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Abstract 

Artificial intelligence (AI) systems can use massive computational 

resources, raising sustainability concerns. This report aims to improve 

understanding of the environmental impacts of AI, and help measure and 

decrease AI’s negative effects while enabling it to accelerate action for the 

good of the planet. It distinguishes between the direct environmental 

impacts of developing, using and disposing of AI systems and related 

equipment, and the indirect costs and benefits of using AI applications. It 

recommends the establishment of measurement standards, expanding data 

collection, identifying AI-specific impacts, looking beyond operational 

energy use and emissions, and improving transparency and equity to help 

policy makers make AI part of the solution to sustainability challenges. 
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Abrégé 

Les systèmes d'intelligence artificielle (IA) peuvent utiliser des ressources 

informatiques considérables, ce qui pose des problèmes de développement 

durable. Ce rapport vise à améliorer la compréhension des impacts 

environnementaux de l'IA, et à aider à quantifier et à minimiser les effets 

négatifs de l'IA, tout en lui permettant de contribuer à accélérer les 

initiatives pour le bien de la planète. Le rapport distingue les impacts 

environnementaux directs liés au développement, à l'utilisation et à la 

destruction des systèmes d'IA et des équipements connexes, ainsi que les 

coûts et avantages indirects de l'utilisation d'IA. Ce rapport préconise 

l'établissement de normes de mesure, l'élargissement de la collecte de 

données, l'identification des impacts spécifiques à l'IA, la prise en compte 

de la consommation d'énergie et des émissions autres que celles liées à 

l'exploitation, ainsi que l'amélioration de la transparence et de l'équité pour 

aider les responsables de l’action publique à faire de l'IA une solution aux 

problèmes de durabilité. 
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Executive summary  

The green and digital “twin transitions” offer the promise of leveraging digital technologies for a 

sustainable future. As a general-purpose technology, artificial intelligence (AI) has the potential not just 

to promote economic growth and social well-being, but also to help achieve global sustainability goals. AI-

enabled products and services are creating significant efficiency gains, helping to manage energy systems 

and achieve the deep cuts in greenhouse gas (GHG) emissions needed to meet net-zero targets. However, 

training and deploying AI systems can require massive amounts of computational resources with their own 

environmental impacts.  

The computational needs of AI systems are growing, raising sustainability concerns. While AI can 

be perceived as an abstract, non-tangible technical system, it is enabled by physical infrastructure and 

hardware, together with software, collectively known as “AI compute”. In the last decade, the computing 

needs of AI systems have grown dramatically, entering what some call the “Large-Scale Era” of compute. 

At the same time, according to the International Energy Agency (IEA), data centre energy use has 

remained flat at around 1% of global electricity demand, despite large growth in workloads and data traffic, 

of which AI is estimated to represent a small fraction. While this may point to hardware efficiency gains, 

some researchers note that AI compute demands have grown faster than hardware performance, bringing 

into question whether such efficiency gains can continue. 

The environmental impacts of AI compute and applications should be further measured and 

understood. Policy makers need accurate and reliable measures of AI’s environmental impacts to inform 

sustainable policy decisions. The 2010 OECD Recommendation on ICTs and the Environment encourages 

the development of comparable measures of environmental Information ICT impacts. Further, the 2019 

OECD Recommendation on Artificial Intelligence underlines that AI should support beneficial outcomes for 

people and the planet. The 2021 OECD Recommendation on Broadband Connectivity also stresses the 

need to minimise the negative environmental impacts of communication networks. Yet further efforts are 

needed to develop measurement approaches specifically focused on AI and its environmental impacts.  

The report defines AI compute as including one or more “stacks” (i.e. layers) of hardware and 

software used to support specialised AI workloads and applications in an efficient manner. This 

definition was developed by the OECD.AI Expert Group on AI Compute and Climate (the “Expert Group”) 

to meet the needs of both technical and policy communities. Informed by the Expert Group and experts 

involved in the Global Partnership on AI (GPAI), this report synthesises findings from a literature review, a 

public survey and expert interviews to assess how the environmental impacts of AI are currently measured.  

A number of indicators and measurement tools can help quantify the direct environmental impacts 

from AI compute, as well as the indirect environmental impacts from AI applications. The report 

distinguishes between direct and indirect positive and negative environmental impacts. Direct impacts stem 

from the AI compute resources lifecycle (i.e. the production, transport, operations and end-of-life stages). 

Analysis indicates that direct impacts are most often negative and stem from resource consumption, such 

as the use of water, energy and its associated GHG emissions, and other raw materials. Indirect impacts 

result from AI applications and can be either positive, such as smart grid technology or digital twin 

simulations, or negative, such as unsustainable changes in consumption patterns.  
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Sustainability and measurement good practices enable efficiency gains in AI compute. Several good 

practices for sustainable AI exist, such as using pre-trained models, where relevant, and powering data 

centres with renewable resources. Researchers at the Massachusetts Institute of Technology (MIT) and 

start-up MosaicML are training neural networks up to seven times faster by configuring AI algorithms to 

learn more efficiently. Some compute providers are starting to report AI-specific estimates. For example, 

Google says that its machine learning workloads represented about 15% of its total energy use over the 

last three years. A large cloud compute provider3 estimates that between 7-10% of enterprise customers' 

total spend on compute infrastructure supports AI applications, with 3-4.5% used for training machine 

learning models and 4-4.5% spent using these models (known as “inference”). Such estimates help 

quantify AI-specific energy use and associated GHG emissions, while shedding light on how impacts differ 

according to whether compute is used to train AI models or to use them (inference).   

Policy makers must ensure that AI is part of the solution to meet global sustainability targets. A 

starting point is to address five measurement gaps with policy implications: 

1. Measurement standards for sustainable AI are needed. Measuring the environmental impacts 

of AI compute and applications to inform policy decisions would be facilitated by consensus on 

terminology, standards, consistent indicators and reporting requirements. A comprehensive 

framework developed by international or inter-governmental standard-setting institutions and 

international initiatives, as part of a multi-stakeholder process, could enable benchmarking, 

comparability and compatibility of national AI compute initiatives and their environmental impacts. 

Organisations such as the OECD could contribute to developing such a framework. 

2. Data collection on the environmental impacts of AI compute and applications should be 

expanded. Efforts to collect national, firm and AI model level environmental data should be 

expanded. National agencies and institutions, and private-sector actors should collect more data 

using sustainability metrics such as GHG emissions, energy, water and natural resources used for 

AI compute, and AI applications where possible. 

3. AI-specific measurements are difficult to separate from general-purpose compute. It is 

challenging to distinguish compute used for AI from that for other scientific, mathematical and 

general-purpose ICT needs. Further efforts should be made by governments, national statistical 

offices, intergovernmental organisations, the private sector, academia and others to disaggregate 

ICT infrastructure datasets, estimate the share used by AI and explore relevant proxy measures.  

4. Environmental impacts beyond operational energy use and GHG emissions should be 

considered. The environmental impacts of AI compute beyond the energy use and carbon footprint 

of the operations stage (i.e. the production, transport, and end-of-life stages) warrant further 

research. This includes biodiversity assessments and the impacts of AI compute on other planetary 

boundaries (e.g. land system change and freshwater use), direct natural resource impacts from 

manufacturing, transport and end-of-life impacts, and indirect impacts from AI applications. 

5. Efforts are needed to improve environmental transparency and equity everywhere. Most 

frameworks and analysis of AI compute are undertaken by experts from advanced economies. 

With negative environmental impacts anticipated to disproportionally affect emerging economies, 

further research should focus on ensuring that AI compute and applications support sustainability 

objectives across a broader range of national contexts, and sharing information and best practices. 
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Résumé 

La « double transition » verte et numérique recèle en elle la promesse d’une mobilisation des 

technologies numériques au service d'un avenir durable. En tant que technique universelle, 

l’intelligence artificielle (IA) n'a pas seulement le potentiel de promouvoir la croissance économique et le 

bien-être social : elle peut aussi contribuer à la réalisation des objectifs mondiaux en matière de durabilité, 

au sens où les produits et services rendus possibles par l’IA sont des sources de gains d’efficience 

importants, qui peuvent aider à gérer les systèmes énergétiques et à réaliser les importantes baisses 

d’émissions de gaz à effet de serre (GES) nécessaires pour atteindre les objectifs de neutralité carbone. 

Cela étant, l’entraînement et le déploiement des systèmes d’IA peuvent aussi nécessiter des quantités 

massives de ressources computationnelles ayant elles-mêmes des impacts environnementaux.  

Les besoins en puissance de calcul des systèmes d’IA ne font que croître, suscitant des 

inquiétudes en termes de durabilité. Si l’IA peut être perçue comme un système technique abstrait, non 

tangible, elle repose tout de même sur des infrastructures physiques, du matériel et des logiciels, désignés 

collectivement sous le nom de « capacité de calcul nécessaire à l’IA ». La dernière décennie a vu croître 

de manière spectaculaire les besoins informatiques des systèmes d’IA, nous faisant entrer dans ce que 

certains appellent « l’ère de la grande échelle ». Dans le même temps, selon l’Agence internationale de 

l’énergie (AIE), l’utilisation d’énergie par les centres de données est restée stable, à environ 1 % de la 

demande d’électricité mondiale, et ce, malgré l'augmentation considérable des charges de travail et de la 

circulation de données. Cette stabilité est peut-être le signe de gains d’efficience au niveau des matériels 

informatiques, l’IA ne représentant, selon les estimations, qu’une petite fraction de l’utilisation des 

technologies de l'information et de la communication (TIC) au sens large. Cependant, certains chercheurs 

relèvent que les demandes de capacité de calcul nécessaire à l’IA ont augmenté plus rapidement que les 

demandes de performance du matériel, si bien que l'on peut se demander si ces gains d’efficience vont 

pouvoir se poursuivre. 

Les impacts environnementaux de la capacité de calcul nécessaire à l’IA et de ses applications 

devraient donc être tout à la fois plus finement mesurés et mieux compris. De fait, les responsables 

de l’action publique ont besoin de mesures précises et fiables des impacts environnementaux de l’IA pour 

pouvoir prendre, de manière éclairée, des décisions durables. La Recommandation du Conseil de l'OCDE 

de 2010 sur les technologies de l'information et des communications et l'environnement encourageait déjà 

l’élaboration de mesures comparables des impacts environnementaux des produits et services des TIC. 

