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Evaluating the capabilities of artificial intelligence (AI) has enormous 

implications in many areas, especially for the future of work and education. 

The context is also changing rapidly: the capabilities of humans and AI 

co-evolve, with scenarios of replacement, displacement or enhancement. 

Beginning with a review of several taxonomies from human evaluation and 

AI, this chapter presents a 14-ability taxonomy to identify abilities as 

potentially disassociated clusters to characterise AI systems. It explores a 

range of human tests used for decades in recruitment and education, 

contrasting them with the increasing trend towards basing AI evaluation on 

benchmarks. The chapter reviews the challenges of bringing human tests to 

evaluate AI, identifying guidelines to devise reliable tests to compare the 

capabilities of humans and AI.  

11.  Identifying artificial intelligence 

capabilities: What and how to test 
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Introduction 

This chapter analyses how the evaluation of artificial evaluation (AI) systems differs from that of other 

hardware and software systems, and how it diverges from the evaluation of human cognition – from abilities 

to skills. It covers common skill taxonomies used for humans as opposed to those used in subfields in AI. 

However, it proposes a taxonomy based on abilities since skills, knowledge and task performance, if not 

programmed specifically, must ultimately develop from abilities.1  

This chapter discusses a recently introduced taxonomy, including 14 abilities, that could be useful for both 

humans and AI. It examines measurement problems of tests for human evaluation (psychometric, 

educational and professional) and the bevy of AI evaluation platforms. Subsequently, it argues that human 

tests cannot be directly used as measurement instruments for an ability-oriented evaluation of AI.  

Nonetheless, it identifies the elements of tests that should be abandoned and those that could be reused 

for working adaptations or newly created tests. It also outlines pragmatic solutions of mapping human tests 

and AI benchmarks through the ability taxonomy. It ends with recommendations to evaluate AI systems 

more precisely to determine what they can really do. 

Future artificial intelligence roles 

Displacement vs. replacement  

Some narratives envision that AI will “replace” humans2, taking over highly skilled and enjoyable activities 

from engineering to the arts. However, with AI being around for a long time, history suggests that AI will 

first transform work, creating new kinds of occupations and tasks for humans to do on their own and to 

share with machines. For instance, the portfolio of a handful of clients handled by a human has been 

transformed into a more sophisticated framework dealing with massive portfolios of clients. Such 

transformation was made possible by machine learning models and other AI techniques such as planning, 

optimisation, natural language processing and sentiment analysis. These AI components now talk with 

customers, anticipate their behaviour, promote cross-selling and even ensure their overall satisfaction with 

the company.  

Even in cases where the whole task is seemingly automated, a deeper analysis shows that humans usually 

assume subsidiary new subtasks so the system can work. This phenomenon is not new, as when 

repurposed workers had to oil or repair a newly introduced machine. However, this kind of “incomplete 

automation” is easier to hide with cognitive tasks, which humans now do (even unpaid, such as when a 

customer orders with their phone at a “restaurant”).  

Variants of this phenomenon have been referred to as fauxtomation (Jackson, 2019[1]) or simply “human 

computation” (Von Ahn, 2008[2]; Taylor, 2018[3]). Figure 11.1 shows how the narrative of AI increasingly 

taking on more tasks than humans today is incomplete. While some new tasks are created for and only 

done by machines, humans are doing new tasks, too. 
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Figure 11.1. New tasks are done by humans, by AI and by both together 

 

In this transformation, there is displacement rather than just replacement. Human labour has not 

disappeared in areas where AI has had an important impact. Humans do different tasks, and many of them 

are new. Typically, these tasks relate to setting goals and targets, monitoring robots and other AI systems, 

adapting and integrating their decisions, and curating “training” material for AI systems. 

This narrative of displacement vs. replacement will determine the path of AI research. The prevalence of 

responsible and human-centred AI today is introducing a culture based on three factors. First, humans 

must always be in the loop. Second, humans and machines should collaborate and not compete. Third, 

machines should always be subordinate to humans.  

This vision suggests the separation between what AI will be able to do from what it will be allowed to do. 

For instance, one day it will be possible to automate most of a physician’s tasks. However, this may never 

happen because of ethical issues or mainstream social pressure. This is not new or particular to AI; the 

“human touch” is considered a special value in some domains that can already be automated 

(e.g. hand-made delicatessen). However, ethical and political decisions more than technology may 

dominate decisions about what AI can do and what is reserved for humans in the future.  

Human-machine collaboration through externalisation and extension 

Another important factor is the different forms in which humans and machine collaborate, or create new 

behaviour (Rahwan, 2019[4]). In basic “externalisation”, a human delegates a task to a machine, giving it 

the instructions, goals or input. However, humans are also integrating AI capabilities in a more coupled 

way through “AI extenders” (Hernández-Orallo and Vold, 2019[5]). For instance, most humans use 

navigational tools in their phones to go to a new address. While the tool shows the position and optimal 

routes, the human still navigates the city and ultimately decides where to go and how. In this way, the full 

cognitive process of going from position A to B is not externalised but extended.  

