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Foreword 

In a world in which the kinds of things that are easy to teach and test have also become easy to digitise 

and automate, we need to think harder how education and training can complement, rather than substitute, 

the artificial intelligence (AI) we have created in our computers.  

While there is much debate around the potential impact of AI on our economic and social lives, surprisingly 

little is known about the actual capabilities of AI, and how we can anticipate their further evolution.  

This is where the novel methodology of OECD’s Artificial Intelligence and the Future of Skills (AIFS) project 

seeks to make a difference. It enables an understanding of the potential as well as the limits of AI 

capabilities at a detailed task level so we can describe more precisely how humans and AI are 

complementary. The project builds on a pilot which the OECD conducted in 2017, that compared the 

performance of adults on the literacy tests of OECD’s Survey of Adult Skills with expert judgement on the 

capabilities of AI on the same test. This pilot showed that, already in 2017, AI outperformed the majority of 

humans on basic information processing tasks. However, information processing skills are just a small 

slice of human capabilities, and the AIFS project now extends this methodology to a wide range of human 

skills that capture essential dimensions for the success of humans in modern economic and social life. 

This will deliver valuable insights for the future of education, in terms of directions for the design of 

instructional systems, the delivery of educational content and the preparation of educators, and the ways 

in which we recognise and certify knowledge and skills.  

Optimists will say that throughout history, education has always won the race with technology. However, 

there is no assurance it will do so in the future, and humans have always been better at inventing new 

tools than to use them wisely. In the past, when technology evolved slowly, education had long periods of 

time to adjust. When fast gets really fast, and when AI competes directly with the cognitive ability that have 

long been the focus of education, it is important to build rapid, robust and ongoing intelligence that can 

help us track and anticipate the capabilities of AI.  

The AIFS project is therefore designed to provide a baseline against which the OECD can then 

systematically monitor the evolution of AI capabilities in the longer term. With the technical approaches 

described in this initial report, the AIFS project is taking the first steps towards building a “PISA for AI” that 

will help policy makers understand how AI connects to work and education - and how it will transform both 

of these foundational institutions of human society in the years ahead.  

I would like to thank the CERI Governing Board for its leadership in developing and guiding the programme 

and the German Ministry of Labour for a generous grant to support the work. 

  

Andreas Schleicher 

Director for Education and Skills 

Special Advisor on Education Policy to the Secretary-General 
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Executive summary 

Artificial intelligence (AI) and robotics are major breakthrough technologies that are transforming the 

economy and society. To understand and anticipate this transformation, policy makers must first 

understand what these technologies can and cannot do. The OECD launched the Artificial Intelligence and 

the Future of Skills project to develop a programme that could assess the capabilities of AI and robotics 

and their impact on education and work. This report represents the first step in developing the 

methodological approach of the project. It reviews existing taxonomies and tests in psychology and 

computer science, and discusses their strengths, weaknesses and applicability for assessing machine 

capabilities. 

Assessing AI and robotics capabilities is a necessary foundation for 

understanding their implications for education, work and the larger society. 

An ongoing programme of assessment for AI and robotics will add a crucial component to the OECD’s set 

of international comparative measures that help policy makers understand human skills. The Programme 

for International Student Assessment (PISA) describes the link between the education system and the 

development of human skills, while the Programme for the International Assessment of Adult 

Competencies (PIAAC) links those skills to work and other key adult roles. A programme for assessing AI 

and robotics capabilities will relate human skills to these pivotal technologies, thereby providing a bridge 

from AI and robotics to their implications for education and work, and the resulting social transformations 

in the decades to come. 

There are a number of taxonomies and tests of human skills. These provide 

different perspectives and opportunities for understanding AI capabilities.  

Taxonomies stemming from the cognitive psychology literature are hierarchical models of broad cognitive 

abilities, such as fluid intelligence, general memory/learning, visual and auditory perception, assessed by 

factor analysis of cognitive ability tests. These tests have been widely used and validated for assessing 

human skills. 

Research interest in social and emotional skills is growing and their testing is advancing. These skills are 

focused on individuals’ personality, temperament, attitudes, integrity and personal interaction. Recent 

research considers not just individual abilities but also collective ones. This emerging literature studies the 

factors of “collective intelligence” and is developing tests to measure them.  

Education research has also contributed to defining and shaping the understanding of human skills. This 

domain focuses on subject-specific knowledge (e.g. in mathematics, biology and history), basic skills such 

as literacy and numeracy, and more complex transversal skills such as problem solving, collaboration, 

creativity, digital competence and global competence. A wide range of tests is available from international 

and national large-scale educational assessments. 
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Skills can be linked to work tasks and occupations, and measured through 

complex vocational tests. 

Another major area – industrial-organisational psychology – links abilities to tasks specific to particular 

occupations. The resulting comprehensive occupation taxonomies classify occupations by work tasks, and 

the required skills, knowledge and competences. The most widely used classifications are the 

Occupational Network (O*NET) database of the US Department of Labor and the European classification 

of skills, competences, qualifications and occupations (ESCO). Assessments in this domain comprise a 

variety of vocational and occupational tests. 

Healthy human adults share some basic skills that AI systems do not have.  

Many taxonomies for assessing skills overlook ubiquitous low-level or basic cognitive skills. These are 

rarely assessed in human adults because there are few meaningful individual differences in the absence 

of severe disability. However, AI systems do not necessarily have these skills (e.g. navigating in a complex 

physical environment, understanding basic language or knowing basic rules of the world). Taxonomies 

and assessments for these skills are found in the fields of animal cognition, child development and 

neuropsychology. A recently emerging field assesses basic (low-level) skills of AI systems drawing on 

these fields of psychology. 

Evaluating AI and robotics systems is challenging and applying human tests can 

be misleading. 

AI assessment focuses on functional components of intelligent mechanisms, such as knowledge 

representation, reasoning, perception, navigation and natural language processing. These are strongly 

linked to the underlying technique used by the mechanism. Many components overlap with the ability 

categories developed in psychology for humans, but the match is not exact. In addition, many capabilities 

that AI is developing – such as language identification and the generation of realistic images – are not well 

covered by human skill taxonomies or tests. 

Moreover, the design of human tests takes for granted that the test takers all share basic features of human 

intelligence, which might be radically different from AI. For example, integrating basic skills, such as natural 

language understanding and object recognition, is easy for humans. However, most AI systems are trained 

to perform a specific narrow task, but they are not (or are rarely) able to integrate and apply these to 

perform a different type of task. This makes it difficult to generalise from an AI system’s performance on a 

specific human ability test to an underlying AI skill, let alone infer general intelligence. 

Different types of empirical assessments can gauge AI capabilities, but these are 

scattered and not systematic. 

A multitude of benchmarks and competitions assess and compare AI systems empirically. However, these 

have not yet been systematically classified. Increasingly, more institutions carry out rigorous evaluation 

campaigns to assess the capabilities of AI and robotics systems. These include the evaluation of individual 

functions, i.e. self-contained units of capability, such as self-localisation. They also include evaluation of 

complete tasks that constitute a meaningful activity, such as autonomous driving and text summarisation. 

Evaluation of AI systems is particularly well developed in certain areas, such as language understanding. 

Machine translation, in particular, is a field that holds many lessons for assessing AI. 
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A systematic assessment of AI demands a comprehensive framework that covers 

all human skills necessary for work and life. 

Providing valid, reliable and meaningful measures of AI and robotic capabilities requires a comprehensive 

approach that brings together different research traditions and complementary methodologies. The goal 

should be to address the full range of relevant human capabilities; the extra capabilities needed to consider 

for AI (because they are difficult for AI and often neglected in lists of human skills); and the full range of 

valued tasks that appear in education, work and daily life.  

A robust methodology involves understanding how AI and robotics systems are 

assessed and bringing together different assessment approaches.  

A multidisciplinary approach needs theoretical underpinning that considers the challenges linked to 

assessing AI and robotic capabilities with regard to human skills. The different disciplinary approaches can 

be organised across two dimensions. One relates to whether skill taxonomies and tests measure primarily 

human or primarily AI capabilities. The second dimension is whether they measure single (isolated) 

capabilities or complex tasks that require multiple capabilities. Future systematic assessment of AI 

capabilities should bring together different assessments along these two dimensions and skilfully integrate 

their potential to draw valid implications for the future of work and education.
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Part I. Setting the scene 
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Nóra Révai, OECD 

Mila Staneva, OECD 

Abel Baret, OECD 

This chapter describes the background and purpose of the OECD’s Artificial 

Intelligence and the Future of Skills project, which is developing an approach 

to assessing the capabilities of artificial intelligence (AI) and robotics and their 

impact on education and work. This report represents the project’s first step 

to identify the capabilities to assess and the tests to use for the assessment. 

The chapter provides an overview of the approaches applied to date to 

predict the impact of technology on the future of work. It sets out a new 

approach and presents the project’s stages of developing a sound 

methodology for a systematic assessment of AI capabilities in the future. The 

chapter ends by presenting the structure of this report. 

1.  New approaches to 

understanding the impact of computers 

on work and education  
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Introduction 

Policy interest in the impact of artificial intelligence (AI) has sprung up in the past few decades as AI 

technologies are developing and being integrated into more and more aspects of life. A deeper and more 

precise understanding of this impact for the economy and society is fundamental for strategic planning in 

various policy areas. With regard to employment and education, this understanding can provide the basis 

for realistic scenarios about how jobs and skill demand will be redefined in the next decades. It can also 

demonstrate how the education system needs to be reshaped to prepare today’s students for these 

possible futures.  

