1707	 .062089879	 Root MSE	 =	 .18386

	 lprice |	 Coef.	 Std. Err.	 t	 P>|t|	 [95% Conf. Interval]

	 rooms |	 .0840483	 .0069071	 12.17	 0.000	 .0705009	 .0975957
	 bath |	 .121815	 .0071529	 17.03	 0.000	 .1077855	 .1358444
	 age |	 -.0029137	 .0003183	 -9.15	 0.000	 -.0035381	 -.0022894
	 land |	 .0000137	 9.24e-07	 14.78	 0.000	 .0000119	 .0000155
	 d2007 |	 .0781548	 .0089128	 8.77	 0.000	 .0606736	 .095636
	 cons |	 11.96531	 .0273032	 438.24	 0.000	 11.91176	 12.01886

Source: Authors’ calculations based on MLS® data for a Canadian city

11.37	This technique can be extended to more than 
three periods as more periods become available. This con-
sists in pooling more periods of data and adding additional 
time dummy variables. However, multi-period pooled re-
gressions are not necessarily ideal for constructing a time 
series since adding new periods of data will likely modify 
the results from the previous periods. For instance, in the 
above example, when year 2008 is added to the previously 
pooled regression, the coefficient for year 2007  becomes 
0.0781257, which in this specific case is only slightly dif-
ferent compared to the estimate obtained with the regres-
sion of Table 11.7, where the corresponding coefficient was 
0.0781548. Moreover, the stability of the coefficients in a 
pooled regression can become an issue as the number of 
periods expands.

11.38	An alternative approach mentioned in Chapter 
5 is to use the adjacent-period time dummy variable tech-
nique. If the hedonic regression is based on two consecutive 
periods t  and 1+t , the hedonic relationship becomes:
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In the context of the three periods of data used in the above 
examples, a hedonic regression is first run for periods 0 and 
1, and then a second regression is run for periods 1 and 
2 using the four characteristics. The regression output for 
the first adjacent period regression is obviously the same 
as in Table 11.7, and the resulting period-to-period price 
index yields an estimate of 108.1. Table 11.9 shows the re-
gression output for adjacent years 2007 and 2008.



149

11Empirical Examples

Handbook on Residential Property Prices Indices (RPPIs)

Table 11.9. Results from a Pooled Regression for Years 2007 and 2008

	 Source |	 SS	 df	 MS	 Number of obs	 =	 1670
_____________________________________________	 F(5, 1664)	 =	 271.91
	 Model |	 45.441478	 5	 9.0882956	 Prob > F	 =	 0.0000
	 Residual |	 55.6172267	 1664	 .033423814	 R-squared	 =	 0.4497
_____________________________________________	 Adj R-squared	 =	 0.4480
	 Total |	 101.058705	 1669	 .060550452	 Root MSE	 =	 .18282

	 lprice |	 Coef.	 Std. Err.	 t	 P>|t|	 [95 % Conf. Interval]

	 rooms |	 .1041401	 .0068861	 15.12	 0.000	 .0906337	 .1176465
	 bath |	 .1070142	 .0068881	 15.54	 0.000	 .093504	 .1205244
	 age |	 -.0026926	 .0003045	 -8.84	 0.000	 -.0032899	 -.0020953
	 land |	 .0000117	 9.42e-07	 12.42	 0.000	 9.85e-06	 .0000135
	 d2008 |	 .0555370	 .0089625	 6.20	 0.000	 .073116	 .037958
	 _cons |	 12.07482	 .026871	 449.36	 0.000	 12.02212	 12.12753

Source: Authors’ calculations based on MLS® data for a Canadian city

11.39	The constant quality price index is calculated as the 
antilogarithm of the coefficient for year 2008 (0.0555370), 
so that the index becomes 057.1)0555370.0exp( = . Recall 
that this is the price change from period 2007, not from 
the base period 2006. From these results, a time series 
can be constructed by chaining the two period-to-period 
indices (starting with the value 1  for the base period): 

081.106/07 =TDP ; 143.1057.1081.106/08
, =×=chainTDP . This result 

differs only slightly from the full-period pooled regres-
sion (see Table 11.8) where we estimated a price change of 
14.0 % over the entire period. Now, with chaining adjacent 
period time dummy indices, the estimated price change is 
14.3 %.