Par ailleurs, la Recommandation du Conseil de l’OCDE de 2019 sur l’intelligence artificielle souligne que 

l’IA devrait tendre vers des résultats bénéfiques pour les individus et la planète, notamment favoriser le 

développement durable. Enfin, la Recommandation du Conseil de l’OCDE de 2021 sur la connectivité à 

haut débit insiste également sur la nécessité de minimiser les impacts environnementaux négatifs des 

réseaux de communication. Cependant, des efforts encore plus poussés s’imposent pour élaborer une 

métrique concernant spécifiquement la capacité de calcul nécessaire à l’IA et ses impacts 

environnementaux.  
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Dans le présent rapport, la capacité de calcul nécessaire à l’IA est définie comme comprenant une 

ou plusieurs « strates » (ou couches) de matériels et de logiciels utilisés pour étayer, de manière 

efficience, les charges de travail et applications spécialisées propres à l’IA. Cette définition a été 

préparée par le Groupe d’experts OECD.AI sur la capacité de calcul pour l’IA et le climat (ci-après le 

« Groupe d’experts ») pour répondre aux besoins de la communauté des techniciens comme de celle des 

décideurs publics. S’appuyant sur les éclairages fournis par le Groupe d’experts ainsi que par des 

spécialistes du Partenariat mondial sur l'intelligence artificielle (PMIA) chargé du Groupe de travail sur l’IA, 

le présent rapport dresse une synthèse des conclusions recueillies à l’issue d’un examen de la littérature, 

d’une étude auprès du public et d’entretiens menés avec des experts afin d'évaluer comment sont 

actuellement mesurés les impacts environnementaux de la capacité de calcul nécessaire à l’IA et des 

applications de cette dernière.  

Plusieurs indicateurs et outils de mesures peuvent aider à quantifier les impacts 

environnementaux directs de la capacité de calcul nécessaire à l’IA, ainsi que les impacts 

environnementaux indirects des applications de l’IA. Dans le rapport, la distinction est faite entre les 

impacts environnementaux positifs et négatifs directs et indirects. Les impacts directs sont imputables au 

cycle de vie des ressources mobilisées pour la capacité de calcul nécessaire à l’IA (à différents stades : 

production, transport, activité et fin de vie). Les analyses montrent que les impacts directs sont le plus 

souvent négatifs et qu’ils sont le résultat de la consommation de ressources, par exemple la consommation 

d’eau, d'énergie (avec les émissions de gaz à effet de serre (GES) qu’elle entraîne) et de matières 

premières. Les impacts indirects sont dus aux applications de l’IA et peuvent être soit positifs, comme la 

technologie des réseaux intelligents ou les simulations à partir de jumeaux numériques, soit négatifs, 

comme des évolutions non durables des modes de consommation.  

De bonnes pratiques en matière de durabilité et de métrique sont des sources de gains d’efficience 

au niveau de la capacité de calcul nécessaire à l’IA. De bonnes pratiques pour une IA durable existent 

déjà, comme le recours à des modèles pré-entraînés, lorsque cela est possible, ou l’utilisation de 

ressources renouvelables pour l’alimentation électrique des centres de données. Des chercheurs du 

Massachusetts Institute of Technology (MIT), en coopération avec la start-up MosaicML, arrivent en ce 

moment à entraîner des réseaux neuronaux sept fois plus vite en configurant des algorithmes d’IA pour 

qu'ils apprennent de manière plus efficiente. Par ailleurs, certains fournisseurs de capacité de calcul 

commencent à communiquer des estimations spécifiques à l’IA. Ainsi, Google a fait savoir que les charges 

de travail d’apprentissage automatique avaient représenté 15 % de sa consommation totale d’énergie au 

cours des trois dernières années. Un grand fournisseur3 estime que, sur le total des dépenses de ses 

entreprises clientes en infrastructures de capacité de calcul, une proportion comprise entre 7 et 10 % est 

consacrée à des applications de l’IA, entre 3 et 4.5 % à l’entraînement de modèles fondés sur 

l’apprentissage automatique et entre 4 et 4.5 % à l’exécution de ces modèles (phase dite d’« inférence »). 

Ces estimations aident à quantifier l’utilisation d’énergie propre à l’IA et les émissions de GES qu’elle 

génère, et montrent comment les impacts diffèrent selon que la capacité de calcul est utilisée pour 

entraîner des modèles d’IA ou pour les utiliser (inférence).   

Il appartient aux responsables de l'action publique de s'assurer que l’IA fait partie de la solution 

adoptée pour atteindre les objectifs de durabilité au niveau mondial. On pourrait pour commencer 

essayer de combler cinq lacunes qui existent actuellement en matière de mesure et qui ont des 

conséquences en termes d'action publique : 

1. Il faut élaborer des normes de mesure à l’appui d'une IA durable. La mesure des impacts 

environnementaux de la capacité de calcul nécessaire à l’IA et de ses applications, de manière à 

éclairer l'action publique, serait facilité par un consensus sur la terminologie et les normes, par 

l’élaboration d'indicateurs et d’une métrique cohérents, et par des obligations de diffusion 

d’informations. L’élaboration d’un cadre global par des institutions internationales ou 

intergouvernementales ou des initiatives internationales chargées de définir des normes, via un 

processus impliquant de multiples parties prenantes, pourrait permettre l'évaluation comparative, 
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la comparabilité et la compatibilité des initiatives nationales en matière de capacité de calcul ainsi 

que de leurs impacts environnementaux, y compris en ce qui concerne l’IA. Des organisations 

comme l’OCDE pourraient contribuer à la mise en place d'un tel cadre. 

2. Il faudrait développer le recueil de données sur les impacts environnementaux de la 

capacité de calcul nécessaire à l’IA et des applications de cette dernière. Davantage d’efforts 

doivent être faits pour recueillir des données environnementales au niveau des pays, des 

entreprises et des modèle d’IA. Les organismes et établissements nationaux et les acteurs du 

secteur privé devraient collecter davantage de données reposant sur la métrique de la durabilité 

comme les émissions de GES ou l'énergie, l’eau et les ressources naturelles consommées par la 

capacité de calcul nécessaire à l’IA et, chaque fois que possible, par les applications de l’IA. 

3. Il est difficile de séparer les mesures concernant spécifiquement l’IA de celles qui 

concernent la capacité de calcul à visées générales. Distinguer entre la capacité de calcul 

utilisée pour l’IA et celle qui sert d'autres besoins informatiques scientifiques, mathématiques et 

généraux n’est pas une tâche aisée. Les pouvoirs publics, les instituts nationaux de statistique, les 

organisations intergouvernementales, le secteur privé, les milieux universitaires et les autres 

acteurs concernés devraient intensifier leurs efforts pour disjoindre les ensembles de données 

relatives aux infrastructures des TIC, estimer la part de celles qui sont utilisées pour l’IA et étudier 

la possibilité de recourir le cas échéant à une métrique de substitution.  

4. Les impacts environnementaux autres que la consommation d’énergie opérationnelle et les 

émissions de GES devraient aussi être pris en compte. Les impacts environnementaux de la 

capacité de calcul nécessaire à l’IA allant au-delà de la consommation d’énergie et de l’empreinte 

carbone de la phase opérationnelle (c’est-à-dire production, transport et fin de vie) méritent d’être 

étudiés plus avant. Il s’agit notamment d'évaluer les effets sur la biodiversité et les impacts de la 

capacité de calcul nécessaire à l’IA sur d'autres limites planétaires (par exemple l’évolution des 

systèmes terrestres ou la consommation d’eau douce), mais aussi les conséquences directes des 

phases de fabrication, de transport et de fin de vie sur les ressources naturelles, ainsi que les 

impacts indirects des applications de l’IA. 

5. Des efforts s’imposent pour améliorer la transparence et l’équité environnementales, 

partout dans le monde. La plupart des cadres et analyses applicables à la capacité de calcul 

nécessaire à l’IA sont élaborés par des experts issus de pays développés. Dans la mesure où l’on 

s’attend à ce que les incidences négatives sur l’environnement affectent de manière 

disproportionnée les pays en développement, les études qui vont être menées devraient viser en 

priorité à s’assurer que la capacité de calcul nécessaire à l’IA et les applications de cette dernière 

soient à même de promouvoir les objectifs de durabilité dans un large éventail de contexte 

nationaux, et à favoriser l’échange d’informations et de bonnes pratiques. 
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Artificial intelligence (AI) underpins some of the most promising technological solutions to today’s global 

challenges, including climate change and environmental sustainability. While AI-enabled technologies can 

create economic efficiency gains and improve well-being, their creation and use should be responsible, 

trustworthy and support sustainable development (OECD, 2019[1]).  

The world’s leading environmental scientists agree that humanity is rapidly approaching and exceeding 

planetary boundaries. Increasingly frequent warnings of planetary emergencies occur as natural systems 

experience “emergent failures, tipping points and non-linearities” (OECD, 2020[2]) such as the rapid 

disintegration of the Antarctic ice sheet and resulting acceleration of climate change. The United Nations 

Environment Programme (UNEP) highlights the “triple planetary crisis” of climate change, biodiversity loss 

and pollution (UNEP, 2020[3]). Further, the Intergovernmental Panel on Climate Change (IPCC, 2021[4]), 

the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services  (IPBES, 2019[5]), 

and established scientific organisations agree that human influence has already caused unprecedented 

changes in the atmosphere, ocean and biosphere. These emergencies call for rapid and decisive action 

to stabilise atmospheric greenhouse gas (GHG) concentrations and decrease human pressure on the 

environment and the planet’s ecosystems. 

Economies and societies around the world face two emerging trends: the green and digital “twin 

transitions”. Considering these transitions together can offer governments and societies an opportunity to 

leverage digital transformation for a green future. As a general-purpose technology with applications 

across sectors, AI can accelerate progress in many domains by creating efficiencies that decrease 

environmental impacts and lower emissions. However, the training and use of large-scale AI systems can 

also require massive amounts of processing power, memory, networking, storage and other resources – 

collectively known as “AI compute” – which can have significant environmental footprints from energy and 

water use, GHG emissions and end-of-life considerations. AI compute can also have indirect negative 

environmental impacts through its applications. To harness AI technologies to meet national and global 

sustainability goals, government, policy makers, academia and private sector actors need accurate and 

reliable measures of the environmental impacts of AI compute and applications. These include 

environmental impacts from production, transport, operations, and end-of-life considerations for AI 

compute, as well as environmental impacts from AI’s application. 

This realisation came into focus in the AI community in recent years, together with a sense of urgency to 

address this gap. Several initiatives have emerged to promote the sustainable use of AI and to propose AI 

regulation to incentivise sustainable AI applications and improve market uptake (European Parliament, 

2021[6]). As the first intergovernmental standard on AI, the 2019 OECD Council Recommendation on 

Artificial Intelligence recommends that stakeholders “proactively engage in responsible stewardship of 

trustworthy AI in pursuit of beneficial outcomes for people and the planet, such as (…) protecting natural 

environments” (OECD AI Policy Observatory, 2019[7]). The OECD Framework for the Classification of AI 

Systems, launched in 2022, places people and the planet at the framework’s centre (OECD, 2022[8]). 