However, this understanding of the impacts of AI and robotics fundamentally rests on an understanding of 

the technology’s capabilities. What can AI and robotics do and what can they not do? How do the 

capabilities of AI and robotics compare to those of humans?  

The OECD’s Centre for Educational Research and Innovation (CERI) launched the Artificial Intelligence 

and the Future of Skills (AIFS) project in 2019 to address the questions above. The project builds on pilot 

work carried out in 2016 that explores AI capabilities with respect to literacy, numeracy and problem-solving 

skills using the OECD’s Survey of Adult Skills. The project aims to develop a new set of measures to serve 

as a foundation for research and policy on how AI and robotics will transform skill demand and educational 

requirements in the decades ahead. It addresses the following concrete questions:  

 What human capabilities will be too difficult for AI and robotics to reproduce over the next few 

decades?  

 What education and training will be needed to allow most people to develop some work-related 

capabilities that are beyond the capabilities of AI and robotics? 

Studies that have attempted to gauge the impact of computer capabilities on employment, skill demand 

and education demonstrate that predictions on work and society are by no means straightforward. 

Technological development affects the labour market in diverse ways that are sometimes hard to predict. 

It usually involves the transformation of jobs and tasks rather than their full replacement by machines.  

Despite these complexities, an understanding of that transformation must begin with an understanding of 

the computer capabilities themselves. This can provide a basis for reflecting on potential transformations. 

This report does not discuss the implications of technological change, or even reflect on how to identify 

those implications. Rather, it aims to build a methodology that can provide valuable and robust data for 

policy makers and researchers who want to consider those transformations from a solid understanding of 

the technology itself. 

Accordingly, the first stage of the project focuses on constructing valid, reliable and meaningful measures 

of AI capabilities. First, to be valid, measures must not mislead and indeed assess capabilities of AI. 

Second, to be reliable, measures must ensure consistency over time. To that end, they must rely on 

recognised experts, and a transparent and robust process that is reproducible. Reliability also involves 

addressing convergences and divergences of experts’ judgements transparently and appropriately (inter-

rater reliability), and using consistent items for measurement. Validity and reliability make the measures 

credible, ensuring that the measurement avoids basic methodological pitfalls. Third, for measures to be 

meaningful, particularly to the policy community, the constructs and comparisons should enable decision 

makers without AI expertise to understand likely implications. For this to happen, the set of measures 

should be comprehensive, covering the full spectrum of relevant capabilities. A straightforward comparison 

with human capabilities would help interpret constructs and help produce meaningful measures.  

Such a set of measures requires scientific thoroughness and broad partnerships to be effective and 

comprehensive. Consequently, the project dedicates substantial effort to build a robust methodology and 

involve a wide range of experts from around the world. Developing the AIFS approach will take place over 

six years, which began with a planning process in 2019.  
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This first volume explores the methodology for the project. It is a technical report, which provides the 

outcomes of an expert workshop held in October 2020 on “Skills and Tests”. This initial workshop provided 

the direction for pilot work in 2021 on different types of assessment tasks. The pilot will be followed by an 

initial systematic assessment in 2022 and 2023 across the full range of capabilities. An analysis of the 

potential implications for work and education will be produced in 2024. The project will conclude with a 

proposed approach for a regular programme to update the assessments. 

This first chapter of the technical report situates the project in the broader literature on evaluating the 

progress of computer technology and its impact on the world of work. It starts with a snapshot of the 

broader effort of the OECD to gauge the impact of AI. Next, it discusses the various methodologies adopted 

to date and their challenges. It then presents the pilot work underpinning the AIFS project, showing how a 

new approach can address some of the methodological caveats and gaps. The report structure is 

presented at the end of this chapter. 

OECD’s work on the impact of artificial intelligence 

Over the past decade, advances in big data, computational power, storage capacity and algorithmic 

techniques have dramatically accelerated the development and deployment of AI systems. The OECD has 

been increasingly engaged in supporting countries to understand this technological development. A major 

achievement was the adoption of the OECD Principles on Artificial Intelligence in May 2019, which sets 

international standards for the responsible stewardship of trustworthy AI (OECD, 2019[1]). In 2020, the 

OECD launched the AI Policy Observatory, which brings together information, analysis and supports 

dialogue to shape and share AI policies (OECD, 2020[2]).  

A recent cross-directorate effort of the OECD is the AI programme on Work, Innovation, Productivity and 

Skills (AI-WIPS) supported by the German Federal Ministry of Labour and Social Affairs. AI-WIPS 

incorporates several streams of work to provide a comprehensive analysis of the different aspects of AI 

and their implications for society. The AIFS project represents the “Assessing AI and robotics capabilities” 

work stream. In parallel, work has started on building a framework for classifying AI systems and mapping 

their development in various fields (Baruffaldi et al., 2020[3]; OECD, 2019[4]). The OECD has been 

contributing to analysing the impact of AI on workforce skills in the past few years. As part of this work, 

analyses have been conducted on the extent to which machines can automate jobs and substitute for 

workers (Arntz, Gregory and Zierahn, 2016[5]; Nedelkoska and Quintini, 2018[6]). A more recent publication 

reviews literature on the impact of AI on employment, wages, the work environment and the ways in which 

AI transforms jobs and skill needs (Lane and Saint-Martin, 2021[7]). As the impact of technology on work 

and society also depends on the speed of its development and diffusion, the OECD is also working on 

assessing the speed of AI diffusion (Nakazato and Squicciarini, 2021[8]). Finally, the organisation has been 

facilitating policy and societal dialogue that brings together experts, researchers, policy makers, social 

partners and civil society to discuss and contribute to AI-related topics.  

In the domain of education, CERI engages in several aspects of understanding the impact of technology 

on education (Vincent-Lancrin and van der Vlies, 2020[9]; van der Vlies, 2020[10]). Work on educational 

innovation explores the uses of digital devices and software for enhancing learning inside and outside the 

classroom [see also (Verhagen, forthcoming[11])]. This work extends to understanding how data – whether 

collected in formal educational settings or through other means – can be used to personalise learning, 

improve people’s educational experience, and inform decision making and policies in education. 
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Box 1.1. Artificial intelligence: Definition, use cases, scope 

There is no commonly agreed definition of AI systems (OECD, 2019[4]). While machine learning has 

become popular (see Chapter 12 for more information), computer scientists stress that the 

understanding of AI should extend beyond this technique. The OECD’s AI Experts Group (AIGO) 

defines an AI system as:  

a machine-based system that can, for a given set of human-defined objectives, make predictions, 
recommendations or decisions influencing real or virtual environments. It uses machine and/or 
human-based inputs to perceive real and/or virtual environments; abstract such perceptions into models 
(in an automated manner e.g. with machine learning (ML) or manually); and use model inference to 
formulate options for information or action. AI systems are designed to operate with varying levels of 
autonomy (OECD, 2019, p. 15[4]). 

The ability to “make predictions, recommendations or decisions” makes AI applicable in various tasks 

and domains. A recent OECD report presents a number of use cases across a range of areas (OECD, 

2019[4]). In health care, for example, AI is used to make more accurate and faster diagnoses of diseases 

than humans. In e-commerce, AI is applied to recommend products that better fit the needs of potential 

buyers. In finance, AI is used to predict the credibility of loan applicants more accurately. AI can also 

automate numerous other tasks where the role of prediction is less obvious. One example is 

autonomous driving, where cars rely on AI to anticipate the right trajectories and manoeuvres. Each of 

these areas has important limits with respect to AI’s capabilities, but the wide applicability in different 

economic sectors makes AI a “general-purpose technology” (OECD, 2019[4]). Like the steam engine 

and electricity, AI has the potential to raise productivity across vast parts of the economy (Bresnahan 

and Trajtenberg, 1992[12]).  

Although AI is being applied to increasingly more areas, it still cannot perform the full range of tasks of 

humans and lacks some basic human skills. Therefore, one way to describe the types of AI that currently 

exist is that they represent artificial narrow intelligence, meaning that current AI systems are designed 

to perform specific, narrowly defined tasks (OECD, 2017[13]). This state-of-the-art is contrasted to a 

hypothetical artificial general intelligence (AGI) (OECD, 2017[13]). In AGI, machines are human-like in 

how they can abstract, generalise, perceive, judge, create and make decisions. Such skills are still out 

of reach for AI systems (OECD, 2019[4]).  

Parallel to progress in AI, robot technology has continued to advance (OECD, 2021[14]). Indeed, both 

these technological developments are intertwined as many new AI applications involve the sensory and 

motor control capabilities that are fundamental to robotics. In addition, both AI and robotic technologies 

enable the automation of tasks typically executed by humans. As a result, they have a similar impact 

on the world of work. For all these reasons, advancements in AI and robotics and their implications for 

the future of work are commonly studied together in the literature. The current report is centred on AI 

but encompasses robotic technologies as they are also likely to affect work and the future demand of 

skills. 

Attempts to measure artificial intelligence capabilities and impact 

There is general agreement that AI is a major breakthrough technology that will transform the economy 

and society (see Box 1.1 for definitions, use cases and the scope of AI). However, to unravel this impact, 

studies must first understand what computers can and cannot do. Most of the work prominent in the policy 

discourse stems from economics and the social sciences. Its driving concern is that AI may lead to 

technological unemployment, while there are also views holding that AI is well placed to augment workers’ 
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capabilities and, thus, raise productivity and enable innovations. Accordingly, this literature focuses mainly 

on AI’s potential to substitute for labour in the workplace and measures AI capabilities with regard to 

occupations and work tasks (the so-called task-based approach). Other strains of research from computer 

science and psychology analyse AI from the perspective of skills and abilities. They measure which 

computer capabilities are now available and how they will eventually relate to human skills.  