Characteristics Prices or Imputation 
Method

11.40	The next hedonic regression approach presented 
in Chapter 5  is the characteristics prices or hedonic im-
putation method, henceforth simply the characteristics 
method. Applying this method to the same data as previ-
ously used, a quality-adjusted price index is estimated. For 
ease of presentation and interpretation, a linear model will 
be regressed to generate the results. (16)

11.41	The characteristics prices approach uses the im-
plicit prices of the characteristics of the model (the regres-
sion coefficients) as the basis for constructing the price 

(16)	There is nothing to prevent however the use of a semi-log or log functional form. Both 
can be used with this hedonic approach.

index, in a similar way as in a typical price index formula, 
but where the regression coefficients assume the role of the 
prices and the quantities are the quantities are the number 
of units of characteristics. Thus, the hedonic equation is es-
timated for each time period separately. The linear hedonic 
models for the base period 0 (2006) and for period 1 (2007) 
are
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11.42	Estimating these equations on the sample data 
from 2006  and 2007, respectively, using OLS regression, 
generates the results shown in Tables 11.10 and 11.11. In 
this example, the implicit price of an extra bedroom in 
2006  is $24329  while each additional bathroom will add 
$43190  to the price of the house. The results for 2007  in 
this highly simplified example are understandably different 
from those for 2006: an additional bedroom now seems to 
increase the price by $35147, while the price of an extra 
bathroom is now estimated to be $43463. (17)

(17)	Note that the coefficients for the number of bedrooms are somewhat volatile between 
both years. This is to be expected because hedonic regressions are often characterized 
by the presence of multicollinearity between these two predictor variables. It should 
be stressed however that multicollinearity does not in itself affect the accuracy of 
the overall index. This phenomenon is only an issue if an accurate monetary value is 
needed for the value of an additional bedroom and/or for an additional bathroom, such 
as would be the case with a property assessment exercise. It should also be added that 
for the purpose of this simplified exercise, the sample size is relatively small. This can also 
explain why sometimes the results are not quite as robust as is often the case with larger 
samples.
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Table 11.10. Results from a Regression for 2006

	 Source|	 SS	 df	 MS	 Number of obs	 =	 834
_____________________________________________	 F(4, 829)	 =	 141.49
	 Model |	 2.4182e+12	 4	 6.0454e+11	 Prob > F	 =	 0.0000
	 Residual |	 3.5420e+12	 829	 4.2726e+09	 R-squared	 =	 0.4057
_____________________________________________	 Adj R-squared =	0.4029
	 Total |	 5.9601e+12	 833	 7.1550e+09	 Root MSE	 =	 65365

	 price |	 Coef.	 Std. Err.	 t	 P>|t|	 [95 % Conf. Interval]

	 rooms |	 24329.78	 3557.79	 6.84	 0.000	 17346.45	 31313.12
	 bath |	 43190.01	 3734.288	 11.57	 0.000	 35860.24	 50519.79
	 age |	 -1083.309	 164.5957	 -6.58	 0.000	 -1406.382	 -760.2357
	 land |	 5.168582	 .4474175	 11.55	 0.000	 4.290378	 6.046787
	 _cons |	 98333.45	 14450.86	 6.80	 0.000	 69968.88	 126698

Source: Authors’ calculations based on MLS® data for a Canadian city

Table 11.11. Results from a Regression for 2007

	 Source |	 SS	 df	 MS	 Number of obs	 =	 874
_____________________________________________	 F(4, 869)	 =	 169.68
	 Model |	 3.5694e+12	 4	 8.9236e+11	 Prob > F	 =	 0.0000
	 Residual |	 4.5702e+12	 869	 5.2592e+09	 R-squared	 =	 0.4385
_____________________________________________	 Adj R-squared =	0.4359
	 Total |	 8.1397e+12	 873	 9.3238e+09	 Root MSE	 =	 72520

	 price |	 Coef.	 Std. Err.	 t	 P>|t|	 [95 % Conf. Interval]

	 rooms |	 35147.31	 3777.91	 9.30	 0.000	 27732.41	 42562.2
	 bath |	 43463.76	 3858.683	 11.26	 0.000	 35890.33	 51037.19
	 age |	 -1059.767	 173.0922	 -6.12	 0.000	 -1399.495	 -720.0394
	 land |	 5.829323	 .5388036	 10.82	 0.000	 4.771814	 6.886831
	 _cons |	 79248.85	 14337.87	 5.53	 0.000	 51107.95	 107389.7