In general, machines complement or extend humans, rather than replace them. Humans then adapt to the 

new situation, developing new “digital” skills (e.g. using new AI apps). This means that human skills are 

changing significantly. Young people text extremely fast because they use the predictive hints given by 

their instant messaging app.  

This phenomenon – which goes beyond skills – is changing abilities as well. For instance, factual memory 

capabilities are falling because people can check any fact on the Internet. This is known as the “Google 

effect” (Bohannon, 2011[6]). Provided the technology does not fail, the new situation (and the associated 

atrophy) should be seen as empowering. When coupled with their AI extenders, humans should thus be 

considered more capable overall.  

Accordingly, as humans can do more things using tools, they should be evaluated with those tools. As 

calculators are allowed in many math exams, AI extenders should be allowed for writing, editing, drawing 

or speaking in more proficient and creative ways. Almost no one writes today without spell check or online 

access to Wikipedia. Limiting access to AI tools and extenders in tests would thus measure an unrealistic 

situation. The implications of all this for the following sections are important: 
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 Tasks humans do are changing more rapidly. 

 Human skills, and even some specific abilities, are changing. 

 Human evaluation tests are (or should be) changing. 

In a rapidly changing world fuelled by AI, tasks are going to change faster, and so will skills and knowledge. 

This affects humans but also AI. For AI to become economically advantageous over human labour, it needs 

general abilities rather than specialised skills. In this way, AI systems can learn new skills efficiently and 

autonomously, adapting faster than humans to new tasks and procedures. 

From skill lists to ability taxonomies 

Evaluating artificial intelligence through its abilities rather than task completion 

Evaluating what AI does in terms of tasks would be short-sighted, unlikely to be comprehensive and prone 

to overfitting.3 An AI or robotic system showing performance at a particular task gives poor indications of 

what other things AI can do. For instance, while computer chess reached superhuman level in the late 

1990s (Weber, 1997[7]; Campbell, Hoane and Hsu, 2002[8]), it took AI 20 years to reach human-level 

performance on other “similar” games such as Go (Silver et al., 2016[9]).  

Quite remarkably, both the chess and Go milestones used completely different approaches. Similarly, floor 

robotic cleaners have been in residential homes for quite some time, but no robot can yet clean a table full 

of objects properly. For these and other reasons, an ability-oriented4 evaluation in AI should be preferred 

over a task-oriented evaluation (Hernández-Orallo, 2017[10]; Hernández-Orallo, 2017[11]). 

While still unusual in AI, the standard approach to evaluate humans is by abilities and skills rather than 

through tasks. Specific tasks for a job, such as driving a lorry, are evaluated only occasionally. Moreover, 

this evaluation is usually accompanied with verification of some other skills, knowledge and abilities, while 

many others are taken for granted (e.g. being able to understand an order from the boss).  

Defining abilities and skills 

Before looking at taxonomies of abilities and skills, the terms should be clarified. Abilities and skills are 

sometimes used interchangeably, but skills and knowledge are more properly used for effective 

competences. For example, solving differential equations, programming in Python, playing the guitar or 

working in teams is a skill. Abilities usually refer to potential capacities related, for example, to verbal, 

spatial or metacognitive domains.  

Abilities allow humans to acquire and deploy skills and knowledge (Schuelke and Day, 2012[12]). This 

interpretation goes beyond clustering tasks into skills, and skills into abilities. Rather, it means that abilities 

allow individuals to develop skills and knowledge, which leads to further skills and, ultimately, the capacity 

to do tasks. Also, abilities in humans are stable for a significant part of the adult life. Conversely, skills are 

learnt, improved or even forgotten at different moments in the life of an individual. 

There are many taxonomies for human cognitive abilities, and some differ significantly. The 

Cattell-Horn-Carroll (CHC) taxonomy (Carroll, 1993[13]) characterises humans hierarchically (Figure 11.2). 
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Figure 11.2. Carroll’s three-stratum model 

 

Note: This model is usually known as Cattell-Horn-Carroll taxonomy. The g factor is on the top (third) level, ten broad abilities are at the second 

level, with the bottom (first) level including many more “narrow” abilities. 

The Cattell-Horn-Carroll taxonomy 

Table 11.1 describes the ten factors in stratum II of the CHC taxonomy. Some, like processing speed, are 

not really “abilities”. Rather, they are “factors” identified through techniques such as factor analysis. Their 

interpretation requires examination of their loadings, connecting with underlying tests and the lower 

stratum.  