Studies analysing AI capabilities may also differ with respect to the crudeness of their measures. Some 

measures are based on vague notions of the capabilities of computers. Others rely on ratings of whether 

AI can perform (more or less specifically defined) tasks. Yet others draw on actual AI performance.  

The next few paragraphs provide a snapshot of the most prominent studies in each of these areas. 

The task-based approach to measuring AI capabilities and its impact on jobs  

Studies following the task-based approach analyse the extent to which AI can displace workers by focusing 

on occupations and their task content and by studying the susceptibility of tasks to automation. The goal 

is to determine the share of tasks within an occupation that can be performed by computers and, ultimately, 

the share of jobs in the economy that can be largely carried out by machines [see Frey and Osborne 

(2017[15]) or Brynjolfsson et al. (2018[16])]. In this literature, the focus is less on AI and more on its impact 

on work and employment. AI capabilities are rated with regard to broad descriptions of occupations or job 

tasks. These are usually derived from occupation taxonomies, such as the Occupational Information 

Network (O*NET) database of the US Department of Labor. The resulting measures of occupations’ 

automatability are then matched to micro-level labour market data to further examine the characteristics of 

jobs at high risk of automation (e.g. industry, region and wage level), as well as the characteristics of 

workers who are at risk of displacement (e.g. age, gender and education level).  

The origins of the task-based approach 

The task-based approach has its origin in the seminal work of Autor, Levy and Murnane (2003[17]). Their 

study stipulates that machines can substitute for workers only in particular tasks. These are typically routine 

cognitive and manual tasks that follow exact repetitive, predictable procedures. As such, the tasks can be 

readily formalised and codified. By contrast, tasks that follow tacit, inexplicable rules, such as those 

involving flexibility, creativity, problem solving or complex interaction, are not apt for computerisation. Both 

types of tasks are operationalised loosely by using broad occupational descriptions. These include the 

involvement of direction, control and planning of activities at work or the extent to which finger dexterity is 

required.  

Autor, Levy and Murnane (2003[17]) study how labour input in routine and non-routine tasks develops over 

time. The premise is that declining prices of technology should reduce labour demand for routine tasks 

and increase demand for non-routine tasks. That is, employers would increasingly replace workers in 

routine tasks with cheap machines. At the same time, they would employ workers for complementary 

non-routine tasks, such as developing, managing and monitoring machines.  

The approach of Frey and Osborne  

Since the Autor, Levy and Murnane study in 2003, computers have advanced significantly. They can now 

perform many of the tasks previously thought as “uncodifiable”, such as driving or translation. This was 

possible mainly through progress in AI and in machine learning, in particular. To account for these 

technological advancements, Frey and Osborne (2017[15]) take a new perspective on measuring computer 

capabilities. Instead of asking what computers can do in the workplace, they concentrate on tasks that 

computers still cannot perform. As such tasks are declining in number, they are becoming easier to 

characterise and thus to assess. Specifically, the authors identify three engineering bottlenecks to 

AI-driven automation: perception and manipulation tasks, such as navigating in an unstructured 
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environment; creative intelligence tasks, such as composing music; and social intelligence tasks, such as 

negotiating and persuading. According to Frey and Osborne (2017[15]), computers can perform any task 

not subject to one of the three bottlenecks. 

To quantify computers’ ability to automate work, Frey and Osborne (2017[15]) first asked AI researchers to 

rate the automatability of 70 (of 700) occupations in the O*NET occupation taxonomy. O*NET contains 

systematic information on occupations’ task content and skills requirements. Based on the task 

descriptions, the experts labelled occupations as automatable or non-automatable. In a second step, Frey 

and Osborne (2017[15]) approximated the three engineering bottlenecks with nine O*NET variables, 

available for the full set of occupations in the database. For example, the variable “originality”, which 

describes the degree to which an occupation requires unusual or clever solutions, serves as a proxy for 

creative tasks. Finally, the authors estimated the relationship between the automatability of the initial 70 

occupations (derived from the subjective expert assessments) and the bottlenecks (measured with the 

nine O*NET variables). They used the obtained estimates to predict the probability of automation of all 700 

occupations.  

The work of Frey and Osborne (2017[15]) stimulated much research but has several limitations. Most 

importantly, the information from O*NET used by experts to rate occupations’ automatability involves 

simple one-line task descriptions. These descriptions provide little indication of task difficulty or specific 

examples. Based on the different tasks of an occupation, experts provided judgements for the entire 

occupation. This raises questions as to how they dealt with essential and less essential tasks of the job. 

Similarly, it is unclear whether they included abilities needed for the occupation but not listed in these 

databases because all (healthy) human beings have them (e.g. vision and common sense reasoning). In 

addition, such occupational-level judgements do not recognise that jobs within the same occupation may 

differ in their task mix and, hence, in their amenability to automation. Furthermore, only occupations where 

experts were most confident were considered; only occupations in which all tasks were rated automatable 

were labelled as automatable. However, the study does not specify how inter-rater agreement was 

determined, and how high it was. Neither does the work address the issue of those occupations that are 

not fully automatable but have a high number of automatable tasks. The lack of such information raises 

questions about the validity of the exercise. 

Two studies supported by the OECD – Arntz, Gregory and Zierahn (2016[5]) and Nedelkoska and Quintini 

(2018[6]) – address one of these points: they estimate the risk of automation at the level of jobs instead of 

occupations. More precisely, the studies map the expert judgements on the automatability of the 70 

occupations from the study of Frey and Osborne (2017[15]) to micro-level data from the Survey of Adult 

Skills of OECD’s Programme for the International Assessment of Adult Competencies (PIAAC). They then 

estimate the link between automatability of occupations and various work tasks at the level of individual 

jobs assessed in PIAAC. This contrasts with Frey and Osborne (2017[15]), who model occupations’ 

automatability as a function of hard-to-automate, bottleneck tasks at the occupation level. Analysing how 

job-level characteristics are linked to automation makes it possible to reflect the variation of jobs within 

occupations in the overall estimate of automatability across the economy.  

Further efforts to assess the automation of tasks  

Following the task-based approach, some major consultancies have issued reports on the impact of 

technology on employment and the economy. McKinsey Global Institute studies automation by linking 

2 000 work activities to 18 key performance capabilities needed to execute them (such as sensory 

perception and retrieving information) and by establishing the level of performance that AI has with regard 

to these capabilities (Manyika et al., 2017[18]). However, the study does not describe the methodological 

approach in further detail. It remains unclear how capabilities are defined and matched to abilities. 

Similarly, it is unknown how their susceptibility to automation is determined. In addition, 

PricewaterhouseCoopers (2018[19]) examines the global economic impact of AI by studying both its 
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potential to enhance productivity through automation and to improve product quality. To assess how AI 

can automate jobs, the report adopts the approach of Arntz, Gregory and Zierahn (2016[5]) and PwC (PwC, 

2017[20]). 

Other studies in this literature focus more narrowly on AI. Brynjolfsson, Mitchell and Rock (2018[16]), for 

example, define key criteria for whether a work task is suitable for machine learning applications. These 

criteria include, for example, clearly definable rules and goals or the availability of large digital datasets for 

training algorithms (see also Brynjolfsson and Mitchell (2017[21])). The authors then rate 2 069 work 

activities linked to 964 occupations in O*NET against these criteria to measure occupations’ suitability for 

machine learning. By contrast, Felten, Raj and Seamans (2019[22]) use objective AI metrics made available 

by the Electronic Frontier Foundation to track progress of AI across major application domains, such as 

image and speech recognition. They map these AI progress measures to information from O*NET on key 

abilities required in occupations. To that end, they ask gig workers on a freelancing platform to rate the 

relatedness between both. In this way, the authors assess the extent to which occupations are exposed to 

computerisation.  

While all these studies rely in some way on the subjective judgement of computer experts, economists or 

“laypersons”, the study of Webb (2020[23]) aims at developing an objective measure of the applicability of 

technology in the workplace. To derive such a measure for AI, the study first identifies patents of AI 

technologies by scanning patent descriptions for keywords such as “neural networks” and “deep learning”. 

It compares verb-noun pairs in patents’ texts and occupations’ task descriptions available in O*NET. In 

this way, it quantifies the overlap between such AI patents and occupations.  

Squicciarini and Staccioli (forthcoming[24]) adopt a similar approach to Webb (2020[23]) but with a focus on 

robotics. They identify patents associated to labour-saving robotic technologies by applying text-mining 

techniques. Subsequently, they connect these patents to occupation descriptions available in ISCO08 – a 

standardised classification of occupations. They use a text similarity algorithm to measure occupations’ 

exposure to such innovations.  

Again, these studies rely on broad occupation descriptions available in occupation taxonomies. They focus 

more on quantifying the extent to which AI can automate the economy than on developing a comprehensive 

measurement of what computers can do. 