Source: Authors’ calculations based on MLS® data for a Canadian city

11.43	The next step is to compute a hedonic price index 
from the regression results. A price index for 2007  com-
pared to period 2006 can, for example, be expressed as
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where 0
kz  is the sample mean value of the k-th characteristic 

in the base period; 10
0 =z . Price index compilers will recog-

nize that the index described by (11.21) is a Laspeyres-type 
price index: the estimated characteristics prices in period 0  
(2006) and period 1 (2007), 0ˆ

kβ  and 1ˆ
kβ , are weighted by 

the average base period quantities of the characteristics. 
Put differently, the average base period quantities for all 

characteristics are valued at their implicit prices in the 
base period and in the current period. Table 11.12 lists the 
average sample values for the characteristics in this exam-
ple. Using these values and the coefficients from Tables 
11.10 and 11.11, the Laspeyres-type hedonic index between 
the base year (2006) and 2007 is computed as

082.1
)6719168582.5()89.231083()76.243190()63.324329(98333
)6719829323.5()89.231059()76.243463()63.335147(7924806/07 =

×+×−+×+×+
×+×−+×+×+

=P

              
082.1

)6719168582.5()89.231083()76.243190()63.324329(98333
)6719829323.5()89.231059()76.243463()63.335147(7924806/07 =

×+×−+×+×+
×+×−+×+×+

=P

The 8.2 % increase in prices so obtained compares, in this 
particular case, quite closely with the 8.1 % obtained using 
the time-dummy approach from Table 11.7.
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Table 11.12. Mean Values of the Characteristics for the Base Period (2006)

	 |	 Mean	 Std. Err.	 [95 % Conf. Interval]

	 rooms |	 3.633094	 .0244034	 3.585194	 3.680993
	 bath |	 2.767386	 .0269044	 2.714578	 2.820195
	 age |	 23.88969	 .5693338	 22.77219	 25.00719
	 land |	 6719.492	 184.8605	 6356.644	 7082.339

Source: Authors’ calculations based on MLS® data for a Canadian city

11.44	For subsequent periods, the compiler has a deci-
sion to make. He or she can use the same base year quanti-
ties to calculate the subsequent indices using the Laspeyres 
formula but replacing the implicit prices in the numera-
tor with the relevant ones. Alternatively, quantities (mean 
characteristics) from the previous period could be used to 
generate period-to-period price indices. These bilateral in-
dices would then be chained to create a continuous time 
series of linked indices. Other options are also available, 
and these are discussed in Chapter 5, but the mechanics 
of constructing the index remain essentially the same as 
presented here.

The Repeat Sales Method
11.45	The most significant problem with using (non-

stratified) median or mean transaction prices to measure 
trends in houses prices is that the variation in the composi-
tion of the sample of properties sold from period to period 
is not always accurately accounted for. This issue can be 
partially circumvented by constructing an RPPI based on 
the repeat sales method, which was discussed in Chapter 6. 
In fact, one very popular house price index that is closely 
scrutinized in the U.S., the Case-Shiller house price index, 
is based on the repeat sales methodology.

11.46	The strategy for constructing a repeat sales house 
price index is quite straightforward. It consists in compar-
ing the change in the price of identical properties that have 
sold at two points in time. In other words, it uses matched 

(or like-for-like) sampling as the basis for selecting the 
units that will be used in the calculation of the index. For 
the repeat sales approach to be tractable, one must have 
access to a large database of transactions covering a fairly 
long period. Otherwise the data needs are relatively mod-
est: with the basic repeat sales method, only information 
on the dwellings address (or another location identifier) is 
required in order to identify which units have sold repeat-
edly, in addition of course to the selling price and the sale 
date. (18)

11.47	A simple example can illustrate the application 
of the repeat sales methodology. (19) Assuming the objec-
tive is to estimate an annual index of price change between 
2008 and 2010, Table 11.13 shows data for a small number 
of transactions. Property A sold in 2008 for $100 000 and 
sold again in 2009  for $120 000; property B is sold in 
2008  for $175 000  and sold again in 2010  for $220 000; 
property C sold in 2009  for $180 000  and sold again in 
2010 at the same price.