Nonetheless, these factors capture some areas of cognition and intelligence for which humans involve 

different intrinsic mechanisms. For example, inductive inference is associated with Gf and Gc. Meanwhile, 

deductive inference is associated with Gq or neurological substrate (e.g. Gv and Ga).  

Table 11.1. Broad abilities at stratum II of Cattell-Horn-Carroll taxonomy 

Factor Ability 

Gf Fluid intelligence 

Gc Crystallised intelligence 

Gq Quantitative reasoning  

Gr Reading and writing ability  

Gm Short-term memory  

Gl Long-term storage and retrieval  

Gv Visual processing  

Ga Auditory processing 

Gs Processing speed 

Gt Reaction time/decision speed 

Developmental perspective 

Cognitive development offers a more dynamic take on what an individual can do. Piaget introduced four 

main stages in child development (Piaget, 1936[14]; Piaget, 1964[15]): sensorimotor (0-2 years), 

preoperational (2-7 years), concrete-operational (7-12 years) and formal-operational (12 and more years). 

Many variants and extensions have followed, sometimes referred to as neoPiagetian models (Morra et al., 

2012[16]).  

The developmental perspective studies how skills are built over other skills. From the perspective of 

education, the focus is on skills, as many can be acquired in some degree at any age. Conversely, abilities 

have a greater innate component and consolidate in adolescence. However, ignoring abilities altogether 

leads to poor understanding of why some individuals develop some skills better than others. 
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Taxonomies for job analysis 

The use of skills and knowledge is more common in the analysis of the workplace. Taxonomies for job 

analysis such as O*NET-SOC, ISCO and ESCO. O*NET-SOC5 includes more than 1 000 “occupational 

titles” classified into 23 major groups6, which are mostly sector-oriented (e.g. health, construction, etc.). 

ISCO7 includes more than 1 500 categories of occupations, organised into ten major groups (Table 11.2). 

ESCO8 covers about 3 000 occupations and around 13 500 skills. It is partially hierarchical. Apart from a 

sector-oriented hierarchy, it has a top hierarchy of skills that is similar but different from ISCO, including 

eight categories (Table 11.3). 

Table 11.2. Ten major groups in the ISCO occupation categories 

Code Category 

1 Managers 

2 Professionals 

3 Technicians and associate professionals 

4 Clerical support workers  

5 Service and sales workers  

6 Skilled agricultural, forestry and fishery workers 

7 Craft and related trades workers  

8 Plant and machine operators, and assemblers  

9 Elementary occupations  

0 Armed forces occupations 

Table 11.3. Eight major groups in the ESCO occupational skills 

Code Category 

S1 Communication, collaboration and creativity 

S2 Information skills 

S3 Assisting and caring 

S4 Management skills 

S5 Working with computers 

S6 Handling and moving 

S7 Constructing 

S8 Working with machinery and specialised equipment 

The cognitive ability taxonomies, developmental models and job competence classifications are derived 

from and aimed at humans. When taxonomies are derived from human populations, some elements that 

are essentially different may fall into the same human ability, simply because they are correlated in the 

human species. As well, similar elements may be separated because they are handled by different 

modules or genes in humans.  

In cognitive development, some stages seem more universal than others, but even for some animals the 

stages may differ significantly. Foals and other precocial animals can stand and run in a few hours, for 

example. Similarly, the competences and skills used for labour depend on the society and the economy at 

a particular time and culture. Neither of these human taxonomies is immediately applicable to AI. 

Domains in AI are strongly linked to underlying techniques, which have varied significantly in a few 

decades. AI typically organises its functionalities with terms such as learning, planning, recognition, 

inference, etc. To date, there is no standard taxonomy of AI skills or abilities. Areas and domains are 

typically used for textbooks and conferences or bibliometric research (Machado et al., 2018[17]; Frank, 

Wang and Cebrian, 2019[18]).  
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A taxonomy of cognitive abilities 

Taking all this into account, Hernández-Orallo and Vold (2019[5]) introduce a taxonomy of cognitive abilities, 

merging several categorisations in psychology, animal cognition and AI. To be comprehensive about all 

cognitive abilities, the methodology started with elements from all these disciplines, distilling from different 

sources: 

 Thurstone’s primary mental abilities according to factors from CHC hierarchical model (stratum II, 

Figure 11.2) 

 areas of animal-cognition research according to Wasserman and Zental (2006[19])  

 main areas in AI according to the AI Journal (as per 2017) 

 “competency” areas in AGI according to Adams et al. (2012[20]) 

 I-athlon “events” from Adams, Banavar and Campbell (2016[21]).9  

These different lists were integrated by matching synonyms and related terms, and trying to keep a 

manageable number of broad capabilities. There were tensions between both distinctiveness and 

comprehensiveness against the number of abilities. The main criterion for distinguishing between two 

abilities A and B (and not merging them) was the understanding that a system or component (either natural 

or artificial) could conceivably master one of them while failing at the other. The compromise for 

completeness was easier to find. Some elements (such as processing or decision speed in the CHC) are 

not proper abilities. In addition, some abilities related to multimodality were not explicitly included in the 

final list of 14 (e.g. olfactory processing). The current version only covers “visual” and “auditory” processing, 

being the two most representative sensory modalities.  