Remaining gaps in methodology 

To sum up, research following the task-based approach has so far mostly focused on how evolving AI and 

robotics alter the workplace by automating tasks within occupations. Most studies following this approach 

share some (or all) of the following methodological gaps: 

 judgements are based on vague descriptions of skills or tasks, which omit important details needed 

to evaluate if AI can do them 

 judgements about entire jobs mix tasks that AI can and cannot do 

 judgements about entire jobs require knowledge of AI capabilities and knowledge of job design at 

the same time, but no experts have both 

 information about the experts’ identity, selection and domains of expertise is lacking 

 information about the exact methodology and the rating process is lacking. 

In addition, the task-based approach offers a narrow view of humans: workers are seen as displaced from 

tasks or from entire jobs that have been overtaken by computers. This leaves a number of key questions 

largely unexplored. How do people’s skills and abilities compare to AI performance? Which of these skills 

are reproducible? Which can be usefully complemented or augmented by machines? Which skills are hard 

to automate and, thus, worth investing in? Skills-based approaches in computer science and psychology 

offer a promising way forward to address these gaps. This new approach is discussed next. 
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Skills-based assessment: A new approach 

Apart from the work in economics that assesses AI capabilities as an initial step to studying its potential 

impact on jobs, there are efforts carried out to assess those capabilities in the field of computer science 

(Martínez-Plumed et al., 2021[25]; Clark and Etzioni, 2016[26]; Crosby, Beyret and Halina, 2019[27]; Ohlsson 

et al., 2016[28]; Davis, 2016[29]). In addition, a wide set of assessment approaches has been developed over 

the past century to measure human capabilities that could potentially be applied to understanding AI. These 

tools offer a deeper way of measuring and understanding AI capabilities that goes beyond judgements 

about the automatability of entire occupations in the economics literature.  

In 2016, an OECD/CERI pilot project assessed computers’ capabilities using an assessment of human 

competences linked to the workforce. This was an initial exploration of how to connect a more skills-based 

assessment of AI capabilities to the kinds of economic questions that concern policy makers. The pilot 

assessed computers’ literacy, numeracy and problem-solving skills using the PIAAC test. This test 

assesses skills in the adult population and is linked to information about work and other adult activities 

(Elliott, 2017[30]). It is part of the OECD’s effort to evaluate educational outcomes through assessing skills 

such as literacy and numeracy. Some of these assessments, including both PIAAC and the Programme 

for International Student Assessment have been used for a long time at a large scale across different 

contexts. As such, they provide robust information on the distribution of these skills in the population. 

Assessing computer capabilities through such tests potentially allows for comparing AI and robotics skills 

with humans at various proficiency levels. 

To gauge the changes that technology may bring, the pilot study asked a group of computer scientists to 

rate the ability of current computer technology to answer each test question. In addition, a subset of experts 

also provided projections for the evolution of technology in the next ten years. The aggregate rating across 

specific test questions was then used to place AI capabilities on the PIAAC test scale. This helped 

understand how AI capabilities compare to the human population in these three skill areas.  

Strengths of the new approach 

The pilot study revealed a number of strengths of this new approach. 

First, rating with regard to specific test items provides a more precise estimation of computer capabilities. 

As discussed in the section above, prior estimations related to general descriptions of work tasks or 

activities, or even broader descriptions of occupations. Experts judging computer capabilities do not know 

exactly what granular tasks are required to carry these out. Their judgements thus inevitably involve 

assumptions that are likely to vary greatly across experts (Elliott, 2017[30]). By contrast, questions in 

standardised tests are precise and contextualised. This allows computer scientists to analyse the 

information processing required to answer a specific question based on the information provided (Elliott, 

2017[30]). This level of specificity implies greater reliability across raters and greater reproducibility. 

Second, using human tests makes it possible to compare computer and human capabilities. In particular, 

when large-scale data on human skills are available across different contexts, different age groups and 

occupations, these data can be used to conduct fine-grained analyses of skill supply and future demand. 

Simply put, employers could rearrange job tasks to use AI for its capabilities and human workers for the 

capabilities that AI still lacks. This means that skill demand for human workers should shift towards the 

(aspects of) capabilities that AI still lacks. A fine-grained comparison of human and computer capabilities 

across the full range of skills required for work and life will help avoid jumping to faulty conclusions on job 

automation. Instead, this connection provides information about AI’s impacts that extends beyond the 

definition of current occupations. It will be useful for thinking about AI’s implications for employment more 

generally, including occupations that do not yet exist, as well as education. 

The pilot study illustrates this potential through a number of figures and analyses. PIAAC questions are 

grouped in five levels based on their difficulty for the adult human population. Expert ratings can indicate 
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whether computers can perform at a certain level of difficulty as human adults. Figure 1.1, for example, 

shows the distribution of workers based on whether they use general cognitive skills daily in their work 

and, if they do, how they compare to computer capabilities. Work tasks of the part of the workforce that 

does not use any of these skills on a daily basis will not be substantially affected by the computer 

capabilities examined in the pilot study (as the first two bars in the figure show). Workers who use one or 

more of these skills regularly and have proficiency above the projected level of computer capabilities will 

likely continue to have regular tasks using these skills that are not substantially affected by computer 

capabilities in these areas (as the last two bars in the figure show). However, automation will likely affect 

those who use one or more of these skills on a daily basis but have proficiencies only at the level of 

projected computer capabilities (middle bars) (Elliott, 2017[30]).  

Figure 1.1. Distribution of workers by use of general cognitive skills and proficiency compared to 
computers (Results from the pilot study) 

 

Source: (Elliott, 2017, p. 92[30]). 

Challenges and further development of the new approach 

The pilot study also identified a number of challenges of the approach. Overfitting is a commonly cited 

danger of assessing whether computer technology can answer a particular test item. It is often possible to 

train computers for a specific task. However, this does not mean the computer can perform a range of 

similar tasks (Elliott, 2017[30]). Overfitting relates to the question of generalisability, i.e. the possibility to 

infer that computers have an underlying capability from their performance on specific items. Another 

challenge is whether the same ability is tested through a test item for computers and for humans. For 

example, an item that requires counting objects in a picture tests a simple numeracy skill for humans. 

However, the challenge for AI is visual processing rather than counting (Elliott, 2017[30]). 

To sum up, despite the challenges identified in the pilot study, the new approach for assessing AI 

capabilities is promising both in terms of its credibility (validity and reliability) and in producing measures 

that are meaningful for policy. Further developing and extending this approach could enlarge the 

conversation about AI capabilities. On the one hand, it could estimate automatability indices for current 

occupations (which has been done before). However, it would also provide information on how occupations 

are likely to transform, what new occupations may emerge and what this all means for developing people’s 
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skills within and outside formal education. The following section discusses what this development and 

extension involve. 

Purpose and structure of the report 

The pilot work explored assessing AI capabilities with one example test that involves just a few skills. As 
a result of its preliminary success, CERI decided to expand the work to a more comprehensive set of 
assessments. However, the methodology in the pilot study needs to be refined and the assessment 
extended to a comprehensive list of capabilities. This is necessary to establish valid, reliable and 
meaningful measures for an ongoing systematic assessment of machine capabilities. This work involves 
two steps: 

 reviewing taxonomies of human skills and capabilities1, and identifying an appropriate taxonomy 

to use for the project that spans the full range of skills used in the workplace 

 reviewing available tests of human skills and establishing criteria for their suitability for assessing 

AI capabilities. 

The project needs a comprehensive framework of skills that would fulfil three requirements. First, it would 

include all the skills that people need for their work and life. Second, it would be suitable for analysing AI 

capabilities, including both those similar to and different from human skills. Third, it would be suitable for 

comparing these capabilities to human skills and draw implications of AI progress on the world of work and 

education.  

As demonstrated by the challenges described earlier, assessing humans and machines is a different 

exercise. Therefore, the project needs to bring together different disciplines and interpret their findings for 

one another. This technical report is a first step in this process. 

The report builds on an online meeting of the AIFS project held on 5-6 October 2020 with experts from 

various domains of psychology and computer science. The meeting sought to explore different domains of 

psychology (cognitive, personality, industrial and occupational, developmental and neuropsychology) and 

to review existing taxonomies of human skills in these domains. The meeting also aimed to identify tests 

of these skills and discuss their strengths, weaknesses and applicability for assessing machine capabilities.  

Psychologists were asked to present a taxonomy (or taxonomies) of the skill domain of their expertise and 

describe the types of tests available to assess these skills. Experts were requested to discuss the 

challenges and opportunities of assessing these skills based on the research literature. The experts then 

provided sufficient examples of actual test questions to illustrate the kinds of tasks typically included and 

the criteria used to evaluate performance. Computer scientists were invited to reflect on the progress of AI 

and robotics technologies. They presented types of empirical evaluations and benchmarks in the field, and 

outlined the main considerations for assessing AI and robotics capabilities against human capabilities. 

Experts then compared the different types of skill taxonomies and tests with the objective to work towards 

some broadly supported guidelines to govern the project’s choice of a skill taxonomy and a set of tests.  

This volume contains papers prepared by psychologists and computer scientists who attended the 

meeting. They each present research from their specific field of expertise and reflect on the project based 

on the exchange in the meeting and their personal-professional views. Content sometimes overlaps 

between the chapters. There is also some repetition both in the arguments and in how these are illustrated. 

Views across some chapters may also either complement or conflict with each other. Such recurrence, 

complementarity and conflict of arguments are an invaluable resource for the project and are necessary to 

elicit guidelines for the way forward. 
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Report structure 

Part I. Setting the scene 

The first part sets the scene for the report with two introductory chapters.  

The current Chapter 1 presents the background and rationale for this work. 