(18)	One assumption is that the quality of the house has not changed over the period 
between the two sales. If information about the features of the property is available 
to the compiler, then it is possible to exclude from the calculation those observations 
that have undergone significant changes over time and that are likely to affect the price 
and thus distort the index. Furthermore, given that high turnover is often a sign that 
certain undesirable features for that particular property may be at play so that these 
observations can also be excluded from the calculation. It should also be mentioned 
that repeat-sales indices are not always strictly constant quality price indices since 
houses are often subject to some loss in value over time as a result of depreciation. 
Consequently, repeat-sales price indices typically underestimate true house price 
inflation, unless some corrective adjustment is made to the estimates. If the purpose 
of the index is to act as a short- to medium-term indicator of house prices, then the 
issue of depreciation which the repeat-sales approach does not handle adequately can 
perhaps be set aside.

(19)	The example is partially drawn from the Canadian Teranet-National Bank® repeat sales 
price index documentation: http://www.housepriceindex.ca/Default.aspx. 

Table 11.13. Repeat Sales Data

2008 2009 2010
Property A $100 000 $120 000 No sale
Property B $175 000 No sale $220 000
Property C No sale $180 000 $180 000

Average $137 500 $150 000 $200 000

http://www.housepriceindex.ca/Default.aspx
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repeat-sales transaction which has a P value of 1 because 
the price of this property did not change from 2009 and 
2010.

11.49	The independent variables in a repeat sales regres-
sion are dummy variables, which take the value -1 during 
the year of the initial sale, then take the value +1  in the 
period of the second sale, and finally take the value 0 for 
all other periods. The estimated dummy variable coeffi-
cients from the regression are used to calculate the repeat 
sales price index. Table 11.14 summarizes the values of the 
dummy variables for properties A to C. For example, since 
property A is sold for a second time in 2009, the dummy 
variable D2009 takes the value of 1 but D2010 takes a value 
of 0  since this property A is not sold after 2009. A simi-
lar reasoning applies to the other properties and the other 
years. Note that to avoid perfect collinearity, the first pe-
riod (2008) is disregarded from the explanatory variables 
and the regression. In other words, if the first sale occurs 
at the base year, then there is no dummy variable for that 
period.

As a first step, the price change over the 2008 to 2010 pe-
riod is estimated using the mean of prices approach. The 
annual average prices from 2008  to 2010 are respectively 
$137 000, $150 000 and $200 000. The corresponding year-
to-year changes in average prices are 9.1 % and 33.3 % for 
the periods 2009/2008 and 2010/2009.

11.48	These results are now compared with those ob-
tained if the repeat sales technique is used. Let P be the 
price relative of the house between the second and first 
sale for each completed transaction (20) from 2008  to 
2010. The logarithm of P will serve as the dependent vari-
able in a repeat sales regression. Three repeated sales are 
identified in Table 11.13 for the period 2008 to 2010. The 
first repeat sale, for property A, has a P value of 1.200 
(i.e., the price relative between its sale prices in 2009 and 
2008); the second repeat sale, which occurs for property 
B, has a P value of 1.257 (the price relative between its 
selling prices in 2010 and 2008); property C is the third 

(20)	Geltner and Pollakowski (2006) use the term “round trip”.