The taxonomy is further developed into a rubric in Martínez-Plumed et al. (2020[22]). The 14 cognitive 

abilities are shown in Table 11.4 and a number of principles behind their development are presented in 

Box 11.1. 
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Table 11.4. Cognitive abilities applicable to both humans and AI systems 

Ability Description 

MP: Memory processes 
Storage of information in an appropriate medium to be recovered at will according to some keys, queries or 

mnemonics. This covers long-term memory and episodic memory.  

SI: Sensorimotor interaction 
Perception of things, recognising patterns and manipulating them in physical or virtual environments with parts of the 

body (limbs) or other actuators, through various sensory and actuator modalities, and representations.  

VP: Visual processing 
Processing of visual information, recognising objects and symbols in images and videos, movement and content in 

the image, with robustness to noise and different angles and transformations.  

AP: Auditory processing Processing of auditory information, such as speech and music, in noisy environments and at different frequencies.  

AS: Attention and search 
Focusing attention on the relevant parts of a stream of information in any kind of modality, by ignoring irrelevant 

objects, parts, patterns, etc. Similarly, seeking those elements that meet some criteria in the incoming information.  

PA: Planning, sequential 

decision making and acting 

Anticipating the consequences of actions, understanding causality and calculating the best course of actions given a 

situation.  

CE: Comprehension and 

compositional expression 

Understanding natural language, other kinds of semantic representations in different modalities, extracting or 

summarising their meaning, as well as generating and expressing ideas, stories and positions. 

CO: Communication 
Exchanging information with peers, understanding what the content of the message needs for a given effect, 

following different protocols and channels of informal and formal communication. 

EC: Emotion and self-control 
Understanding the emotions of other agents, how they affect their behaviour and also recognising their own emotions 

and controlling them and other basic impulses depending on the situation. 

NV: Navigation 
Moving objects or oneself between different positions, through appropriate, safe routes and in the presence of other 

objects or agents, and changes in the routes. 

CL: Conceptualisation, 

learning and abstraction 

Generalising from examples, receiving instructions, learning from demonstrations and accumulating knowledge at 

different levels of abstraction. 

QL: Quantitative and logical 

reasoning 

Representation of quantitative or logical information that is intrinsic to the task, and the inference of new information 

from them that solves the task, including probabilities, counterfactuals and other kinds of analytical reasoning. 

MS: Mind modelling and social 

interaction 

Creation of models of other agents to understand their beliefs, desires and intentions, and anticipate the actions and 

interests of other agents.  

MC: Metacognition and 

confidence assessment 

Evaluation of their own capabilities, reliability and limitations, self-assessing the probability of success, the effort and 

risks of own actions. 

Source: Hernández-Orallo and Vold (2019[5]).  
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Box 11.1. Principles behind the cognitive ability taxonomy 

There are some principles behind the taxonomy in Table 11.4: 

 First, the clusters should not be informed by the categories in human or AI taxonomies only. 

Abilities should be identified as different when, with the current knowledge, they are thought to 

conceivably rely on different mechanisms (e.g. deductive and inductive inference).  

 Second, it is convenient to associate taxonomies with rubrics that determine whether a task or 

skill requires the ability. This can be understood as a representational definition and 

understanding for each ability, and not simply as a cryptical latent “factor” or a meaningless 

construct.  

 Third, developing a test that only measures one ability for every kind of subject (natural or 

artificial) is complicated. It is more practical to think of many-to-many quantitative connections 

between abilities and tests, with the advantage of reusing the results of existing tests and 

benchmarks.  

 Finally, skills must always be connected with abilities in the context of development. For 

instance, the progression of an AI system in the acquisition of elemental skills can be a good 

way to ensure the system has the abilities needed to develop the skills. 

Source: Hernández-Orallo and Vold (2019[5]). 

The above taxonomy is not static. However, it serves as a stable source to do mappings between other 

AI/human taxonomies (Martínez-Plumed et al., 2020[22]; Tolan et al., 2021[23]) and especially tests, as 

explored in the following section. 

Tests: Caveats and pathways 

Evaluating humans 

Abilities10 are usually latent variables or constructs, with tests being instruments for measuring them. 