Likewise, the Global Partnership on Artificial Intelligence (GPAI) published its responsible AI strategy for 

climate action with recommendations for governments to use AI in practice to address the climate 

emergency (GPAI, 2021[9]).  

1 Introduction 
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The UNEP-led Coalition for Digital Environmental Sustainability recognises the need for sustainable 

digitalisation, such as using planetary digital twins and promoting the circular economy (CODES, 2021[10]). 

UNESCO’s 2021 Recommendation on the Ethics of AI recommends that governments “assess the direct 

and indirect environmental impact throughout the AI system life cycle” and not use AI systems when there 

are “disproportionate negative impacts on the environment”. 

To better understand and measure national AI compute capacity and its environmental impact, the OECD 

created a dedicated expert group on AI compute and climate (hereafter, “the Expert Group”) to work 

towards developing a measurement framework and collecting data to help policy makers make evidence-

based decisions (Box 1). The objective of GPAI’s Responsible AI (RAI) Working Group is to contribute to 

the responsible development, use and governance of human-centred AI systems, including harnessing AI 

for climate action and biodiversity preservation led by GPAI’s Project RAISE (Responsible AI Strategy for 

the Environment). Experts from the OECD Expert Group and GPAI helped develop this report as an 

overview of existing and emerging proxies, indicators, frameworks and tools to measure the environmental 

impacts of AI compute and applications.   

Some researchers estimate that the computational capabilities required to train modern machine learning 

systems, measured in floating-point operations per second (FLOPS), has grown by hundreds of thousands 

of times since 2012 (OpenAI, 2018[11]). This is likely motivated by the increasing capabilities of large and 

more compute-intensive AI systems (Kaplan et al., 2020[12]; Hoffmann et al., 2022[13]). Research also notes 

that compute demands for AI systems, such as processing power, has grown faster than hardware 

performance, particularly for deep learning applications such as machine translation, object detection, and 

image classification (Thompson et al., 2020[14]). These trends are explored in further detail in additional 

OECD work informed by the Expert Group (OECD, forthcoming[15]). 

Reducing the environmental impacts of AI is to some extent linked to reducing the environmental impacts 

of information and communication technology (ICT) systems more generally. For example, it is possible to 

decrease the environmental impact of data centres – which play an important role in AI’s development and 

use, by integrating more energy-efficient server designs, connectivity architectures, cooling methods, and 

using 24/7 renewable energy sources. According to the International Energy Agency (IEA), several large 

network operators have significantly reduced their energy use by improving their networks’ energy 

efficiency. For example, between 2014 and 2019 the telecommunications company Sprint reduced the 

energy intensity of its network by more than 80%, despite increasing demand, keeping its total network 

energy consumption flat (IEA, 2021[16]).  

For AI specifically, advances in data science that lead to fewer training runs involving smaller data sets 

and less complex models can bring efficiencies more quickly than updating and modernising physical 

compute resources and infrastructure such as data centres. For example, researchers at the 

Massachusetts Institute of Technology (MIT) and at start-up MosaicML are training neural networks up to 

seven times faster by configuring AI algorithms to learn more efficiently (MosaicML, 2022[17]). Efficiency 

gains for both compute hardware and software, including algorithms, should be explored to maximise 

positive sustainability impacts in training and using AI systems.  

This report hopes to inspire dialogue between policy makers, researchers, companies and others to agree 

on indicators and good measurement practices. This evidence base aims to support an improved collective 

understanding of the impacts of AI compute and applications to help measure and decrease AI’s negative 

environmental effects while enabling its potential to accelerate action for the good of the planet. 
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Box 1. The OECD Network of Experts on AI and OECD.AI Expert Group on AI Compute and 

Climate 

The OECD Network of Experts on AI (ONE AI) provides policy, technical and business input to inform 

OECD analysis and recommendations. As a multi-disciplinary and multi-stakeholder group, ONE AI 

also provides the OECD with an outward perspective on AI, serving as a platform for the OECD to share 

information with other international initiatives and organisations. ONE AI raises awareness about 

trustworthy AI and sustainability issues, amongst other policy initiatives, particularly where international 

co-operation is useful.  

The OECD.AI Expert Group on AI Compute and Climate (hereafter “Expert Group”) advances 

understanding of AI compute and helps countries build awareness and work towards closing “compute 

divides” within and between countries. The Expert Group aims to provide actionable and user-friendly 

evidence on AI compute, including its environmental impacts. In doing so, it seeks to enable policy 

makers to evaluate current and future national AI compute needs and corresponding capacity.  

An AI compute divide can manifest within countries between the private sector and academia, as private 

sector actors often have greater resources and access to AI compute to advance their objectives. An 

AI compute divide can also manifest and worsen between countries, namely between advanced and 

emerging economies, if governments cannot make informed decisions about investments to fulfil their 

national AI plans. This opens a gap in countries’ ability to compute the complex AI models that lead to 

productivity gains in a global digital economy. 

The Expert Group aims to support policy makers and practitioners in developing tools and indicators 

that are measurable at the national level and enable sufficient geographic coverage for benchmarking 

to take place. Future recommendations resulting from its work will endeavour to be comprehensive, 

accessible to both technical and non-technical audiences, and dynamic and time-proof, allowing for 

evolution as compute hardware and software advance (e.g. faster processors, larger memory, next 

generation networks, quantum computing, etc.).   

The Expert Group is co-chaired by Keith Strier (Vice President of Worldwide AI Initiatives at NVIDIA), 

Jack Clark (Co-Founder of Anthropic) and Jennifer Tyldesley (Deputy Director of Economic Security at 

the Department of Digital, Culture, Media and Sport, United Kingdom). Sana Khareghani (former Head 

of the Office for AI, United Kingdom) and Satoshi Matsuoka (Director, RIKEN Centre for Computational 

Science, Japan) were co-chairs from October 2021 to early 2022. The Expert Group has met virtually 

every 3-4 weeks since April 2021. 

Source: OECD.AI Expert Group on AI Compute and Climate 
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2.1. What is AI compute? 

Alongside data and algorithms, access to computing resources fit for AI is a key enabler for its 

advancement and diffusion (Figure 1). While data and algorithms receive significant attention in policy 

circles at the OECD and beyond, the computing resources that make these advancements possible have 

been largely overlooked. Understanding a country’s needs and capacity for AI compute, and its relationship 

to AI diffusion, can support policy makers and practitioners in formulating national AI policies and ensuring 

they have the AI compute necessary to implement national AI plans.  

Figure 1. Examples of AI enablers 

 

Source: OECD.AI Expert Group on AI Compute and Climate  

While awareness of AI compute as a priority in national AI strategies is growing, its technical nature means 

that it is poorly understood outside specialised policy communities. Countries are increasingly questioning 

what environmental impacts result from operating large-scale AI models given their energy and water 

requirements, but they lack clear and standardised indicators and benchmarks to guide sustainability 

decisions for public- and private-sector investments in AI. This is why this report focuses on the 

sustainability impacts of AI compute, rather than the sustainability dimensions of data and algorithms. To 

take a holistic approach, the report also examines the environmental impacts of AI applications, although 

this area can be more difficult to measure given the variety of AI applications across products and services.  

According to the 2019 OECD Recommendation of the Council on Artificial Intelligence, an AI system is “a 

machine-based system that can, for a given set of human-defined objectives, make predictions, 

recommendations or decisions influencing real or virtual environments.” While AI can be perceived as an 

abstract, non-tangible technical system, it is grounded in and enabled by concrete physical infrastructure 

and hardware, which requires significant amounts of raw materials and natural resources.  

The Expert Group found that, while there is no widely used standard definition of AI compute, its core 

elements are understood by technical AI experts, developers and practitioners. The Expert Group thus 

proposes a definition of AI compute that would be accessible to both technical and policy communities: “AI 

2 Definitions, methodology and 

limitations 
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computing resources (‘AI compute’) include one or more “stacks” (i.e. layers) of hardware and software 

used to support specialised AI workloads and applications in an efficient manner” (Box 2).    

Beyond this general definition, this report refers to specific aspects of AI compute. AI compute 

infrastructure refers to physical systems (i.e. hardware, data centres, etc.) necessary for the development 

and application of AI. AI compute capacity refers to the totality of computing resources that can be used 

for AI, which can include key considerations that make this capacity effective, such as talent and skills. AI 

applications examine the indirect environmental impacts of deploying AI systems, which implicitly includes 

AI compute, for example from AI-generated predictions, recommendations or decisions applied in a given 

context. The AI compute resources lifecycle tracks the direct environmental impacts of production, 

transport, operations and end-of-life considerations for AI compute (Figure 3). 

 

Box 2. Defining and scoping AI compute 

Between April 2021 and April 2022, the expert group conducted eight meetings and launched a public 
survey to inform analytical work on defining and scoping the definition of AI compute. The proposed 
definition is based on these meetings, interviews with more than 25 experts and survey responses:  

“AI computing resources (‘AI compute’) include one or more stacks of hardware and software used to 
support specialised AI workloads and applications in an efficient manner.” 

This definition highlights several key properties central to a common understanding of AI compute:  

 AI compute includes stacks of hardware and software. AI workloads are not performed by 

one hardware or software component, but instead one or more “stacks” (i.e. layers) of 

components. The stacks include storage, memory, networking infrastructure and more, 

designed to efficiently support AI-specific workloads and applications that run mathematical 

calculations and process data at scale. The efficient interaction between the hardware and 

software stacks is crucial for AI compute. 

 AI compute stacks are specialised for AI workloads. AI training and use are enabled by 

specialised hardware. For example, graphics processing units (GPUs) are purpose-built for 

highly parallelised computing, which means that many calculations are carried out 

simultaneously, making them highly efficient for certain AI model types such as deep learning. 

AI compute stacks are becoming increasingly specialised, as AI applications, the number of 

parameters and dataset sizes continue to grow.  

 AI compute requirements can vary significantly. Depending on the application, AI system 

lifecycle stage and size of the system, the AI compute needed can vary, from large High-

Performance Computing (HPC) clusters or compute hyperscale cloud providers, to smaller 

data-science laptops and workstations. Consequently, compute requirements will vary 

significantly based on a country’s national AI plans and across the AI system lifecycle. 

 AI compute supports AI workloads and applications in an efficient manner. AI compute 

differs from general-purpose compute in that it is capable of supporting AI workloads and 

applications in an efficient manner (e.g. through optimised execution time and energy usage). 

This efficiency is critical for conducting AI R&D, using large models and datasets. 