Table 11.14. Dummy Variables for Repeat Sales

P D2009 D2010
Property A 1.200 1 0
Property B 1.257 0 1
Property C 1.000 -1 1

11.50	Given these repeat sales data, the regression equa-
tion – which has no intercept term – can be expressed as 
(see also equation (6.3):

	
t
nnn

t
n DDP εγγ ++= 2010201020092009ln � (11.22)

where t
nε  is an error term (“white noise”). The anti-logarithm 

of the estimated parameters, i.e. )ˆexp( 2009g  and )ˆexp( 2010g , 
will represent the price indices of the housing unit for each pe-
riod when compared to the base period 2008. Using Ordinary 
Least Squares (OLS) to estimate equation (11.22) on the data 
from Table 11.14, the resulting repeat sales price indices are 
1.219 and 1.238 for 2009 and 2010, respectively. The year-to-
year growth rates of 21.9 % and 23.8 % for this example are 
quite different from those found with the simple average ap-
proach, which were 9.1 % and 33.3 %. (21)

11.51	The simple repeat sales model can be improved. 
One way of accomplishing this is by reducing the statisti-
cal noise in the index series generated. As pointed out by 

(21)	There are very few observations so no meaningful conclusions should be drawn from 
this simplified example. It should only be used for illustrative purposes.

Geltner and Pollakowski (2006), the source of the estima-
tion error (or noise) in property price indices is explained by 
the fact that the observed transaction prices are randomly 
distributed around the “true” but unobservable market val-
ues. The authors add that this noise is present in any house 
price index, regardless of how the index is constructed. To 
mitigate the effects of the noise the sample of repeated sales 
can be expanded, data availability permitting.

11.52	As previously pointed out, an OLS regression 
can be used to obtain the set of price changes. The Bailey, 
Muth, and Nourse (1963) model is a classic example of the 
OLS repeat sales methodology using the technique out-
lined above. However, subsequent research has suggested 
that the basic OLS repeat sales method may be improved 
by applying a weighted least squares (WLS) technique. In a 
nutshell, the method consists in giving more weight in the 
regression to the observations that are deemed more ac-
curate. In the context of the repeat sales method, giving less 
weight to properties for which a long time span has elapsed 
between sales and vice versa corrects for this inherent prob-
lem, better known as the heteroskedasticity problem.
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3. Run an OLS regression of model (11.22) but where each 
observation is divided through by the square root of the 
fitted value from the second-stage regression.

The third stage is a weighted least squares regres-
sion of model (11.22) that accounts for the presumed 
heteroskedasticity.

11.53	Case and Shiller (1987) suggest the following 
three-stage approach:

1. Estimate model (11.22) by OLS regression and retain the 
vector of regression residuals.

2. Run an OLS regression of the squared residuals on a con-
stant term and the time interval between sales.

Table 11.15. Unweighted Repeat Sales Regression

	 Source |	 SS	 df	 MS	 Number of obs	 =	 1186
_____________________________________________	 F( 6, 1180)	 =	 379.41
	 Model |	 32.5127473	 6	 5.41879122	 Prob > F	 =	 0.0000
	 Residual |	 16.8531146	 1180	 .014282301	 R-squared	 =	 0.6586
_____________________________________________	 Adj R-squared	 =	 0.6569
	 Total |	 49.365862	 1186	 .04162383	 Root MSE	 =	 .11951

	diflnprice |	 Coef.	 Std. Err.	 t	 P>|t|	 [95 % Conf. Interval]

	 dy2003 |	 .0613539	 .0086332	 7.11	 0.000	 .0444157	 .0782921
	 dy2004 |	 .1198942	 .0082047	 14.61	 0.000	 .1037969	 .1359915
	 dy2005 |	 .1431862	 .008343	 17.16	 0.000	 .1268173	 .159555
	 dy2006 |	 .1845885	 .0084578	 21.82	 0.000	 .1679945	 .2011826
	 dy2007 |	 .2658241	 .0083474	 31.85	 0.000	 .2494468	 .2822015
	 dy2008 |	 .3438869	 .0087587	 39.26	 0.000	 .3267025	 .3610713