During the 20th century, a plethora of tests was developed for evaluating humans:11 

 Psychometric tests for general abilities 

These notably include those related to IQ tests. Example: Wechsler Adult Intelligence Scale, with tests 

aggregated into four categories: verbal comprehension, perceptual reasoning, working memory and 

processing speed.12  

 Developmental tests  

These cover a series of stages for different purposes (e.g. detecting disabilities). Example: the Bayley 

scales (Bayley, 1993[24]) evaluate children from ages to 3.5 years with items in three categories: mental 

scale, motor scale and behaviour rating scale.  

 Tests for consolidated knowledge or general education skills  

These explore “attainment” or “achievement”. For instance, military psychometric tests (such as Armed 

Services Vocational Aptitude Battery) and college entrance exams (such as ACT and SAT) cover a mixture 

of abilities and skills (English, mathematics, reading, writing and science). The Bennett Mechanical 

Comprehension Test covers more specific abilities and skills. 
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 Personnel selection and certificates 

This combines psychometric tests, interviews and practical demonstrations to certify certain abilities, 

attitudes, knowledge and skills. In many countries, for instance, a driver’s licence test evaluates reaction 

time, visual acuity, knowledge and ability to judge traffic signs and rules. It combines these tests with a 

practical exam with a real car and sometimes a simulator. 

Evaluating machines 

Given the range and diversity of evaluations for humans, what can be used to evaluate machines? AI 

evaluation differs from the evaluation of many other software and hardware systems. For AI, there is 

usually no formal or procedural description of how the system must solve a goal (otherwise, the solutions 

would be programmed). Experimental evaluation then becomes more relevant in AI (from learning to 

planning) than in other areas of computer science.  

Apart from informal and subjective assessments (e.g. the Turing test), AI has rubrics and benchmarks.  

Rubrics are generally based on human assessment about the capability of the system. Unlike open 

evaluations such as the Turing test, rubrics are systematic. For instance, (Brynjolffson and Mitchell, 

2017[25]; Brynjolffson, Mitchell and Rock, 2018[26]) present a series of questions about a task (the rubric), 

giving a score that represents whether machine learning could automate the task. A recent OECD project 

(Elliott, 2017[27]) relies on subject matter experts to assess AI capabilities for three areas in the Programme 

for the International Assessment of Adult Competencies. A more general approach is based on technology 

readiness levels. Here, the rubric distinguishes different levels, from research ideas in the lab to viable 

products (Martínez-Plumed, Gómez and Hernández-Orallo, 2020[28]; Martínez-Plumed, Gómez and 

Hernández-Orallo, 2021[29]). 

Benchmarks are repositories of instances of a task (or collections of tasks) that serve as challenges for AI 

to improve on several metrics of performance. Benchmarks are undoubtedly fuelling the progress of the 

field (Hernández-Orallo et al., 2016[30]) but are still limited as valid measurement instruments. AI systems 

commonly reach superhuman performance on a benchmark but do not display the associated capability; 

the systems usually fail beyond the conditions and distribution of the benchmarks. Accordingly, many 

benchmarks are soon replaced, entering a “challenge-solve-and-replace” (Schlangen, 2019[31]) or a 

“dataset-solve-and-patch” (Zellers et al., 2019[32]) dynamic.13  

Assessing artificial intelligence with tests designed for humans 

Given these validity problems in AI evaluation, and the wide range of valid tests for humans, using tests 

designed for humans might seem a good idea for AI. There are several reasons why this is not advisable: 

1. Tests are devised as measuring instruments for a particular population. Human tests lack 

measurement invariance beyond the human population (even beyond adults).  

2. Humans are embodied agents. Many AI systems do not take the form of an agent, and sometimes 

not even the form of a system. Instead, they appear as cognitive components or modules.  

3. A single human can perform well for many tasks and tests. When AI is said to solve A and B, for 

example, this typically means that one AI system solves A and another AI system solves B. 

4. AI systems and components can be built on purpose for a task. The designers put a lot of specific 

knowledge, bias or curated training data for the particular benchmark.  

5. The behavioural traits of humans and AI overlap. AI may “conquer” more human abilities in the 

future, but AI is introducing many other new abilities (see Figure 11.1). 

6. Humans and AI differ on the resources used (e.g. data, compute, sensors) or ignore/ban 

associated human cognitive labour (e.g. labelling data, delegation to human computation). 
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The six reasons are exemplified by the use of IQ and other human intelligence tests as benchmarks for AI. 

Whenever a type of IQ problem or a battery of intelligence tests is made available for AI researchers, less 

and less time, but increasingly more computational resources are needed for a new AI system to excel at 

the tests (Hernández-Orallo et al., 2016[33]). However, this AI system can do nothing else beyond the 

particular IQ tests. Remarkably, such tests are not about knowledge and specialised skills but rather about 

human core reasoning capabilities and abstract problems. They include letter series, number series, 

Raven’s progressive matrices, odd-one-out problems, vocabulary analogies, geometric analogies, etc. The 

success of AI systems on these intelligence tests has not shown real progress in AI. It cannot be used as 

evidence that AI systems have general intelligence (Hernández-Orallo et al., 2016[30]).  