Source: OECD.AI Expert Group on AI Compute and Climate 
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2.2. Methodology 

Building on the Expert Group’s work to define and scope AI compute, this report synthesises findings from 

a literature review, public survey and interviews with more than 25 experts to analyse the environmental 

impacts along the AI compute resources lifecycle and for AI applications. In doing so, this report 

differentiates between direct and indirect environmental impacts, based on a 2001 report to the OECD on 

the impacts of ICT on environmental sustainability (Berkhout and Hertin, 2001[18]), reflected in the 

International Telecommunication Union (ITU) Standard ITU-T L.1410, and Kaack et al.  

Direct environmental impacts relate to first-order1 environmental effects from the AI compute resources 

lifecycle, which examines impacts from the production, transport, operations and end-of-life impacts of AI 

compute. Indirect environmental impacts relate to second- and third-order environmental effects resulting 

from the application of AI, including positive impacts on climate action and negative impacts through 

induced consumption or rebound effects.   

Figure 2. Direct and indirect environmental impacts of AI compute and applications 

 

Source: OECD.AI Expert Group on AI Compute and Climate, literature review, expert interviews 

2.3. Limitations 

The research for this report revealed several limitations to evidence-based analysis. First, data on the 

environmental impacts of AI compute is not widely available in a standardised and validated form. As such, 

this analysis is largely based on existing and publicly available data, and peer-reviewed academic papers. 

This data limitation is particularly acute for measurements of AI compute water consumption and full 

lifecycle impacts, as these are currently underexplored and underreported. Second, because the market 

for AI compute resources is concentrated in a handful of hardware, software and cloud computing 

companies (Ahmed and Wahed, 2020[19]), disaggregated data on the environmental impacts of AI compute 

can be difficult to access and viewed as proprietary information in some cases.  

Third, data availability limitations also constrained the report’s analysis from differentiating between the 

compute needs of different AI systems, such as symbolic AI or machine learning. Fourth, the report also 

does not consider in depth the compute needs for processing and cleaning data for AI model training, 

which occurs at earlier stages of AI training and use. The Expert Group could further examine the compute 

needs of data for AI in its future work. Lastly, the report does not consider in depth the environmental 
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impacts of edge and Internet-of-Things (IoT) connected devices in the calculation of national capacity as 

further research is needed to establish what share of AI compute comes from these areas.  

A public survey was launched as part of the report’s data collection efforts (Annex C). This yielded a sample 

size of 118 responses as it was targeted to an audience with technical expertise or knowledge of AI 

compute. The sample size could be expanded as awareness about AI compute and its challenges grows. 

Future analysis could also benefit from the further participation of government representatives, private-

sector entities and academia in systematic data collection efforts. This could be considered in future work 

following the development of a measurement framework, including indicators and proxies for AI compute 

and applications. 



22  MEASURING THE ENVIRONMENTAL IMPACTS OF AI COMPUTE AND APPLICATIONS: THE AI FOOTPRINT 

 OECD DIGITAL ECONOMY PAPERS © OECD 2022 
  

This section takes stock of existing data and measurement frameworks related to the environmental 

impacts of AI compute and applications. It distinguishes between direct and indirect environmental impacts, 

as described in Figure 2. Analysis of direct environmental impacts is guided by the four stages of the AI 

compute resources lifecycle (Figure 3). The third stage of the lifecycle (AI compute operations) explores 

the impact of AI compute across the sustainability metrics of energy and water consumption, and GHG 

emissions. Finally, existing and emerging data and measurement frameworks related to positive and 

negative indirect environmental impacts resulting from the application of AI, are also explored outside this 

framework, along with a discussion on dual impacts.  

3.1. Direct environmental impacts of AI compute 

Most indicators and frameworks focus on the direct environmental impacts of AI compute, as opposed to 

indirect impacts resulting from AI applications. These direct environmental impacts occur along the AI 

compute resources lifecycle: (1) production, (2) transport, (3) operations and (4) end-of-life (Figure 3). 

Within this lifecycle, researchers and practitioners largely have focused on impacts from the operations 

stage where AI compute is used to train or deploy AI systems. While AI applications have both positive 

and negative impacts, the direct environmental effects of AI compute are largely negative in terms of GHG 

emissions and resource consumption, with compute infrastructure sometimes requiring large amounts of 

energy and other material inputs (Barteková and Börkey, 2022[20]). 

Guided by this framework, analysis of existing literature revealed that in the first, second and fourth stages 

of the AI compute resources lifecycle (production, transportation and end-of-life), most indicators and 

measurements relate to overall ICT equipment and hardware, which are not necessarily AI-specific. AI-

specific indicators and measurements were only found for the third stage (operations), in particular related 

to energy consumption and GHG emissions (Rohde et al., 2021[21]; Sustainability Index for Artificial 

Intelligence, 2022[22]). 

It is important to note that the AI resources lifecycle is a distinct framework from the AI system lifecycle as 

defined in the 2022 OECD Framework for the Classification of AI Systems, which defines the AI system 

lifecycle through the following phases: (1) planning and design; (2) collecting and process data; (3) building 

and using models; (4) verifying and validating the model; (5) deployment, and (6) operating and monitoring 

the system (OECD, 2022[23]). These frameworks are distinct as they examine different aspects of AI, with 

the former focusing on environmental impacts AI compute from a natural resources perspective, and the 

latter focusing on the stages of AI development, application and monitoring.  

In addition to the separate stages of the AI compute resources lifecycle, it is important to assess direct 

environmental impacts from their interconnection, to provide a comprehensive analysis (Wu et al., 

2022[24]). An example of such assessment is the Green Cloud Computing methodology from the German 

Environmental Agency, which looks at the following four impact categories: (1) abiotic resource depletion 

(i.e. use of minerals and fossil fuels); (2) cumulative energy demand (i.e. use of renewable and non-

3 Review of existing and emerging 

data and measurement frameworks 
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renewable energy); (3) global warming potential (i.e. impact on climate change); and (4) water consumption 

(UBA, 2021[25]). Full general lifecycle assessments (as defined in ISO standards 14040:2006 and 

14044:2006) could be developed for individual AI compute components, such as the different products that 

make up AI compute stacks, to assess their environmental impact across lifecycle stages. However, 

applying existing tools like product lifecycle assessments can be challenging due to the distinct compute 

needs of AI systems requiring stacks of hardware and software that can vary significantly in their 

composition and include many different individual and highly specialised products.  

Figure 3. Four stages of the AI compute resources lifecycle 

 

 

Note: This framework is distinct from the AI system lifecycle defined in the 2022 OECD Framework for the Classification of AI Systems as: (1) 

planning and design; (2) collecting and processing data; (3) building and using models; (4) verifying and validating the model; (5) deployment 

and (6) operating and monitoring the system (OECD, 2022[23]). 

Source: OECD.AI Expert Group on AI Compute and Climate 

3.1.1. Production  

AI compute production relies on the physical extraction and consumption of natural resources to build 

computing hardware, including computer chips, semiconductors, graphics processing units (GPUs) and 

central processing units (CPUs). There are many steps in the production of AI compute hardware and 

infrastructure, from mining, smelting and refining, to component manufacturing, such as semiconductor 

fabrication, and assembly. Environmental impacts along this value chain include soil contamination, 

deforestation, erosion, biodiversity degradation, toxic waste disposal, groundwater pollution, water use, 

radioactive waste and air pollution (Crawford, 2018[26]). However, few frameworks and indicators 

differentiate between the computing resources used uniquely for AI and those used for other scientific, 

academic or industrial applications. Often, data is only available for total ICT infrastructure production and 

is not disaggregated for AI uses and applications. 

Scientific literature reveals different estimates of how much the production stage adds to the environmental 

impacts of AI compute. Often, production impacts are overlooked due to difficulties in attribution 

(Henderson et al., 2020[27]), with some scholars arguing that lifecycle assessments would be “impractical 

at scale and would greatly reduce who can use the method” (Lannelongue et al., 2021[28]). Another reason 

given for excluding the production stage of AI compute from analysis is its presumed insignificance 
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compared to operational impacts (i.e. stage three of the AI compute resources lifecycle) (Siddik, Shehabi 

and Marston, 2021[29]). Others underscore that adopting renewable energy procurement and improving 

energy efficiency in data centres could result in production representing a higher portion of AI compute’s 

environmental footprint over time (Gupta et al., 2020[30]). Non-operational impacts, such as those resulting 

in the production stage, will thus become relatively more important (IEA, 2021[16]). At present however, 

many AI compute providers only report operational environmental impacts, excluding environmental 

impacts from production, which are difficult to estimate. 

One estimate of the carbon footprint from the production of data centres globally is 20 megatons of carbon-

dioxide-equivalent (CO2e), representing about 15% of total data centre GHG emissions in 2015 (Malmodin 

and Lundén, 2018[31]). The company Meta estimates that GHG emissions from the production of their data 

centres are around 30% of total company emissions for 2022 (Wu et al., 2022[24]). But as data centres shift 

to carbon-free energy sources, their long-term operation will account for fewer emissions and some 

estimates project the share resulting from data centre production could eventually increase to over 80% 

(Gupta et al., 2020[30]).  

Value-chain GHG emissions arising up- and down-stream of an entity’s immediate activities (known as 

“Scope 3 emissions”2) can account for a large proportion of the carbon footprint of cloud computing 

vendors. According to Meta, their share of value-chain emissions compared to total GHG emissions rose 

from 44% in 2017 to 99% in 2020 (Meta, 2021[32]), resulting in a “significant embodied carbon cost paid 

upfront” for new AI-driven system components for data centres (Wu et al., 2022[24]). Similarly, the share of 

value-chain GHG emissions according to Google increased from 45% in 2016 to over 90% in 2020 

(Google, 2022[33]). These increases in value-chain emissions are likely due to higher clean-energy 

procurement, which lowers the proportion of emissions from energy use. It should be noted that a carbon 

footprint analysis alone does not reflect the full environmental impact of AI compute production, including 

the mining of raw materials that can be environmentally damaging and carry significant supply and human 

rights risks (Crawford, 2021[34]). The environmental and social impacts of extracting raw materials like 

cobalt, palladium, copper, lithium and aluminium are rising on the agenda of policy makers (European 

Parliament, 2021[6]) and industry networks (Sustainable Infrastructure Alliance, 2022[35]). 

Indicators  

Metrics to consider at the production stage of the AI compute resources lifecycle: 

 GHG emissions from production, in metric tons of CO2e 

 the carbon intensity of production methods, in metric tons of CO2e per unit (e.g. per person or 

dollar of revenue) 

 the share of renewable energy used in production 

 the share of recycled or renewable materials used in production 

3.1.2. Transportation  

As with production, the environmental impacts of transporting AI compute hardware are difficult to 

disaggregate from those of transporting other ICT hardware, and even from the transportation of non-ICT 

goods in general. Transport activities can generate various negative environmental impacts, such as air 

pollution, oil spills, toxic-waste discharges and acoustic pollution (Crawford, 2018[26]; OECD, n.d.[36]). 