In Chapter 2, Kenneth Forbus analyses the progress in AI over the past four decades. The author 

describes three ongoing revolutions – deep learning, knowledge graphs and reasoning – and foresees a 

fourth revolution: that of integrated intelligence. The chapter discusses the implications of these revolutions 

for efforts to derive relevant measures of AI’s progress with respect to human capabilities.  

Part II. Taxonomies and tests of human skills 

The second part explores taxonomies of human skills in different branches of psychology and reviews 

existing measures of these skills. It distinguishes two major areas: cognitive psychology discussed in 

Chapters 3 to 7 and industrial-organisational psychology addressed in Chapters 8 to 10. 

Cognitive abilities and their extensions 

Chapter 3 by Patrick Kyllonen provides an overview of widely known taxonomies of human cognitive 

abilities, presents the history of their development, and discusses their strengths and weaknesses. The 

author describes measures of cognitive abilities and their quality characteristics such as reliability, validity, 

fairness and measurement invariance. Finally, the chapter discusses the prospects and feasibility of using 

these tests as the basis for evaluating machine intelligence. 

In Chapter 4, Sylvie Chokron presents the neuropsychological perspective of capturing weaknesses and 

strengths of cognitive abilities in children. The author describes the most commonly used 

neuropsychological tests, as well as their limits and caveats in understanding the cognitive profile of 

children. The chapter also considers the opportunities and challenges in using such tests for assessing 

machine capabilities.  

Chapter 5 focuses on social and emotional skills. Filip De Fruyt reviews the theoretical conceptualisations 

of social and emotional skills, and discusses how these relate to educational and labour-market outcomes. 

The paper presents taxonomies of these skills, including the widely known Big Five framework, and 

describes different types of items through which such skills can be assessed. Importantly, the author 

discusses recent developments in the field. These attempt to provide more objective measures of social 

and emotional skills, such as situational judgement tests and behavioural residue indicators. 

Chapter 6 by Anita Woolley explores the recent concept of collective intelligence, i.e. the ability of a group 

to perform a wide range of tasks. The paper presents task batteries to measure collective intelligence and 

describes how these can be used to elicit the factors that predict team performance. Ongoing research 

also includes understanding how AI capabilities can enhance collective intelligence in a mixed team of 

machines and humans. Finally, the author illustrates how these measures can provide a vehicle for 

assessing artificial social intelligence. 

In Chapter 7, Samuel Greiff and Jan Dörendhal describe two major skill domains typically measured in 

large-scale educational assessments: core domain skills such as mathematics, reading and science 

literacy, and transversal skills such as problem solving, collaboration and creativity. The chapter presents 

the theoretical underpinning and measurement of these skills and examines their role in occupational 

settings. The chapter concludes with recommendations regarding the use of education tests for assessing 

AI capabilities. 
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Occupational assessments  

Chapter 8 proposes an assessment strategy that draws on tests developed for jobs subject to licensing 

examination. Phillip Ackerman presents the foundations of human intelligence tests. The author discusses 

a number of methodological challenges including those arising from tacit knowledge, humans’ use of tools, 

differences in learning between humans and AI, and the inaccuracy of skills assessments at high 

performance levels. Based on these challenges, the chapter argues that the OECD project should focus 

on domain knowledge and skills – in the context of specific jobs – rather than higher-order cognitive 

abilities. . 

Chapter 9 provides a vocational perspective to skills assessment. Britta Rüschoff reviews the methods of 

skills assessment in German vocational education and training (VET). The chapter defines vocational 

competences and presents instruments to assess them in VET examinations through concrete examples. 

The author also describes how these examinations are developed and administered, and discusses the 

validity and reliability of the instruments. Finally, the chapter indicates the advantages of using VET tests 

for assessing AI capabilities. It concludes with considerations for applying these instruments to machines. 

In Chapter 10, David Dorsey and Scott Oppler propose an approach for comparing human and AI 

capabilities based on comprehensive occupational taxonomies. The authors start with clarifying the 

structure and underlying concepts of occupational databases. The chapter then outlines a number of 

methodological recommendations and describes four major steps of the proposed approach: identifying 

an occupational taxonomy, sampling occupations from the taxonomy, collecting expert judgement on AI 

capabilities and analysing data from expert interviews. 

Part III. AI capabilities and their measures 

The third part of the volume explores the perspective of computer scientists on the evaluation of AI and 

robotics capabilities. Chapters 11 to 13 discuss major challenges in assessing AI capabilities with human 

tests, while Chapters 14 to 17 focus on existing empirical evaluation efforts of machines. 

Challenges of assessing AI capabilities with human tests  

Chapter 11 connects the second and the third part of the report. After situating AI measurement in the 

context of the roles AI can play in the future, José Hernández-Orallo provides an overview of human skill 

taxonomies and links these to the world of AI. The chapter explores types of human tests used in 

recruitment and education, and contrasts these with the evaluation of machines. The author discusses the 

challenges of using human tests for assessing AI capabilities and identifies guidelines for devising tests 

that can compare the capabilities of humans and AI reliably.  

Chapter 12 focuses on the specificities of machines and their striking differences from humans. Ernest 

Davis presents areas in which computers excel and illustrates their weaknesses compared to humans 

through examples of sometimes “grotesque” failures. The author proposes consequences of these various 

strengths and limitations for using human tests for assessing AI. 

Chapter 13 also brings attention to the ways in which AI is similar to and utterly different from human 

intelligence. Richard Granger first discusses how the architectures of artificial neural networks relate to 

networks of neurons in the human brain. The author then compares the behaviour and computational 

abilities arising from artificial neural networks to human behaviour and abilities, illustrating both with 

entertaining examples. The chapter points to current efforts to overcome shortcomings and concludes with 

a number of implications for understanding machine capabilities. 
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Efforts to assess AI and robotics capabilities 

In Chapter 14, Anthony Cohn presents approaches and methods of the AI community to measuring and 

evaluating AI systems. The author first presents tests proposed for measuring AI, then describes some 

competitions created to compare AI systems, as well as a few benchmark datasets. The chapter discusses 

some of the benefits and limitations of these approaches. 

Chapter 15 focuses on empirical evaluations of AI systems as performed by the French Institute of 

Metrology (Laboratoire national de métrologie et d’essais: LNE). Guillaume Avrin first presents the 

characteristics and process of these evaluations. The author then proposes a high-level taxonomy of AI 

capabilities and generalises it to other AI tasks to draw a parallel with human capabilities. The chapter then 

discusses the relevance of existing evaluation methods for comparing AI and human capabilities. It 

concludes with recommendations for the project approach.  

Chapter 16 provides an overview of evaluation techniques applied in the domain of natural language 

processing. Yvette Graham describes methods that offer fair and replicable evaluations of system 

performance in this domain. The author shows how longitudinal evaluation can capture progress in AI 

language processing capabilities and how these methods allow for comparison with human performance. 

The chapter also discusses human-machine hybridisation in tasks and its implication for understanding 

the potential for machines in society. 

In Chapter 17, Lucy Cheke, Marta Halina and Matthew Crosby focus on basic or common sense skills that 

all healthy human adults have but in which machines still often fail. The authors propose a taxonomy of 

these skills identifying two major domains: spatial and social skills, and describe tests used in the fields of 

animal and developmental psychology. The chapter presents examples of workplaces and situations that 

might require the use of such skills, and explore limitations and opportunities for assessing common sense 

skills in AI. 

Part IV. Reflections and a pragmatic way forward 

The last part of the report attempts to synthesise the discussion and draw conclusions as to the way 

forward for the AIFS project. 

In Chapter 18, Art Graesser discusses three questions relevant to the AIFS project: What is the value in 

identifying ideal models when comparing humans and AI and robotic systems? How might we conduct a 

systematic mapping between skill taxonomies, tasks, tests and functional AI components? How can we 

handle major differences in the skills we target, the different occupations and changes in the worlds we 

live in? The author offers suggestions on next steps in addressing these questions. 

Chapter 19 provides guidance for setting up a general analytical framework for assessing AI capabilities 

with regard to human skills. Eva Baker and Harry O’Neil offer recommendations on operative aspects of 

the project, on the selection of tests for comparing AI and human skills, and on the selection and training 

of expert raters. The chapter concludes with a summary of considerations made for planning the study. 

Finally, in Chapter 20, Stuart Elliott reflects on key considerations from the expert contributions in the field 

of psychology and computer science. The author proposes to bring together the different domains of 

psychology to benefit from the strength and relevance of each domain. The chapter also suggests a 

pragmatic way forward for the project to address the concerns formulated by the AI community and develop 

AI-specific assessment approaches where those are required.  
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They will be used interchangeably. Single chapters, however, may adopt more precise definitions, which 

will be made explicit. 
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Kenneth D. Forbus, Northwestern University 

Artificial intelligence (AI) has made considerable progress over the past 40 

years, leading to both important applications now in daily use but also a lot 

of hype in the popular press. This chapter outlines a framework for 

understanding progress in AI to help understand how to better measure that 

progress. It describes three revolutions currently under way: deep learning, 

knowledge graphs and reasoning. It summarises the progress and limitations 

in each and contrasts them with human capabilities for learning, knowledge 

and reasoning. The chapter also summarises a fourth revolution to come, 

integrated intelligence, where the goal is to create systems with agency. It 

discusses some additional implications for measuring AI progress with 

respect to learning, knowledge, reasoning and agency.  