While intelligence tests are just a kind of cognitive test for humans, other human tests are also problematic 

when applied to AI (Dowe and Hernández-Orallo, 2012[34]; Hernández-Orallo, 2017[11]). For instance, AI 

challenges have used questions from educational exams, including diagrams, geometry and mathematics 

from 4th grade science exams (Clark and Etzioni, 2016[35]). The bad results were reassuring: “no system 

[came] even close to passing a full 4th grade science exam”. Good results from the Aristo Project and 

other (ensembles of) language models just three years later were labelled as “a significant milestone” 

(Clark et al., 2019[36]).  

However, the new AI solutions are not really “general question-answering” systems and cannot compare 

to a human with a similar result. Massive language models certainly solve many questions – more than 

the average human – but a closer look reveals the system is not robust to minor variations of the questions. 

Ultimately, it does not really understand the questions. In other words, the positive test results for AI on 

human tests, when compared to humans, are hugely overestimated because of overfitting.  

More promising avenues 

To avoid the recurrent problem of overfitting, some new benchmarks for AI are taking inspiration from 

human tests but have been profoundly modified or reconstructed. The tests aim to be easy for humans but 

challenging for state-of-the-art AI. However, they should not contain hidden statistical patterns or other 

artefacts that AI systems could exploit to circumvent what the inspirational tests are supposed to measure 

in humans.  

Winograd and Winogrande 

The Winograd Schema Challenge has been one of the most important attempts in this direction. It was 

presented as a collection of text comprehension questions using pronouns that must be disambiguated 

(Levesque, Davis and Morgenstern, 2012[37]). Levesque initially sought to design questions whose answer 

would show a high level of common sense reasoning around the elements appearing in the question. 

However, several AI systems have recently shown excellent performance by exploiting some statistical 

artefacts in the way the questions are generated. These systems use “clever tricks involving word order or 

other features of words or groups of words”. However, they do not really display the capabilities for 

referential disambiguation that the test is assumed to be measuring (Kocijan et al., 2020[38]).  

Winogrande is a much larger version meant to replace Winograd’s schemas. However, new language 

models have quickly reached good performance too, while still being far from general language 

understanding. This happens in all areas of AI, from natural language to machine vision. It is sometimes 

called the Clever Hans phenomenon, as AI finds alternative cues and tricks to solve the task in the same 

way as a celebrated 19th century horse did to amaze spectators (Lapuschkin et al., 2019[39]; Hernández-

Orallo, 2019[40]). Due to the Clever Hans phenomenon, the validity of many tests for AI systems is 

constantly questioned. This, in turn, provokes the “challenge-solve-and-replace” (Schlangen, 2019[31]) 

dynamics mentioned earlier. At its heart it reveals an adversarial game between AI developers (and their 

systems) and the evaluators (Hernández-Orallo, 2020[41]). Such an adversarial philosophy is intrinsic to 

evaluation and should be incorporated in the design of benchmarks and evaluation procedures.  
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New benchmarks from natural language processing 

There are several good examples of these new benchmarks in natural language processing.14 MOSAIC, 

for example, includes the adversarial generation of examples found in SWAG (Zellers et al., 2018[42]) or 

DynaBench.15 An adversarial example is modified slightly such that humans are not significantly affected, 

while AI systems fail catastrophically. Understanding how these examples must be generated for different 

kinds of AI systems can help improve the systems.  

Ultimately, if the only possible examples that make an AI system fail also make humans fail, the AI system 

may really be better than humans. At this point, the question of what the test measures, and all the 

variations of the instances that become part of the measure, can be considered. As AI systems become 

designed for the test, an adversarial mindset is needed more than for the evaluation of humans. Training 

to the test also happens for humans but to a lesser extent. 

Non-human animal tests and sandbox evaluation 

A less anthropocentric stance to the evaluation of AI looks at non-human animals. In the 1990s, for 

instance, the Cognitive Decathlon was built for DARPA's Biologically Inspired Cognitive Architecture 

programme, based on developmental tests (Mueller, 2010[43]). The battery was discontinued around ten 

years ago (Mueller et al., 2007[44]). However, in a related approach, the animal-AI environment builds on 

animal tests rather than human tests (Crosby et al., 2019[45]; Crosby et al., 2020[46]). If the adaptation of 

these tests become more common in the future, the main risk would still be overfitting the AI system to the 

test distribution, instead of really solving the constructs the test was supposed to measure.  