Global distribution, freight transportation, handling and storage depend on fossil fuels, with road-freight 

vehicles responsible for 2.4 gigatons of CO2e per year (around 6% of global energy-related emissions), 

and with shipping and aviation each responsible for about 1 gigaton of CO2e per year (around 2.5% of 

global energy-related emissions) (IEA, 2021[37]).  
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But only a small fraction of global transportation figures can be attributed to ICT hardware, and an even 

smaller portion can be attributed to the transportation of AI compute hardware, such as specialised GPU 

racks. The few estimates available put transport of AI compute hardware at less than 5% of total GHG 

emissions over an AI system’s lifetime, with some estimates as low as less than 1% (Gupta et al., 2020[30]). 

The differences in estimates could be attributed to the location of hardware production and the 

corresponding transport distance.  

The decarbonisation and sustainability of transportation is a global undertaking. While transportation of AI 

compute hardware has a small impact compared to other lifecycle stages, opting for sustainable and 

environmentally responsible transportation methods should be further explored and considered.  

Indicators 

Metrics to consider at the transportation stage of the AI compute resources lifecycle: 

 GHG emissions from transportation of AI compute hardware in metric tons of CO2e 

 the carbon intensity of the transport methods in metric tons of CO2e per unit (e.g. per person or 

dollar of revenue) 

 the share of low-carbon energy and/or renewable energy used in these transport methods 

3.1.3. Operations 

The environmental impacts of operating AI compute primarily relate to energy consumption, GHG 

emissions and water consumption, which can occur when an AI system is developed, such as through 

training, and deployed, for example by applying AI models to make predictions, recommendations or 

decisions (also known as inference). These three environmental impacts are further explored below.  

Energy consumption 

Compared to the production and transport stages of the AI compute resources lifecycle, energy 

consumption is well documented for global data centres and ICT at large. Although a range of estimates 

exist (Banet et al., 2021[38]), researchers and institutions arrive at fairly consistent results. The IEA 

estimates global data centre electricity demand at 194 Terawatt Hours (TWh) in 2014, or 1% of global 

electricity demand (IEA, 2017[39]). By 2020, due to large efficiency gains, that estimate had only risen to 

200-250 TWh and remained at 1% of global electricity demand (IEA, 2021[16]). Other experts estimate 

worldwide energy demand by data centres in a similar range: at 190 TWh in 2020, with most coming from 

cloud and hyperscale operators (Sönnichsen, 2021[40]). Masanet et al. estimate demand at 205 TWh in 

2018, or 1% of global electricity consumption, and just a 6% increase from 2010 despite a 550% increase 

in data centre compute demand over the same time period (Masanet et al., 2020[41]).  

Notably, efficiency improvements and the shift to large hyperscale data centres have offset much of the 

exponential growth in data centre services in the past decade, keeping the estimated energy use of data 

centres almost flat (IEA, 2021[16]). Further efficiency could be achieved through specialised AI hardware 

and network architecture, such as breakthroughs in energy efficiency using ultra-low-energy artificial 

neurons (IEEE, 2022[42]). However, with technological changes in ICT and the acceleration of digital 

transformation during the COVID-19 pandemic, this trend might vary in the future. Some estimate that data 

centres could account for 783 TWh by 2030, or around 2.6% of global electricity use which is estimated to 

reach 30 000 TWh in 2030  (Andrae, 2020[43]).  

At the national level, few governments track energy consumption and projected demand by ICT 

infrastructure and related AI compute resources within their borders. In Denmark, annual demand by data 

centres is expected to grow from near-0 in 2020 to 5 TWh by 2025 and 7.5 TWh by 2030 (Danish Energy 



26  MEASURING THE ENVIRONMENTAL IMPACTS OF AI COMPUTE AND APPLICATIONS: THE AI FOOTPRINT 

 OECD DIGITAL ECONOMY PAPERS © OECD 2022 
  

Agency, 2020[44]). In Ireland, a European hub for data centre operators, electricity consumption by data 

centres increased 144% from 2015 to 2020, accounting for 11% of metred electricity consumed in the 

country in 2021 (Central Statistics Office, 2022[45]). Median-demand scenarios estimate that this figure 

could rise as much as 23% by 2030 (EirGrid, 2021[46]). In the Netherlands, data centre energy use grew 

from 1.6 TWh in 2017 to 2.7 TWh in 2019, representing 2.7% of national electricity supply (CBS, 2021[47]). 

In the United States, data centres accounted for 70 TWh or 1.8% of total electricity consumption in 2014  

(Shehabi et al., 2016[48]). Estimates for total electricity consumption by data centres in the European Union 

(EU27) in 2018 range between 42 TWh (European Commission, 2022[49]) and 54 TWh for EU27 countries 

in addition to the United Kingdom (Montevecchi et al., 2020[50]), or 2-3% of overall electricity consumption.  

A Greenpeace report puts Chinese data centre electricity consumption at 161 TWh in 2018, of which 75% 

came from coal-fired power stations (Greenpeace China, 2021[51]). The Chinese State Grid Energy 

Research Institute reported that the People’s Republic of China’s (hereafter “China”) data centre energy 

consumption at 200 TWh in 2020. However, the details of whether such estimates include 5G networks 

and bitcoin mining are unclear (Chinese State Council, 2021[52]). If accurate, this could indicate that current 

estimates of global data centre energy consumption are lower-bound estimates, and real energy 

consumption could be higher (Hintemann, 2018[53]).  

Around the world, recent reports have pointed to the demand for data centres contributing to increased 

pressure on local energy grids. There are reports of new housing developments being halted due to the 

high electricity demands of data centres (Financial Times, 2022[54]), while some jurisdictions consider a 

moratorium on new data centre construction due to strained national power supplies and energy grid 

constraints (The Times, 2022[55]). Climate change and more frequent heatwaves are also reported to add 

stress on power grids and data centres, which can lead to outages (Google Cloud, 2022[56]).  

Many data centre operators report energy consumption, including total electricity consumption, energy 

efficiency and power usage effectiveness (PUE), renewable energy procurement, facility energy use, and 

renewable energy consumption (Apple, 2021[57]; Meta, 2021[32]; Google, 2022[33]; Microsoft, 2021[58]; Digital 

Realty, 2019[59]; Equinix, 2021[60]). ICT companies and large operators are major purchasers of renewable 

energy and account for almost half of global corporate renewable energy procurement (IEA, 2021[16]). 

Worldwide associations like the Energy Efficient High Performance Computing Working Group and the 

Center of Expertise for Energy Efficiency in Data Centers, aspire to drive energy efficiency and share best 

practices (EEHPCWG, 2022[61]; Center of Expertise for Energy Efficiency in Data Centers, 2022[62]).  

Several approaches and frameworks estimate energy consumption by machine learning models. These 

allow for a more granular assessment of dedicated AI models than do global estimates. The use of 

standard metrics for reporting efficiency, such as training time and hyperparameter sensitivity, could 

improve comparability between models (Strubell, Ganesh and McCallum, 2020[63]). The Green500 list 

ranks the top 500 most powerful supercomputers from around the world according to their energy efficiency 

(Green500, 2021[64]). Others propose Bayesian deep learning (Welling, 2018[65]) and sustainable federated 

learning (Guler and Yener, 2021[66]) to make AI more power-efficient. Future machine learning models will 

need to balance performance and efficiency as demand for AI compute grows with the creation of more 

complex and large AI models (Desislavov, Martínez-Plumed and Hernández-Orallo, 2021[67]).  
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Box 3. Optimising energy use to reduce direct environmental impacts at DeepMind AI 

Over 40% of DeepMind AI’s data centre energy use comes from cooling systems. AI can help operators 

make data centres more efficient, decreasing energy consumption and resulting GHG emissions. 

DeepMind’s reinforcement learning algorithm was applied at one of Google’s data centres and is 

reported to reduce energy use by 30-40% compared to cooling systems without optimisation.  

Source: (DeepMind, 2016[68]; DeepMind, 2018[69]; Zhang et al., 2017[70])  

 

Indicators 

Energy consumption metrics to consider at the operations stage of the AI compute resources lifecycle: 

 electricity consumption in TWh 

 renewable electricity consumption in TWh 

 Power Usage Effectiveness (PUE) for total facility power compared to ICT equipment power 

Greenhouse gas emissions 

The operational carbon footprint of AI compute relates directly to its energy consumption, often from non-

renewable energy sources. The global ICT industry (including hardware such as televisions) is estimated 

to be responsible for 1.8-2.8% of global GHG emissions, while other calculations estimate it as high as 

2.1-3.9% (Freitag et al., 2021[71]). A more suitable estimate (excluding televisions) puts the ICT-industry 

figure at 700 metric tons of CO2 in 2020, or 1.4% of global emissions (ITU, 2020[72]).  

Examining trends for ICT emissions, some researchers claim GHG emissions have plateaued as 

“footprints are significantly smaller than previously forecasted” (Malmodin and Lundén, 2018[31]). 

Differences in estimates can be explained by underlying assumptions about the future global energy supply 

mix, as projections depend largely on the carbon intensity of electricity supply and the availability of 

renewable energy sources. The ITU and the World Benchmarking Alliance (WBA) estimate that the 150 

largest digital companies account for 1.6% of global electricity use, of which 32% comes from renewable 

sources (International Telecommunication Union and World Benchmarking Alliance, 2022[73]). In the United 

States, around 0.5% of national emissions are estimated to be from data centres (Siddik, Shehabi and 

Marston, 2021[29]). More broadly, cloud and hyperscale data centres are estimated to account for 0.1-0.2% 

of global emissions (Kaack et al., 2022[74]).  

AI compute is estimated to account for only a fraction of these numbers. However, few estimates of AI’s 

energy demand exist, with these estimates rarely differentiating between AI training and use (or 

“inference”) workloads. According to one study by Google, its overall energy use for machine learning 

workloads consistently represented less than 15% of total energy use over the three-year period from 2019 

through 2021 (Patterson, 2022[75]). Other estimates use customer spending to approximate the percentage 

of compute used between AI training and inference workloads. For example, a large cloud compute 

provider3 estimates that its enterprise customers spend between 7-10% of their total compute infrastructure 

expenditure on supporting AI and machine learning applications, broken down between training and use 

(“inference”) at approximately 3-4.5% for machine learning training and 4-4.5% for machine learning 

inference. This includes about 60% spent on compute platforms featuring hardware accelerators like 

GPUs, and about 40% spent on CPU-based compute platforms. Such numbers can inform estimates of 
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AI-specific energy use and associated GHG emissions, while shedding light on how impacts differ 

according to whether compute is used for AI training or inference.   