2.  Evaluating revolutions in artificial 

intelligence from a human perspective 
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Introduction 

There has been considerable progress in artificial intelligence (AI) over the past four decades. Due to vast 

increases in the availability of computing power and data, this progress has accelerated over the last 20 

years. These increases, combined with steady scientific progress, have led to revolutionary advances. In 

this context, a revolution occurs when scientific progress and its application through technology lead to a 

radical improvement in existing capabilities, or new capabilities, that have become widely used and provide 

significant benefits. This notion of revolution factors out stunts and laboratory experiments. This makes it 

useful for understanding how to measure AI and to think about how it might impact education and work.  

By this criterion, there are three AI revolutions in progress: deep learning, knowledge graphs and 

reasoning. This chapter discusses them, comparing and contrasting with human capabilities. It then 

describes a fourth AI revolution just beginning, integrated intelligence, which builds on the other three. It 

concludes with further discussion of measuring progress in AI relative to human capabilities. 

Artificial intelligence Revolution 1: Deep learning 

The revolution everyone has heard about through the popular press is deep learning (LeCun, Bengio and 

Hinton, 2015[1]). Neural networks organise computation via large collections of simple computational units 

metaphorically inspired by neurons in brains. The term “deep” refers to the number of layers in the network. 

Research on neural networks has received varying amounts of attention since the 1950s. Until recently, 

the lack of computing power and training data meant that only small networks could be explored. Several 

decades of research on algorithm improvements, combined with graphical processing units originally 

developed for video games, finally enabled large networks to be trained using massive amounts of data. 

This has led to systems that performed far better than previous approaches on tasks such as image 

captioning, facial recognition, speech recognition and automatic natural language translation. These 

performance improvements have led to deployed applications in these areas and many others that are in 

daily use around the world.  

 

Although deep learning models are inspired by biological neurons, they do not necessarily learn in 

human-like ways. Indeed, given the state of knowledge in neuroscience, claims of biological plausibility 

must be taken sceptically (Bengio et al., 2015[2]; Marcus, 2018[3]). Research on learning in psychology and 

AI highlights some important differences between deep learning and human learning. Human learning 

involves multiple kinds of processes and occurs at multiple time-scales. For example, conceptual change 

involves articulation of knowledge, working through implications of models over weeks, months and years. 

It can involve radical discontinuities in conceptual understanding. By contrast, skill learning, which can also 

take years, is often hard to articulate. Skill learning can be described by a power law, which is smooth. 

Both conceptual change and skill learning are incremental. By contrast, deep learning requires its training 

data all at once, but otherwise is more smooth and implicit, like skill learning. 

The widespread use of deep learning has exposed three limitations. The first is brittleness, where small 

changes in inputs lead to dramatically different outputs. The second is data efficiency, i.e. the amount of 

training data required. The third is explainability, i.e. it is hard to understand why errors occur and how to 

fix them. Each limitation is discussed in turn. 

Brittleness  

Deep learning models typically approximate a function, e.g. given an input, it produces an output. Inputs 

that are close to what the model was trained on often yield reasonable results. Unfortunately, inputs from 

outside the training set can sometimes yield arbitrarily incorrect results. Changing a few pixels, for example, 
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can cause a scene to be classified differently (Goodfellow, Shlens and Szegedy, 2015[4]). Adding a few 

small patches can cause the system to perceive a stop sign as a speed limit sign (Eykholt et al., 2018[5]). 

Indeed, images that look like random noise to people are sometimes confidently recognised by deep 

learning systems as everyday objects (Nguyen, Yosinski and Clune, 2015[6]). Human vision has limitations, 

as evidenced by well-known visual illusions. However, human visual illusions are nothing like these 

misperceptions. 

Brittleness is a limitation of deep learning models in general, not just in vision. Deep learning models for 

question-answering and reading comprehension are subject to similar problems. For example, including 

extra irrelevant information that a human would ignore can mislead such systems (Jia and Liang, 2017[7]). 

Part of the problem is that these systems are being tested using instruments that do not necessarily 

measure what they are intended to measure. Reading comprehension measures designed by AI 

researchers, for instance, almost always use multiple-choice questions because they are simple to score. 

However, this method enables systems to pick up correlations between terms in the texts and the answers. 

Indeed, the systems will sometimes do almost as well in picking out answers even when it does not know 

the questions (Kaushik and Lipton, 2018[8]).  

Data efficiency 

Data efficiency is analogous to fuel efficiency. It is the amount of data needed to achieve a particular level 

of performance. The more layers in a deep learning system, the more parameters there are, and the more 

training data is required. How much data? Consider learning to play the game of Go. AlphaGo (Silver et al., 

2016[9]) and AlphaZero (Silver et al., 2018[10]), by combining deep learning with a hand-built search routine 

optimised for such games, were able to learn to play Go well enough to beat the best human players. The 

amount of data used was massive. Achieving AlphaGo’s exposure to games of Go, in human terms, would 

require a person to live about 6 800 years (Forbus, Liang and Rabkina, 2017[11]).1 Similarly, GPT-3, a 

large-scale statistical language model, was trained on many billions of tokens, far more than people 

experience in a lifetime. Nevertheless, while it can sometimes generate text that looks locally plausible, it 

is often globally incoherent and often the statements it produces are simply wrong (Marcus and Davis, 

2020[12]).2 

By contrast, consider teaching a human assistant to do a routine office task or assembly task. One does 

not need hundreds of training examples, let alone millions. A growing AI research area, interactive task 

learning (Gluck and Laird, 2019[13]), seeks to train systems with the same amounts and kinds of experience 

that a person would receive. This requires data efficiency but also the ability to communicate with the 

system using natural modalities (e.g. language, sketching, gesture, speech). Interactive task learning is a 

step towards integrated intelligences, which are discussed more below. 

Explainability 

Explainability is important so that people can understand the rationale for decisions that a system makes 

and to troubleshoot when problems arise. Deep learning systems are opaque, since they rely on massive 

sets of numbers that typically do not have any clear interpretation. It should be noted that human learning 

is not always explainable. The field of psychophysics, for example, explores how perception works, 

including what is built-in versus learnt. Similarly, cognitive psychologists have studied learning procedural 

knowledge. In so doing, they have generated both a wealth of behavioural results and computational 

models that capture temporal properties and error patterns in such learning. For evaluating skills, 

performance measures often suffice.  

By contrast, in science, engineering, law and medicine, as well as many other fields, practitioners are 

required to explain their results. This puts a premium on explicit conceptual knowledge, as discussed 

further below. Even in these professions, some forms of knowledge are less easily articulated, commonly 
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called tacit knowledge (Forbus, 2019[14]). Such knowledge often concerns how situations in the everyday 

world can be understood in terms of professional knowledge and the construction of a mental model 

(Gentner and Stevens, 1983[15]). Research in qualitative reasoning (Forbus, 2019[14]) suggests this split 

between formulating and using mental models is common in professional reasoning (Klein, 1999[16]; Engel, 

2008[17]).  

Deep learning is indeed a valuable technology, despite these limitations. The trajectory of deep learning 

also highlights an important lesson about new technologies and their potential impacts. Ideas can take 

considerable time to hone – conceptual advances and algorithmic improvements can take decades. They 

may only take off when environmental factors are favourable (e.g. massive amounts of data and of 

computation). Other approaches to learning in AI (including inductive logic programming, analogy and 

interactive task learning) are earlier in their trajectories. However, they may yet hit that combination of 

progress and environmental factors to become revolutions on their own.  

There is more to AI than learning. These same factors have led to revolutions in two other areas, as 

described next.  

Artificial intelligence Revolution 2: Knowledge graphs 

Knowledge is a key ingredient of intelligence. Decades of research on knowledge representation in AI has 

led to formal methods for capturing many kinds of facts in machine-usable form at industrial scale. Such 

compendia are called knowledge graphs.3  

An overview of knowledge graphs 

Knowledge graphs provide explicit representations of knowledge, including descriptions of entities in terms 

of statements about them, relationships among entities and a variety of other conceptual structures, such 

as arguments, explanations and plans. Knowledge graphs include ontologies, i.e. representations that 

describe types of things in the world (entities) and facts about those entities. Ontologies are typically 

constructed by hand. Facts are added via a combination of hand-engineering and automatic methods, 

such as importing information from databases and extracting from texts such as webpages. 

Knowledge graphs have been applied in multiple industries. For example, Google’s Knowledge Graph 

uses 70 billion facts describing over a billion entities to improve web search and perform 

question-answering (Noy et al., 2019[18]). If a user is looking for a restaurant in San Francisco, for instance, 

the system needs to understand whether they are searching from California or Colombia. Similarly, 

Amazon uses one knowledge graph of product information in its recommendation system (Dong, 2018[19]) 

and another of general information for question-answering via Alexa.4 In its operations, Facebook uses a 

knowledge graph of people and their relationship with others (Noy et al., 2019[18]). Several scientific 

communities have created their own ontologies using Semantic Web representations (Allemang, Hendler 

and Gandon, 2020[20]) to help index and retrieve data, results and publications. Similarly, publishers have 

created ontologies to help others access their articles and works.5  

It is interesting to compare today’s knowledge graphs with human knowledge. Billions of facts is quite a 

lot. Certainly, no human being has memorised, say, all of the named locations on Earth plus all of the 

people mentioned in Wikipedia. Therefore, along some dimensions, knowledge graphs go beyond what 

people know. On the other hand, people know massive amounts about the physical world, social world 

and mental worlds of agents. Estimating the amount of knowledge people have is challenging (Forbus, 

Liang and Rabkina, 2017[11]). What is clear, however, is that humans use at least three types of knowledge 

that are rarely found in deployed knowledge graphs. These are multimodal grounding of knowledge, 

episodic knowledge and inferential knowledge.  
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Multimodal grounding of knowledge 

Some human knowledge is grounded in perception and sensorimotor experience. Humans know what a 

cat looks like in repose versus at play, and how many dishes can be carried safely. This multimodal 

grounding of knowledge – what the world looks, sounds, feels and tastes like – is almost entirely missing 

from today’s knowledge graphs.6 

Episodic knowledge 

Episodic knowledge is one’s personal experience, which serves as a resource in efficient reasoning. For 

example, human experience suggests that dogs make good pets whereas sharks do not. Humans can 

decide this quickly, even if it takes a moment to articulate clear reasons for the difference. People also 

learn from the experiences of others, as transmitted via stories, allowing cultures to accumulate knowledge 

across space and time.  