Sandbox evaluation provides a possible solution to overfitting. In these cases, rather than training 

instances, AI developers are provided with a “sandbox environment” to create different curricula for the AI 

system. Only when the system has been “raised” in the environment can evaluators disclose the tasks, 

and test the system, without further training or adaptation. The idea is to encourage the construction of 

systems that can master a domain, rather than mastering tasks from a distribution. The Animal-AI Olympics 

followed this philosophy (Crosby et al., 2019[45]; Crosby et al., 2020[46]). 

Expert judgement 

More immediate options to compare human and AI capabilities are needed until new tests inspired by 

human or animal evaluation or based on more fundamental principles are developed (Hernández-Orallo, 

2017[11]). A pragmatic alternative to tests is the use of human experts to assess AI capabilities through 

rubrics or other kind of questionnaires.  

Indirect mapping between job market and AI benchmarks 

Martínez-Plumed et al. (2020[22]) explore a hybrid solution that performs a mapping between AI 

benchmarks and the 14 cognitive abilities in Table 11.4. Through expert questionnaires and other 

methodologies (e.g. Delphi), a matrix of many-to-many correspondences is established between 

benchmarks and abilities. As the performance for different AI benchmarks is usually incommensurate, 

Martínez-Plumed et al. measure the intensity of research in terms of number of related papers or media 

articles. This measure, in turn, is mapped to intermediate abilities. By doing a similar mapping from abilities 

to other elements, such as occupational tasks, AI benchmarks can be linked with occupations 

(Figure 11.3).  
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Figure 11.3. Bidirectional and indirect mapping between job market (ISCO-3 specifications) and AI 
benchmarks 

 

Source: (Martínez-Plumed et al., 2020[22]). 

Bidirectional and indirect mapping is a promising approach but must be used cautiously for quantifying 

abilities. The “latent” intermediate abilities could, in principle, be mapped to other elements, such as human 

test results. However, the performance results of different benchmarks should not be aggregated; research 

intensities can be calculated for the ability but not the magnitude of the ability. This is because results at 

the leader boards for all benchmarks are about different AI systems. The systems that “solve” ImageNet 

are different from those used for Robocup. 

More importantly, even if the same general AI system is used for many of the benchmarks (e.g. a language 

model), the magnitudes of performance (the scales) are different (Hernández-Orallo and Vold, 2019[5]; 

Hernández-Orallo, 2020[41]). Indeed, 90% success in ImageNet cannot be averaged with 72% correct 

answers in Winogrande or a score of 570 points in Pacman.  

Normalising results against a human population is possible. However, the transformation should be based 

on percentiles over the human population rather than using human average performance. Moreover, this 

does not solve the scaling problem, as the relevance of each test would depend on the variance of the 

human population for that test.  

AI Collaboratory 

Some initiatives are exploring better mappings and aggregations of evaluation results for AI and humans 

to allow for meaningful comparison. One such initiative is the AI Collaboratory (Martínez-Plumed, Gómez 

and Hernández-Orallo, 2020[47]; Martínez-Plumed, Gómez and Hernández-Orallo, 2020[48]; Martínez-

Plumed, Gómez and Hernández-Orallo, 2020[49]). As part of the AI WATCH programme (Martínez-Plumed, 

Gómez and Hernández-Orallo, 2020[47]) of the European Commission, it collects and structures evaluation 

results for AI and humans, and building mappings and hierarchies.  

The AI Collaboratory is structured with a multidimensional schema. It contains information about the facts 

(the measurements) and satellite information about who is measured (the intelligent systems), what is 

measured (the tests) and how it is measured (the procedures). Each dimension is hierarchical. For 

instance, in the “who” dimension, systems can be aggregated into populations, populations into families, 

etc. In the “what” dimension, examples can be aggregated into tests, tests into batteries, etc. A taxonomy 

of abilities, as those seen in Figure 11.2 or Table 11.4, could be easily defined in the “what” dimension. 

Despite all the caveats for comparing human results with AI results, data-driven tools and meta-analyses 

are essential to understand how measurements relate to each other. 
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Recommendations 

With the dominance of the machine learning paradigm, and skills changing more rapidly, AI systems will 

likely become less specialised for particular skills and tasks to be profitable. Consequently, a taxonomy of 

abilities, such as the one shown in Table 11.4, using the principles in Box 11.1, serves as a foundation for 

the evaluation of more adaptable AI systems. There will be exceptions like testing standardised skills or 

tasks, such as driving, but more general, ability-oriented AI will be able to adapt to evolving tasks and skills 

required at home and in the workplace.  