Many of the world’s largest data centre operators announced plans to power them with 100% renewable 

energy (Dhar, 2020[76]). Amazon announced its intention to power all company operations with renewable 

energy by 2025 and become carbon-neutral by 2040  (Amazon, 2022[77]). In 2021, it reported to source 

85% of its energy from renewable sources across its business, including AWS (Amazon, 2022[77]). Google 

reports on its emission inventory, compensation for emissions, and carbon intensity, matching 100% of 

annual electricity use with renewable energy since 2017. Annual electricity matching means purchasing 

renewable energy to equal annual energy consumption through power-purchase agreements. As annual 

electricity matching can still contain a significant share of non-renewable resources, Google committed to 

run on 24/7 carbon-free energy by 2030, meaning that every kilowatt-hour of electricity use is met with 

carbon-free electricity sources (Google, 2022[33]).  

Google also introduced a policy roadmap to achieve completely carbon-free energy (Google, 2022[78]) and 

a system for “carbon-intelligent” compute management, which generates “carbon-aware” capacity 

estimates for its data centres (Radovanovic et al., 2021[79]). Similarly, Meta reports on GHG emissions and 

carbon intensity and announced it has been running carbon-neutral operations as of 2020. Meta plans to 

achieve net-zero emissions throughout its supply chain by 2030 (Meta, 2021[32]). It also implemented 

designs for “carbon-aware” data centres under its Carbon Explorer Framework (Acun et al., 2022[80]). 

Microsoft reports on its emission inventory and carbon-neutrality offsets and aims to become carbon 

negative by 2030 (Microsoft, 2021[58]).  

Major cloud computing vendors offer tools for their customers to estimate carbon-footprints based on their 

cloud compute usage. AWS introduced a carbon-footprint tool to help customers understand and forecast 

emissions of cloud services (Amazon Web Services, 2022[81]). This includes a shared-responsibility model 

in which they provide sustainable infrastructure, efficient cloud usage and workloads while customers are 

encouraged to run their models efficiently (Amazon Web Services, 2021[82]). Google provides carbon-

footprint reports based on the Greenhouse Gas Protocol carbon accounting standards (Google Cloud, 

2022[83]). Microsoft offers an emissions impact dashboard showing direct and indirect GHG emissions of 

its cloud services (Microsoft, 2022[84]). Third-party providers also offer free and open-source tools to 

estimate cloud GHG emissions (Cloud Carbon Footprint, 2022[85]). It is important to note that these 

customer-facing tools only estimate operational emissions from AI training and use, and not embodied 

emissions from the entire AI compute resources lifecycle, such as emissions created during hardware and 

infrastructure production, transportation and end-of-life.  

A number of researchers put forward tools and frameworks to estimate the carbon impact of AI models, 

such as the Machine Learning Emissions Calculator (Lacoste et al., 2019[86]), a free online tool called 

Green Algorithms (Lannelongue et al., 2021[28]) and a software package that can be integrated into a 

Python codebase (CodeCarbon, 2022[87]). One framework, called the experiment-impact-tracker, provides 

an interface for real-time tracking of GHG emissions and explores how regional energy-grid differences 

can reduce emissions by up to 30% using low-carbon energy sources (Henderson et al., 2020[27]). 

Researchers also put forward best practices, including the use of pre-trained models and transfer-learning, 

where appropriate; efficient machine learning model architectures; processors optimised for machine 

learning, cloud computing and usage optimisation; and shifting operations to data centres with low-carbon 

energy availability  (Patterson et al., 2021[88]). 
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Indicators 

GHG emissions metrics to consider at the operations stage of the AI compute resources lifecycle:  

 GHG emissions in metric tons of CO2e 

 carbon intensity in metric tons of CO2e per unit (e.g. per person or dollar of revenue) 

 carbon usage effectiveness (CUE): the ratio of total CO2e emissions caused by total data centre 

energy consumption to the energy consumption of ICT equipment 

Water consumption 

While many discussions about sustainable compute revolve around energy efficiency and zero-carbon 

operations, freshwater consumption is a resource with major, often-overlooked environmental impact 

(Heslin, 2016[89]). AI compute hardware and infrastructure consume water in two major ways: (1) directly, 

for cooling and (2) indirectly through water use for electricity generation. The production stage of AI 

compute, such as semiconductor fabrication, can also use large amounts of water. Compared to 

operational energy use and GHG emissions, water consumption is poorly understood. Only about 33-50% 

of data centre operators compile and report water-use metrics (Mytton, 2021[90]; Uptime Institute, 2021[91]; 

Google Cloud, 2022[83]) such as water withdrawal minus water consumption, or water returned to the local 

water system following use (Microsoft, 2021[58]; Meta, 2021[32]; Siddik, Shehabi and Marston, 2021[29]).  

In the United States, data centres are estimated to account for less than 1% of total water consumption 

(Mytton, 2021[90]). However, they compete with users such as hospitals or agricultural production. The 

United States data centre industry draws directly and indirectly from 90% of national watersheds and is 

one of the top ten water-consuming industries in the country. Data centres often cluster in similar 

geographic areas and many rely on scarce water supplies, particularly in the western United States (Siddik, 

Shehabi and Marston, 2021[29]).  

Water consumption increasingly features in debates around the sustainability of AI compute. European 

industry associations for data centres and cloud infrastructure list water conservation as a priority (Climate 

Neutral Data Centre Pact, 2022[92]). Data centres based on liquid cooling could also recover the excess 

heat for on-site GHGs, nearby buildings or local heating, in what some call an Organic Data Centre (ODC) 

approach (Karnama, Haghighi and Vinuesa, 2019[93]). 

Box 4. Efficient water and energy use to minimise environmental impacts: Lefdal Mine Datacenter 

Located inside a former mine in the Sogn og Fjordane region of Norway, the Lefdal Mine Datacenter 

offers a case study in sustainable data centre architecture that minimises the direct environmental 

impacts of compute. Using 100% renewable hydropower electricity, the data centre guarantees a PUE 

of 1.15, close to the generally accepted ideal PUE of 1.0 (ratio of total energy used to the energy 

delivered to computing equipment). Notably, Lefdal Mine uses very little water in its operations. It also 

reuses the heat generated by cooling solutions based on the supply of cool sea water. As a signatory 

of the Climate Neutral Data Centre Pact and the iMasons Climate Accord, its data centre is on track to 

become fully carbon-neutral. 

While its unique location and geographic advantages are hard to replicate, it is an example of the 

Norwegian Data Centres Strategy goal to become “the world’s most sustainable data centre nation” by 

highlighting the potential of renewable energy, low water usage and ways to re-use excess heat.  

Source: (Lefdal Mine Datacentre, n.d.[94]) 
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Indicators 

Water-consumption metrics to consider at the operations stage of the AI compute resources lifecycle:  

 water withdrawal in cubic meters 

 water consumption in cubic meters 

 water discharge (quality) in cubic meters 

 water usage effectiveness (WUE) in litres per kilowatt-hour 

 water withdrawal intensity in cubic meters per unit (e.g. per person or dollar of revenue) 

3.1.4. End-of-life  

The resources lifecycle of AI compute ends with recycling or disposing of electronic waste (e-waste). The 

collection, shipping, recovering and disposal of AI compute hardware has environmental and social 

impacts such as air pollution, acidic and radioactive waste, groundwater pollution, and more (Crawford, 

2018[26]). Much of global e-waste disposal is conducted in developing countries, adding to their 

environmental and social challenges (Forum, 2019[95]). The OECD tracks e-waste, defined as all items of 

electric or electronic equipment discarded by their owner, and national recycling levels (OECD, 2019[96]). 

There is a significant gap between e-waste generated and recycled or reused (Figure 4).   

Figure 4. E-waste generation and recycling or reuse, 2016 

 

Note: This figure does not distinguish between AI and non-AI e-waste. The figure covers six waste categories: (1) temperature equipment; (2) 

screens, monitors; (3) lamps; (4) large equipment; (5) small equipment; and (5) small IT and telecommunication equipment. Disaggregating 

these categories could better estimate AI compute-related impacts.  

Source: (OECD, 2019[96]), see Statlink: https://doi.org/10.1787/888933931086 

As in the production and transport stages of the AI compute resources lifecycle, most indicators and 

measurements of end-of-life impacts relate to overall ICT equipment and hardware. ICT infrastructure 

accounts for about 12 million tons, or 25% of total global electronic waste (Sustainable Infrastructure 

Alliance, 2022[35]). Increasingly, used AI compute equipment is also sold, repurposed and fed into closed-

loop supply chains that re-use or recycle materials (IT Renew, 2022[97]). The European Commission 

launched the Sustainable Products Initiative, designed to make ICT equipment more durable, reusable, 

repairable and recyclable, and proposed a digital product passport to track hardware along its lifecycle.  

Further efforts could be made to incorporate principles of circular design, extended-life hardware, and 

recycling for AI related equipment (Sustainable Infrastructure Alliance, 2022[35]). 
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Indicators 

Metrics to consider at the end-of-life stage of the AI compute resources lifecycle: 

 electronic waste in metric tons 

 recycling rate 

 electronics disposal efficiency (EDE) percentage 

 percentage of electronic waste sent to landfills 

 

3.1.5. Positive direct environmental impacts of AI compute 

Some scholars propose the term “green AI” to describe AI systems that do not increase (and ideally, 

decrease) the environmental costs associated with compute. This contrasts with “red AI”, where accuracy 

is obtained through the use of massive AI compute resources with little regard for the environmental impact 

(Schwartz et al., 2019[98]). Since even green AI consumes resources, it still has negative impacts on the 

environment. In only a handful of cases do positive direct environmental impacts result from AI compute, 

which are described below. These could be further analysed, expanded and emulated by AI compute 

providers.  

Data centres produce large amounts of excess heat, typically considered “low-grade energy”. This energy 

usually cannot be repurposed for other activities as the temperatures are too low, typically below 35 

degrees Celsius. Instead, excess heat is often directed into cooling towers. Several methods have been 

proposed to recover this heat, for example by combining the operation of a data centre and an onsite 

greenhouse or transferring it to local energy networks (Karnama, Haghighi and Vinuesa, 2019[93]; 

ReUseHeat, 2017[99]). 

In terms of water consumption, several cases show the quality of wastewater released from data centres 

to actually be higher than when it was drawn from the source (Siddik, Shehabi and Marston, 2021[29]). 