The family of techniques called case-based reasoning (CBR) use forms of analogy to apply knowledge 

about previous situations to new problems. Some CBR applications have scaled to millions of cases (Jalali 

and Leake, 2018[21]). However, current large-scale CBR systems use vector representations7 rather than 

the relational information used in other areas in CBR and in knowledge graphs. Relational knowledge is 

crucial to capture the full range of human knowledge. It includes the ability to represent plans, theories, 

arguments and social relationships.8 Although people’s general knowledge (often called semantic memory) 

is tightly integrated with their episodic knowledge, large-scale relational CBR systems do not currently 

exist. 

Inferential knowledge 

Inferential knowledge consists of general knowledge that can be used to derive new consequences. For 

example, one might know that dogs are commonly kept as pets in some cultures, because dogs are often 

affectionate towards people and people often keep pets to provide affection.  

Inferential knowledge is valuable because it supports reasoning, which enables systems to come up with 

novel conclusions about new situations and problems. It typically takes the form of rules in a formal 

language, allowing algorithms to use them automatically and unambiguously. There are a variety of formal 

languages used in practice, varying considerably in expressive power. Some are strictly logical. Others 

incorporate probabilities and statistical reasoning. Still others incorporate procedural (i.e. how-to) 

knowledge. Cyc is the knowledge graph with the most inferential knowledge. It uses a highly expressive 

logic, enabling it to be used for a variety of applications.9  

The trajectory of knowledge graphs 

The limitations of knowledge graphs summarised above are natural given that industrial, commercial and 

scientific knowledge graphs are purpose-built. For example, a genomics ontology will not include cultural 

products, which are a major component of Google and Bing’s knowledge graphs, and they in turn do not 

include detailed representations of genomes. There is a recognition that the field needs to start building 

open knowledge networks.10 This will allow existing knowledge graphs to be integrated more easily and 

extended in ways that will benefit everyone.  

As knowledge graphs are applied to more tasks, the range of types of knowledge they include will grow. 

Multimodal grounding of concepts in perception is important for creating robots that can operate in less 

constrained environments for tasks such as elder care and housekeeping. Personal assistant software is 

already helping drive development of formal representations of human events and preferences, to better 

model the particular people they work with.  
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Understanding context and higher-quality understanding of natural language is leading to more work on 

representing inferential knowledge. Today’s assistants might handle questions like “What is the weather 

today?” followed by “How about the weekend?” If the initial question was “What is my schedule today?”, 

the follow-up question about the weekend concerns schedules, not the weather. Handling such changes 

can be done via semantic representations that explicitly represent the computations used in answering 

questions (Andreas et al., 2020[22]). 

Artificial intelligence Revolution 3: Reasoning 

Reasoning is a hallmark of human intelligence. There are many kinds of reasoning, but in their essence 

they involve combining facts to reach new conclusions. This sub-section examines several dimensions of 

reasoning, common sense versus professional reasoning, some examples of the reasoning revolution, and 

compares human and AI reasoning capabilities. 

Dimensions of reasoning 

Depth of reasoning 

Depth of reasoning relates to how many steps are needed to perform a task. A question like “How old is 

the president of Germany?”11 provides a simple example. Answering the question requires two steps: 

identifying the president of Germany and then finding out that person’s age. The reasoning revolution is 

due in part to the ability of some specialised reasoners to go far beyond human capabilities in terms of 

depth. 

Types and breadth of knowledge  

Since reasoning involves combining information to produce new conclusions, it invariably involves two 

dimensions of knowledge: types and breadth. Consider the kinds of question-answering that IBM’s original 

Watson system performed. To beat the best human players at the game of Jeopardy!, Watson integrated 

a massive amount of knowledge: Wikipedia, multiple reference works, volumes of literature and other 

information (Fan et al., 2012[23]). Watson’s knowledge was thus quite broad but only moderately deep. It 

was capable of evaluating spatial and temporal constraints on answers, for example, and reasoning about 

types of entities. 

Flexibility of reasoning 

Humans marshal vast amounts of multiple types of knowledge efficiently and effectively. We are able to 

come to some conclusions rapidly, even with very little information, and can combine experience with 

principles to come up with effective plans in novel circumstances. 

Common sense reasoning versus professional reasoning 

One of the grand challenges for AI is common sense reasoning (Davis and Marcus, 2015[24]). This includes 

everyday knowledge of the physical world, such as knowing that it is possible to pull with a string but not 

push with it.12 Common sense reasoning gets people through the activities of their days – from navigating, 

cooking and cleaning to interacting with others. 

Professional reasoning is grounded in common sense reasoning. New problems come couched in a mix 

of professional and everyday terms. For example, a doctor must diagnose a patient’s symptoms; a judge 

reviews a legal case to judge; a designer develops a device. In doing so, they translate from their everyday 

terms and models into their professional terms and models. Thus, a key part of professional reasoning is 
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model formulation. This involves construction of a mental model for a situation in professional terms that 

enables a problem to be solved.13 The knowledge needed for professional reasoning includes explicit 

principles taught (e.g. the definition of a tort, the equations of thermodynamics). However, it also includes 

strategies and tactics to apply principles to new situations. This strategic and tactical knowledge is often 

tacit, communicated via apprenticeship and reflection on experience.  

Examples from the reasoning revolution 

While many issues in understanding reasoning remain open scientific questions, several areas have shown 

revolutionary progress. The most spectacular AI reasoning systems today operate after model formulation 

has occurred. In designing a new distributed computing scheme, for example, Amazon engineers write a 

description of their system using a temporal logic (Newcombe et al., 2015[25]). A model checker, which is 

a type of reasoning system, scrutinises the possible combinations of events in the system to search for 

bugs. These bugs can be subtle, sometimes only happening after a sequence of over 30 events. Yet, given 

the velocity of modern computation, such bugs are likely to manifest several times a week, making their 

detection important. 

Many applications use automatic model formulation within specific narrow domains. For example, 

Facebook uses model checking to evaluate the code being added to the 100 million lines of code that runs 

their services (Distefano et al., 2019[26]). If an engineer has checked in a software patch that could be 

problematic, it is flagged for review automatically.  

Similar superhuman feats of reasoning occur daily by satisfiability solvers used in logistics and operations 

planning. These satisfiability solvers operate over systems of millions of constraints far more quickly and 

generate better solutions than human planners can produce [e.g. (Simonis, 2001[27])].  

In engineering design, combinations of qualitative and quantitative models have been used to do several 

types of commercially important reasoning. These systems perform causal reasoning, using human-like 

conceptual models that enable them to provide natural explanations that engineers understand. For 

example, AutoSteve (Price, 2000[28]) performs failure modes and effects analyses to evaluate what could 

go wrong in designs for automobile electrical systems. At Xerox, such models are used to evaluate 

potential new modules for high-performance print engines at design time for cost effectiveness. They are 

also used as the basis for model-based control software. This software reconfigures itself dynamically 

on-site as the complex electro-mechanical components of high-end printers change due to reconfiguration 

of physical parts or parts wearing out (Fromherz, Bobrow and de Kleer, 2003[29]).  

Table 2.1. Dimensions of reasoning in people versus AI systems 

Dimension People AI systems 

Depth of reasoning Medium Very High 

Types of knowledge Many Few 

Breadth of knowledge Wide Narrow 

Flexibility of reasoning High Low 

 

Reasoning in people vs. AI systems 

As Table 2.1 illustrates, AI systems and humans have different strengths and weaknesses. AI systems are 

better at high-depth reasoning than humans. Asking whether people could be trained to do as well as 

model checkers and satisfiability solvers is like asking whether people can be trained to outrun an 

automobile or outlift a crane. The firing frequency of neurons ranges roughly between 1-500 Hertz, but 

brains have massive parallelism, with billions of neurons. Modern computers, by contrast, are much more 
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serial, but operate around 10 million times faster. For tasks with many sequential reasoning steps 

(i.e. high-depth reasoning), AI systems have an overwhelming advantage. 

People still have the edge over AI systems on common sense reasoning, model formulation and many 

kinds of professional reasoning. These require many types of reasoning, a wide breadth of knowledge and 

high flexibility. Of these, more aspects of professional reasoning are likely to be the next to be more broadly 

automated. It is already happening in engineering domains to some degree, due to the mathematical nature 

of many engineering models.  