 Develop new testing protocols and share detailed results for data-driven exploration 

It is not enough to think in terms of abilities rather than tasks, or to build new benchmarks that cover an 

ability rather than a task. Instead, new testing protocols in AI are needed that go beyond training-test, 

avoiding learning specialisation or even AI systems built for the test. Also, evaluations should consider all 

the resources and costs involved in the solution (data, compute, human computation, etc.) (Martínez-

Plumed et al., 2018[50]). Evaluation must become more iterative, more adversarial to avoid being gamed 

by AI researchers (willingly or not) (Hernández-Orallo, 2020[41]). Finally, there is a lack of meta-analysis 

and data-driven exploration of AI capabilities.  

 Use an intrinsic scale for new test designs  

Lack of common categories, and especially of commensurate scales, is a critical concern when reusing 

results from different AI benchmarks, and especially when comparing them with human tests results. New 

test designs should use an intrinsic scale, independent of the population to be tested. As an ultimate 

resource, scores could be normalised according to the distribution of human results rather than as a single 

individual or population average. AI often sets this average as a misleading threshold for “human-level 

performance”.  

 Learn from human evaluation 

Use of human tests for evaluating AI directly is not feasible for a number of reasons. However, ignoring 

human evaluation, its tests and its associated techniques would be a mistake. Such approaches offer 

lessons to learn from. They may imply a cognitive overhaul of evaluation in AI. Exploring mappings and 

meaningful aggregations that capitalise on the information from human tests and AI benchmarks is a 

worthwhile initiative. AI and robotics – and human hybridisations yet to come – deserve more than simple 

performance-based, task-oriented evaluation. 
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Notes 

 

1 The terms capability and capacity will be used more broadly, while the terms skill, knowledge and ability 

have more precise uses as follows. A skill is the "overlearned behavioural routine resulting from practice" 

(Seel, 2012[57]), which is represented by “the level of proficiency on specific tasks. It is the learned capability 

of an individual to achieve desired performance outcomes (Fleishman, 1972[52]). Thus, skills can be 

improved via practice and instruction” (Schuelke and Day, 2012[12]). Knowledge is typically used in a similar 

sense as skills but assumes a more theoretical or conceptual nature as opposed to the practical or 

actionable nature of skills. An ability "refers to a general trait, reflecting the relatively enduring capacity to 

learn tasks. Although fairly stable, ability may change over time primarily in childhood and adolescence 

through the contributions of genetic and developmental factors" (Schuelke and Day, 2012[12]). New skills 

are acquired using cognitive abilities and can build on previous skills and knowledge. See also section 3. 

2 The “Substitution, Augmentation, Modification, and Redefinition” (SAMR) model is a popular taxonomy 

covering the ways in which technology may affect tasks (Puentedura, 2006[55]; Hamilton, Rosenberg and 

Akcaoglu, 2016[53]), but the opposition of enhancement vs transformation does not work well for AI, 

especially as enhancement based on AI is usually coupled with significant modification and redefinition of 

tasks.  

3 A model or system overfits when it shows good performance for the examples seen during training (or 

examples from the training distribution) but generalises poorly for examples that are different from those 

seen during training.  

4 This has recently been rephrased as performance versus competence (Firestone, 2020[51]). 

5 www.onetcenter.org/taxonomy.html 

6 www.bls.gov/soc/2018/major_groups.htm 

7 www.ilo.org/public/english/bureau/stat/isco/  

8 https://ec.europa.eu/esco 

 

 

https://www.onetcenter.org/taxonomy.html
https://www.bls.gov/soc/2018/major_groups.htm
https://www.ilo.org/public/english/bureau/stat/isco/
https://ec.europa.eu/esco
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9 Summaries of these sources can be found in several tables and figures in Chapters 3-5 of (Hernández-

Orallo, 2017[11]). 

10 This analysis excludes non-cognitive behavioural features, such as personality traits, from the analysis, 

as their extrapolation to AI systems is even more farfetched. This does not mean that personality in 

machines has not been studied or even tried to be measured. For more information about non-cognitive 

behavioural features in machines, see (Hernández-Orallo, 2017[11]). 

11 For a summary of intelligence tests, developmental tests and attainment tests for humans, see Chapters 

3 and 12 of Hernández-Orallo (2017[11]). 

12 Most of these tests are not freely available. This is partly for commercial reasons and partly because 

having the questions in advance would lead to specialisation: humans would prepare for the test. 

13 This has happened from CIFAR10 (image classification) to CIFAR100 (Krizhevsky, 2009[54]), SQuAD1.1 

(Q&A) to SQuAD2.0, GLUE (language understanding) to SUPERGLUE (Wang et al., 2019[59]), Starcraft 

(real-time strategy) to Starcraft II (Vinyals et al., 2017[58]) and the Atari Learning Environment (ALE) 

(Machado et al., 2018[17]) to the PlayStation Reinforcement Learning Environment (PSXLE) (Purves, 

Cangea and Veličković, 2019[56]).  

14 https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks  

15 https://dynabench.org/  

https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks
https://dynabench.org/
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