However, this wastewater often must be treated after use, which consumes electricity and produces 

emissions, rendering the net sustainability impacts unclear.  

3.2. Indirect environmental impacts of AI applications 

The indirect environmental impacts of AI compute, which result through the application of AI, are a growing 

area of research and analysis. The application of AI and its structural and behavioural effects can cause 

both positive and negative indirect environmental impacts. However, given the multiplicity of AI applications 

and their indirect impacts’ diffuse nature, these are much harder to quantify than direct impacts. To date, 

assessments of indirect environmental impacts are largely qualitative, but their potential large-scale effect 

on climate action and planetary health provide a compelling case for the further development of analytical 

and measurement frameworks. 

3.2.1. Negative indirect environmental impacts of AI applications  

AI applications can cause negative environmental impacts. For example, AI applications can exacerbate 

the negative environmental impacts of the mining, extractive and manufacturing sectors, where advanced 

AI applications can be used upstream for finding and extracting minerals or fossil fuels, midstream for 

transport and material storage, and downstream for product refining. While AI can increase efficiencies 

that support sustainability efforts, these applications can also work to increase net GHG emissions instead 
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of lowering them. For example, AI recommender systems used in e-commerce could increase consumption 

in unsustainable ways. Companies have also been reported to use the cloud to shift IT-related emissions 

from mandatory reporting requirements (e.g. on-premise) to voluntary reporting categories (e.g. 

outsourced cloud services) to “hide greenhouse gas emissions in the cloud” (Mytton, 2020[100]).  

AI applications can also have complex, systemic effects on the environment and human behaviour. For 

instance, researchers observe that efficiency gains can be offset by “rebound effects” that cancel out 

positive sustainability impacts (Paul et al., 2019[101]). Rebound effects such as the “Jevons Paradox” occur 

when efficiency gains through technological progress are offset by acceleration in resource consumption 

(Giampietro and Mayumi, 2018[102]). Some researchers also observe a low willingness among consumers 

to pay for energy-efficient AI applications (König, Wurster and Siewert, 2022[103]). This led some 

researchers to point out the limitations of relying on efficiency increases alone, asserting that the compute 

demands of AI in its current form make future progress “economically, technically, and environmentally 

unsustainable” (Thompson et al., 2020[14]). Applying behavioural insights (e.g. recognition of the effect of 

different consumer biases on behaviour) to this area may assist in designing more effective policies (e.g. 

labelling schemes or mandatory information disclosures) that nudge consumers towards more energy 

efficient AI applications (OECD, 2017[104]). 

3.2.2. Positive indirect environmental impacts of AI applications 

Rolnick et al. highlight the areas in which AI applications can have a positive impact on climate action. 

These include electricity systems, transportation, buildings and cities, industry, farms and forests, GHG 

removal, climate prediction, societal impacts, solar geoengineering, individual and collective action, 

education and finance (Rolnick et al., 2022[105]). Energy system operators increasingly leverage AI-

supported digital twin simulations to optimise energy systems and other environmental parameters. A 

digital twin can be defined as “a digital representation of a real-world entity or system…that mirrors a 

unique physical object, process, organization, person or other abstraction” (Gartner, n.d.[106]). On a larger 

scale, AI is leveraged in initiatives such as the European Space Agency’s Destination Earth project to 

digitally model the Earth’s environmental systems (Box 5). 

Box 5. Digital twin for forecasting and resilience against climate change at Destination Earth 

Understanding the interactions between human activities and natural phenomena is key to combating 

climate change and the biodiversity crisis. As part of the European Commission’s Green Deal, 

Destination Earth (DestinE) is developing a digital twin of the Earth, supported by AI capacity and the 

EU’s High-Performance Computing Joint Undertaking. Implemented by the European Space Agency, 

the European Centre for Medium-Range Weather Forecasts (ECMWF) and the European Organisation 

for the Exploitation of Meteorological Satellites (EUMETSAT), Destination Earth will enable dynamic 

Earth simulations, improve prediction capabilities and inform European environmental policy-making.  

Source: (European Commission, 2022[107]; European Commission, 2022[49]; ECMWF, 2022[108]) 

Several consulting firms put forward estimates of the environmental impacts of AI applications, although 

their methodologies vary and often are not publicly disclosed (Kaack et al., 2022[74]). Boston Consulting 

Group (BCG) estimate that AI applications could help eliminate 2.6 to 5.3 gigatons of GHG emissions (5-

10% of total emissions) and generate USD 1.3 to 2.6 trillion in value in revenues and cost savings through 

corporate sustainability by 2030 (BCG, 2021[109]). Capgemini estimated in 2020 that AI could reduce GHG 

emissions by 16% and improve power efficiency by 15% by 2025 (Capgemini, 2020[110]). According to 

PricewaterhouseCoopers (PwC), AI could increase global GDP 4.4% and reduce GHG emissions by 4%, 

or 2.4 gigatons, by 2030 (PWC, 2018[111]). 



MEASURING THE ENVIRONMENTAL IMPACTS OF AI COMPUTE AND APPLICATIONS: THE AI FOOTPRINT  33 

OECD DIGITAL ECONOMY PAPERS © OECD 2022 
  

AI can enable and contribute to the 17 UN Sustainable Development Goals (SDGs), including climate 

action (SDG 13), life below water (SDG 14) and life on land (SDG 15) (Vinuesa et al., 2020[112]). Examples 

include facilitating climate analysis and forecasting, promoting energy conservation, improving GHG 

absorption and carbon storage, as well as decarbonising carbon-intensive sectors such as transport and 

agriculture (AI4SDGs, 2022[113]). Beyond climate action, AI applications can also be used for biodiversity 

conservation, healthy oceans, water security, clean air and weather and disaster resilience (World 

Economic Forum, 2018[114]). For example, AI applications have been leveraged to prevent wildlife 

destruction by supporting local conservation efforts  (Gomes, 2019[115]) and could help cities detect costly 

water leaks in municipal water systems (Cody, Harmouche and Narasimhan, 2018[116]).  

Use cases and tools have emerged in recent years to promote the use of AI for environmental 

sustainability. For instance, AI can be applied towards improved precipitation “nowcasting” — the high-

resolution forecasting of precipitation for weather-related decision-making (Ravuri et al., 2021[117]) — and 

long-term forecasts and sustainability insights for agricultural production, which can increase climate 

resilience and agricultural productivity (ClimateAI, 2022[118]). AI  is starting to be more widely used by 

organisations, municipalities and regions to measure, simulate and reduce the environmental footprint of 

supply chains (Barteková and Börkey, 2022[20]). AI can also be leveraged to scale the transition to a 

resource-efficient and circular economy, "decoupling economic activity from natural resource use and its 

environmental impacts" (Barteková and Börkey, 2022[20]). Finally, AI applications can accelerate scientific 

research and breakthroughs in the development and deployment of sustainable technologies. For 

example, researchers predict that a type of AI called deep reinforcement learning could accelerate the 

development of nuclear fusion, a potentially transformative carbon-free technology for the world’s energy 

demands (Degrave et al., 2022[119]).  

It is important to note that most benchmarks, frameworks and impact assessments for the indirect 

environmental impacts of AI compute remain high-level and qualitative. Some researchers put forward 

approaches for measuring the environmental impacts of ICT overall, such as a methodology for assessing 

the effects induced by ICT services (Bergmark et al., 2020[120]), the assessment of indirect environmental 

effects of digitalisation based on a time-use perspective (Bieser and Hilty, 2018[121]), and an ICT-for-

sustainability framework (Hilty and Aebischer, 2015[122]) that was extended specifically to machine-

learning-related GHG emissions (Kaack et al., 2022[74]). Nevertheless, AI-specific methodologies for 

indirect environmental impacts remain rare – a key gap and limitation identified by this report. 

 

Box 6. Tracking global greenhouse gas emissions through Climate TRACE 

National GHG emission tracking historically relies on self-reporting and bottom-up estimates. The 

Climate TRACE coalition of AI analytics organisations leverages over 300 satellites and 11 000 sensors 

to quantify emission sources through AI algorithms. Emission sources include oil and gas production, 

shipping, aviation, forestry and more. Climate TRACE is relevant in more than 100 countries that lack 

accurate emission inventories of the past five years. 

Source: (GPAI, 2021[9]; Climate Trace, 2022[123]; Carbon Tracker, 2020[124]) 
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Indicators 

Key consideration for the measurement of negative and positive indirect environmental impacts 

associated with AI compute applications include:  

 Impact assessment for net environmental cost or benefit of using an AI application (i.e. the 

energy/water/carbon/resources saved compared to energy/water/carbon/resources used) 

3.3. Dual impacts  

Like many technologies, the use of AI compute resources and applying AI itself can have both positive and 

negative effects, providing an opportunity to harness the benefits while minimising the costs to achieve a 

net positive environmental impact (Cowls et al., 2021[125]). Machine learning and cloud computing can “help 

reduce stress on the environment in specific domains”, but “raise concerns about environmental and 

climate impact”, including use of energy and natural resources, and waste disposal (EPFL International 

Risk Governance Center, 2022[126]). Addressing these dual impacts is an area for further study, requiring 

policy frameworks, tools and measurements to assess the net impacts of AI on the environment, developed 

through inter-disciplinarily efforts by scientists, policy makers, technologists and others (Stein, 2020[127]).  
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The literature review, public survey and expert interviews point to five gaps in knowledge and data needed 

to understand and assess the environmental impacts of AI compute and applications, along with policy 

implications: (1) measurement standards for sustainable AI are needed; (2) data collection on the 

environmental impacts of AI compute and applications should be expanded; (3) AI-specific measurements 

are difficult to separate from general-purpose compute; (4) environmental impacts beyond operational 

energy use and GHG emissions should be considered; and (5) efforts are needed to improve 

environmental transparency and equity everywhere. 

4.1. Measurement standards for sustainable AI are needed 

Measurement of the environmental impacts of AI compute and applications is limited by a lack of common 

terminology, recognised standards, consistent indicators and metrics, and varying or optional reporting 

requirements. Terminology used to describe the environmental impacts of AI is largely heterogeneous: 

terms like “green AI”, “computational sustainability” or “sustainable AI” are often used interchangeably, and 

various actors define environmental impacts differently in different contexts (Schwartz et al., 2019[98]; Hilty 

and Aebischer, 2015[122]). 

However, developing common terminology would not necessarily lead to comparable data and results 

unless accompanied by widely used or mandatory reporting requirements. Specific regulations, standards 

and policies (including tax policies) are underdeveloped in this area compared to other environmental, 

social and governance (ESG) reporting requirements (OECD, 2020[128]). Common measurement standards 

will need to reflect a holistic understanding of the environmental impacts of AI compute throughout its 

lifecycle and AI applications. Focusing only on select indicators could have unintended consequences. For 

instance, PUE is critical but other parameters are important, like investments in data centre environmental 

resilience or in energy-saving ICT equipment (Lawrence, 2020[129]). Considerations could also be given to 

the compliance costs of such measurement standards.  