Source: Authors’ calculations based on MLS® data for a Canadian city

Table 11.16. Weighted Repeat Sales Regression

	 Source |	 SS	 df	 MS	 Number of obs	 =	 1186
_____________________________________________	 F( 6, 1180)	 =	 348.90
	 Model |	 2098.21619	 6	 349.702699	 Prob > F	 =	 0.0000
	 Residual |	 1182.72363	 1180	 1.00230816	 R-squared	 =	 0.6395
_____________________________________________	 Adj R-squared	 =	 0.6377
	 Total |	 3280.93982	 1186	 2.76639108	 Root MSE	 =	 1.0012

	 ndifprice |	 Coef.	 Std. Err.	 t	 P>|t|	 [95% Conf. Interval]

	 ndy2003 |	 .0635307	 .0085609	 7.42	 0.000	 .0467345	 .0803269
	 ndy2004 |	 .1211754	 .0081162	 14.93	 0.000	 .1052516	 .1370992
	 ndy2005 |	 .1437457	 .0082962	 17.33	 0.000	 .1274688	 .1600226
	 ndy2006 |	 .1864151	 .0084621	 22.03	 0.000	 .1698127	 .2030175
	 ndy2007 |	 .2689894	 .0084844	 31.70	 0.000	 .2523433	 .2856356
	 ndy2008 |	 .3491619	 .0091085	 38.33	 0.000	 .3312913	 .3670325

Source: Authors’ calculations based on MLS® data for a Canadian city

11.54	Moving to the larger and more realistic set of data 
on single-family houses that were previously used for most 
of the previous examples of this chapter, two versions of 
the repeat sales method are illustrated. The results are first 
computed for the unweighted repeat sales regression ap-
proach and are presented in Table 11.15. Table 11.16 pre-
sents the results for the weighted version of the repeat sales 
regression. Note that for this particular set of data, all the 
coefficients are significantly different from 0  and that no 

intercept is used in the regressions for the repeats sales 
approach. One often cited drawback of the repeat sales 
method is that it is wasteful of data. The current exercise 
confirms this. Of the 5787  observations that were in the 
database at the start, only 1186 (or about 20 %) are found to 
be units that sold more than once during the 6 or so years.

11.55	Similar to the time dummy hedonic model pre-
sented earlier, the corresponding price indices are obtained 
by taking the antilogarithm of the estimated coefficient as 
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Note that the indices are quite similar, regardless whether 
the unweighted or weighted repeat sales versions are used. 
This is a feature of this particular dataset and may not nec-
essarily hold true for house price indices estimated from 
other sources.

the dependent variable is the logarithm of the price. For 
example, the regression for the unweighted repeat sales 
approach yields a coefficient of 0.2658241  for 2007; tak-
ing the antilogarithm yields 3045.1)2658241.0exp( =  (or 
130.5 once rounded and multiplied by 100). The indices for 
the entire 2002  to 2008 period are shown in Table 11.17. 

Table 11.17. Repeat Sales Price Indices (2002 = 100)

Year Unweighted Per cent change Weighted Per cent change
2002 100.0 100.0
2003 106.3 6.3 106.6 6.6
2004 112.7 6.0 112.9 5.9
2005 115.4 2.4 115.5 2.3
2006 120.3 4.2 120.5 4.4
2007 130.5 8.5 130.9 8.6
2008 141.0 8.1 141.8 8.3

Source: Authors’ calculations based on MLS® data for a Canadian city

11.56	Table 11.18 summaries the index results using the 
various methods presented here using the extended dataset 
for year 2007. The simple mean shows the largest increase 
of all the estimated indices at 10.1 % with the median be-
ing slightly lower at 9.2 %. The hedonic indices increased 
by 5.7 % and 5.9 % for the adjacent year pooled and char-
acteristics prices approaches, respectively (calculation not 
shown above). By contract, the repeat sales weighted and 
unweighted indices increased by 8.5 % and 8.6 %, respec-
tively. Although the sample size is somewhat small to make 

any generalisation, one important observation is note-
worthy. The non-quality adjusted indicators, i.e., the mean 
and median, generate the highest growth rates, while the 
hedonic methods generate the smallest. The repeat sales 
approaches, although they control for many potential as-
pects of quality, do not control for age. Therefore, it is not 
so surprising that the price increases obtained with this 
approach are larger than those obtained with the hedonic 
approaches.

Table 11.18. Growth Rates in Percent for the Various House Price Indices (2007)

Mean Median Pooled hedonics
Characteristics

hedonics 
Repeat sales 
unweighted

Repeat sales 
weighted

10.1 9.2 5.7 5.9 8.5 8.6

Source: Authors’ calculations based on MLS® data for a Canadian city
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