A comprehensive framework developed by international or inter-governmental standard-setting institutions 

and international initiatives, as part of a multi-stakeholder process, could enable benchmarking, 

comparability and compatibility of national compute initiatives and their environmental impacts, including 

for AI. Organisations such as the OECD could contribute to developing such a framework. 

4.2. Data collection on the environmental impacts of AI compute and applications 

should be expanded 

Measuring the environmental impacts of AI compute and applications requires national-, company- and 

model-level data. National government agencies and institutions should expand data collection on GHG 

emissions, and energy, water and other resource consumption by AI compute. National statistics offices 

4 Measurement gaps with policy 

implications 
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and environmental agencies in countries such as Denmark, Ireland and the Netherlands have started to 

disaggregate and publish data on the electricity usage of ICT infrastructure and data centres.  

Many private-sector companies report environmental metrics, with ESG data collection and reporting 

having improved and accelerated in recent years. However, much disclosure remains voluntary in the 

absence of clear reporting requirements, and corporate environmental transparency varies widely.  

At the level of AI models, researchers have started to measure the energy and carbon impact of their 

models and include this information in research papers. This trend can be encouraged by sharing best 

practices, reporting data on more granular levels (such as differentiating between AI training and inference) 

and encouraging reporting requirements at AI research institutions, organisations and private-sector 

entities developing large-scale AI models.  

4.3. AI-specific measurements are difficult to separate from general-purpose 

compute 

Another limitation to assessing the environmental impacts of AI compute and applications is the complexity 

of the measurements themselves. This relates to the challenge of distinguishing general-purpose compute 

and ICT activities from those related solely to AI, and difficulty in identifying the share of AI compute-related 

production and transport activities globally. AI-specific indirect positive and negative environmental effects 

are even harder to account for as they are often embedded in a variety of applications and complex 

systems, making disaggregation difficult. Further, increasing use of AI compute edge devices, such as 

mobile smartphones and IoT connected devices, complicate the measurement of AI-specific compute, as 

many of these devices have applications and uses in addition to their AI compute capabilities.   

Many articles and publications attempting to measure the environmental impacts of AI compute equate 

measurements with data centres and compute hardware, or even the ICT industry in general. For policy 

makers and data centre operators, it can make sense to assess the overall impact of ICT on the 

environment, with AI embedded as an integral part of these technologies. Further efforts by governments, 

national statistical offices, intergovernmental organisations, academia and others should identify gaps 

where AI-specific metrics would be useful. Proxy measures, qualitative indicators and the feasibility of 

disaggregating national ICT infrastructure datasets should be explored to estimate the share of compute 

infrastructure used for AI. As AI becomes more widely used across sectors, with models increasing in size 

and data requirements, computational needs are expected to grow significantly, making measurement ever 

more important. 

4.4. Environmental impacts beyond operational energy use and greenhouse gas 

emissions should be considered 

Environmental impacts of AI compute should be explored beyond the current focus on operational energy 

consumption and the resulting carbon footprint. These include assessing the impact on planetary 

boundaries such as biodiversity and the lifecycle impacts of production, including resource impacts like 

water consumption and rare earth mining, transport and end-of-life impacts.  

Much discussion of the environmental impacts of AI compute focuses on energy efficiency and renewable-

energy. Environmental AI scientific publications related to these areas significantly outnumber others, such 

as water science and technology and waste management and disposal (Figure 5). Energy and climate 

warrant immediate attention and action, but broader environmental sustainability has connected 

dimensions (such as nature and landscape conservation or ocean sciences) and should also be 

considered. The OECD’s 2009 Digital Economy Paper “Towards Green ICT Strategies” notes that 

“environmental impact categories such as biodiversity, water or land use are rarely targeted” by policy 
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makers (OECD, 2009[130]), which appears to remain a policy gap today. Making the operational stage of AI 

compute carbon-neutral is an important and urgent objective, but operators and policy makers should work 

in parallel on reducing impacts on ecosystems and ensure that AI compute and applications contribute to 

holistic environmental action. 

Figure 5. Sample of environmental AI scientific publications by subject area 

 

Note: Original visualisation on the OECD AI Policy Observatory powered by JSI using data from Elsevier (Scopus), accessed on 18/10/2022. 

For more information visit: www.oecd.ai  

Source: (OECD AI Policy Observatory, 2022[131]) 

4.5. Efforts are needed to improve environmental transparency and equity 

everywhere 

There are concerns about an AI compute divide manifesting between private and public actors, and 

between advanced and emerging countries. This could run counter to efforts to promote environmental 

equity – generally understood as equal protection from environmental hazards and equal access to 

environmental benefits. Analysis of the top ten countries in AI research on the environment shows that the 

United States, EU27 and China lead in the number of publications (OECD AI Policy Observatory, 2022[131]). 

One aim of the Expert Group is to understand the AI compute divide between and within countries. 

Important elements of environmental equity and transparency are sharing best practices, measuring and 

ensuring access to the AI compute ecosystem, and implementing “sustainability by design”. While 

advanced economies and the private-sector often drive initiatives to reduce the energy and carbon impact 

of AI compute, diverse perspectives from actors in emerging economies could further enrich and benefit 

the discussion (Birhane et al., 2021[132]). 

Initiatives such as “FAIR Forward – Artificial Intelligence for All” enable knowledge-sharing and access to 

environmental data in Ghana, India, Rwanda, South Africa and Uganda (Deutsche Gesellschaft für 

Internationale Zusammenarbeit (GIZ), 2022[133]). Sharing best practices on the sustainable design and 

operations of AI compute and applications contribute to global knowledge dissemination (Patterson, 

2022[75]; Microsoft, 2018[134]) and the development of skills for efficient and sustainable management of AI 

compute and its responsible application.  
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To achieve global sustainability targets, AI must be part of the solution. From energy efficiency gains to 

the discovery and scale-up of clean technologies, AI-enabled innovation can contribute to finding solutions 

that countries need to meet global sustainability targets. However, as AI applications become more diverse 

and as the computing needs of AI systems grow, they leave environmental footprints that must also be 

measured and taken into account. Through a literature review and expert consultation, this report attempts 

to evaluate the state of measurement data and tools currently available to quantify the direct and indirect 

environmental impacts of AI. In doing so, it shows that there are gaps between the data and tools that are 

available to measure AI’s environmental footprint and reliable measures policy makers need to inform 

sustainable policy decisions.  

Several national statistics offices, environmental agencies, and private sector companies have started to 

disaggregate and publish relevant environmental data. More holistic analysis requires a wide array of 

stakeholders doing the same, using a common framework to examine the environmental impacts of AI 

systems. By creating and tracking AI-specific measures of compute, sharing best practices, and supporting 

new and innovative AI applications for fighting climate change, countries can ensure that AI is trained and 

deployed in the most sustainable way possible, while minimising negative impacts, for the good of the 

planet.  

 

 

5 Conclusion 
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 Preliminary AI compute survey results 

Figure C.1. What kind of organisation do you represent? 

 

Note: Of 118 respondents who partially or fully completed the survey, 116 respondents answered this question. 

Source: OECD.AI Expert Group on AI Compute and Climate, survey on AI compute (March-April 2022) 

 

Figure C.2. Geographic distribution of OECD AI compute survey respondents 

 

Note: Of 118 respondents who partially or fully completed the survey, 118 respondents answered this question. 

Source: OECD.AI Expert Group on AI Compute and Climate, survey on AI compute (March-April 2022) 
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Figure C.3. Organisation or enterprise size of OECD AI compute survey respondents  

 

Note: Of 118 respondents who partially or fully completed the survey, 118 respondents answered this question. According to OECD, small and 

medium-sized enterprises (SMEs) employ fewer than 250 people. SMEs are further subdivided into micro enterprises (fewer than 10 employees), 

small enterprises (10 to 49 employees), medium-sized enterprises (50 to 249 employees). Large enterprises employ 250 or more people. 

Source: OECD.AI Expert Group on AI Compute and Climate survey on measuring AI compute (March-April 2022) 

 

 

 

Figure C.4. Environmental impact measurement activities by OECD AI compute survey 
respondents 

 

Note: Of 118 respondents who partially or fully completed the survey, 116 respondents answered this question. 

Source: OECD.AI Expert Group on AI Compute and Climate, survey on AI compute (March-April 2022) 
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Figure C.5. Influence of environmental impact on OECD AI compute survey respondents 

 

Note: Of 118 respondents who partially or fully completed the survey, 116 respondents answered this question. 

Source: OECD.AI Expert Group on AI Compute and Climate, survey on AI compute (March-April 2022) 

Figure C.6. Desire for environmental impact measurement by external providers of OECD AI 
compute survey respondents  

 

Note: Of 118 respondents who partially or fully completed the survey, 116 respondents answered this question. 

Source: OECD.AI Expert Group on AI Compute and Climate, survey on AI compute (March-April 2022) 
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Notes 

 

 

1 According to Berkhout and Hertin (2001), “first order impacts: direct environmental effects of the production and use of ICTs 

(resource use and pollution related to the production of ICT infrastructure and devices, electricity consumption of ICT hardware, 

electronic waste disposal); second order impacts: indirect environmental impacts related to the effect of ICTs on the structure of the 

economy, production processes, products and distribution systems; the main types of positive environmental effects are 

dematerialisation (getting more output for less resource input), virtualisation (the substitution of information goods for tangible goods) 

and ‘demobilisation’ (the substitution of communication at a distance to travel); third order impacts: indirect effects on the environment, 

mainly through the stimulation of more consumption and higher economic growth by ICTs (‘rebound effect’), and through impacts on 

life styles and value systems.” 

2 According to the IPCC, “Scope 1, Scope 2, and Scope 3 emissions: Emissions responsibility as defined by the GHG Protocol, a 

private sector initiative. ‘Scope 1’ indicates direct greenhouse gas (GHG) emissions that are from sources owned or controlled by the 

reporting entity. ‘Scope 2’ indicates indirect GHG emissions associated with the production of electricity, heat, or steam purchased 

by the reporting entity. ‘Scope 3’ indicates all other indirect emissions, i.e., emissions associated with the extraction and production 

of purchased materials, fuels, and services, including transport in vehicles not owned or controlled by the reporting entity, outsourced 

activities, waste disposal, etc.” (Allwood et al., 2014[152]). 

3 A large cloud compute provider does not wish to be attributed by name due to commercial confidentiality concerns. 
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