However, the experiential component to engineering is harder to capture, and that will take extending more 

AI systems to accumulate episodic memories. Medicine and law seem to rely even more heavily on 

experience and rules distilled from experience by practitioners. Ultimately, AI systems will be able to 

accumulate far more experience in these domains than any human being due to our lifespan limitations 

and the ability of AI to combine experience across many systems.14 Scaling up analogical reasoning to 

handle CBR and distillation of rules from such massive collections will be an important technical challenge. 

The coming fourth artificial intelligence Revolution: Integrated intelligence 

The three revolutions – deep learning, knowledge graphs and reasoning – are far from over. Moreover, 

they interact synergistically. For example, deep learning has been used to help build knowledge graphs 

and estimate which subgoals are worth pursuing in reasoning (like choosing good moves in a game). 

Knowledge graphs are being integrated with deep learning systems to improve their reasoning capabilities. 

However, there is a key limitation that none of these revolutions addresses. Even when machine learning 

is used, today’s AI systems are still constructed and maintained by humans. This sub-section outlines the 

integrated intelligence revolution to come, the fourth AI revolution. 

From pipelines to organisms 

People hand-craft the structure of today’s AI systems. Even when machine learning is used, people gather 

and curate the data, inspect the results, and then tune/tweak the data and the learning algorithms. AI 

systems do not, on the whole, set their own learning goals and decide what data to gather to achieve them. 

Human scientists and engineers decide on the ontology for systems and what kinds of information are 

needed in knowledge graphs. If the kinds of tasks change, humans must decide on the need for new 

knowledge and how to acquire it. Human engineers tune and tweak reasoning systems and problem 

formulations to wring the most accurate results and effective performance out of systems.  

Today’s deployed AI systems can be thought of as pipelines – machines whose architecture is 

purpose-built for a particular range of tasks. For personal assistant AI systems, such as Google Assistant, 

Amazon’s Alexa, Microsoft’s Cortana, Samsung’s Bixby or SK Telecom’s Aria, these pipelines are 

massive. Human engineers are constantly updating or even replacing models and algorithms as needed 

to adapt them to changing circumstances. The exact number of human engineers needed for these tasks 

is held closely by the companies involved. However, depending on the system, it likely ranges from 

hundreds to thousands of people.  

This reliance on human intervention does not scale. For example, one of the visions in the 20-year AI 

Roadmap for the US (Gil and Selman, 2019[30]) is the idea of personal AI assistants. Unlike today’s 

assistants, these systems will adapt themselves to the work and personal lives of humans to help them, 

with humans owning all their own data. Such a vision is impossible with the pipeline model – the systems 

themselves must be able to maintain, adapt and learn on their own. In other words, pipelines are missing 

agency. Building AI systems that, like biological organisms, have agency is the heart of the coming fourth 

revolution of integrated intelligence.  
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The road to the fourth revolution 

Several AI research threads are building up the science base for this revolution. Cognitive systems 

research15 typically involves multiple AI capabilities, as well as exploring how specific capabilities need to 

be modified or extended to function as part of larger-scale systems. Cognitive architecture research 

[e.g. (Anderson, 2009[31]; Laird, 2012[32]; Forbus and Hinrichs, 2017[33])] explores computational models of 

larger-scale phenomena in human cognition. None of these are deployed for daily use at the scale that 

would constitute a revolution – yet.16  

Examining the difference between human development and the way AI systems are engineered today 

provides a lens for identifying the capabilities needed to build organisms. People successfully learn to 

become members of a culture and profession. This learning is cumulative, with new material building on 

previously learnt material in ways that none of today’s AI technologies can match. People quickly adapt 

when joining a new group and when dealing with new circumstances. They can be apprentices, which 

catalyses learning through interactions with others.  

Endowing machines with these capabilities involves numerous scientific challenges, most of which are still 

being formulated. The recent 20-year AI Roadmap for the US (Gil and Selman, 2019[30]) provides a 

decomposition of many of these issues and suggests milestones to bridge the gaps.17 It is thus a resource 

for projecting progress of the field over that period, based on a consensus view developed by over 90 

researchers.  

A roadmap is not a schedule, of course. Our understanding of the issues and their difficulties are naturally 

incomplete and progress requires ample resources. Nor does this enable prediction for the start of 

daily-use beneficial applications that will herald the start of this revolution. Resources for development of 

deep learning, knowledge graphs and reasoning ramped up as successful applications were fielded, and 

the same will apply to integrated intelligence.  

Additional implications for measuring artificial intelligence progress 

Clearly, no single test of AI progress will suffice for measuring its capabilities. This should not be surprising, 

since psychometricians long ago gave up on defining a single test for measuring human intelligence. AI 

systems are still well below the capability and sophistication of human minds in most regards. However, 

the need to measure their progress on human scales demands at least a battery of tests.  

These tests will need to be designed by teams of psychometricians and AI researchers. The 

psychometricians have a better understanding of how to test extremely complex systems (i.e. humans) 

and to achieve reliable results over time. The AI researchers have a better understanding of the strengths 

and weaknesses of the technologies.  

A battery should incorporate tests for learning, knowledge, reasoning and agency. 

Learning 

Separate tests will be needed for perceptual, procedural and conceptual learning as each has different 

expectations and requirements for data efficiency and explainability. Prior work on modelling conceptual 

change has used tests developed by cognitive scientists. These tests measure the kinds of models a 

system learns. They also measure whether trajectories of learnt models are similar to those of human 

learners (Friedman and Forbus, 2010[34]). Assembling a set of such developmental benchmarks could help 

ensure that intermediate learnt models make sense to the human collaborators of AI systems. 
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Knowledge 

With explicit knowledge graphs, the amount of knowledge in different areas can be measured directly, with 

effectiveness for reasoning tested by sampling. Some approaches attempt to use language models and 

other distributed representation systems as knowledge bases. Evaluating such models is far more difficult, 

given their lack of interpretability.  

For inferential knowledge in some domains, such as verification and scheduling, the knowledge is entirely 

deductive. The consistency of such knowledge can be automatically verified in many cases. As the range 

of inferential knowledge is expanded, to include more abductive reasoning and common sense reasoning, 

benchmark domains will be required for testing, since plausible-sounding rules can turn out to be 

insufficient and/or problematic.  

Testing episodic memory is harder. It requires looking at the experiences required for a job and comparing 

what the system/person has versus what is required (see vocational education and training discussion 

below).  

Reasoning 

Reasoning in technical domains, such as engineering, is worth measuring. Performing technical analyses 

in engineering domains is reasonably well understood now in many cases, but two more difficult frontiers 

should also be included. The first is reasoning for model formulation, i.e. can a system frame problems for 

technical analyses when expressed in everyday terms? The second is reasoning for communication, 

i.e. can the system interact with professionals using the mixture of technical concepts and everyday 

concepts that people use when working together to solve problems?  

Common sense reasoning is especially difficult to measure since it is broad and often tacit. The knowledge 

may be tacit because it is grounded in experience. For example, one knows that tipped cups spill because 

it has been seen to happen, not because of a simulation or an explicit rule. 

Agency 

Testing the ability of AI systems to manage their own operations and learning over extended periods of 

time – ultimately, decades – will be extraordinarily difficult. Measuring the ability to handle a suite of 

complex problems, of varying types and progressive in difficulty, may be a reasonable way to approximate 

the process. As the complexity of AI systems grows, models of trust will likely be developed that look more 

like collaboration with other organisms (e.g. working dogs, draft horses, human collaborators) than 

engineering verification and validation. In other words, experience will lead to trust in systems over time. It 

is not even clear what verification and validation would mean when, for example, training a system via 

apprenticeship to fit within the practices of an organisation. In its assessments used in vocational education 

and training developed in Germany, Chapter 9 provides both a useful breakdown of many workplace skills 

and examples of assessment techniques that might be adaptable for this purpose.  

Conclusions 

The three AI revolutions of deep learning, knowledge graphs and reasoning are already having 

considerable impact, and the fourth revolution of integrated intelligence will likely go further. For 

understanding AI progress in human terms, these four areas (learning, knowledge, reasoning, agency) are 

coarser than traditional psychometric taxonomies. However, they provide a useful perspective by focusing 

on sufficiency for tasks, which is directly relevant for considering the impact of AI on the future of work. For 

this purpose, they are incomplete: language and vision capabilities need to be assessed as well, for 

example.  
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Still, a level of analysis in terms of task capabilities seems useful. Psychometric tests were designed to 

assess people. They have been, and remain, one source of useful measures to understand progress in 

AI. However, today’s AI systems differ in many ways from people, and tomorrow’s likely will as well. In 

some cases, these differences will be limitations to be overcome; in others, they will be sought deliberately 

to build systems that complement human strengths and weaknesses. Consequently, more task-oriented 

measures will be needed as well.  

Are there other AI revolutions to come? It seems likely. While deep learning has received much of the 

press, other learning techniques are being scaled up and more broadly applied as well. Therefore, more 

revolutions in learning may emerge.  

What about natural language? Statistical learning and knowledge graphs have been powering progress on 

natural language, but there are limits to language on its own. For example, approaches that try to build 

dialogue systems based on large corpora of human interactions often ignore the critical role of context in 

dialogue. For example, the meaning of “What shall we do next Thursday?” must be determined in the 

context of the current conversation. This means that, beyond a certain level, progress in natural language 

is bound up with progress in integrated intelligences, which provide context for understanding.  

What about robotics? There, issues of materials and mechanical engineering are key bottlenecks, making 

it much harder to estimate progress.  
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Notes

1 AlphaZero is more data-efficient, but the 21 million games played during training would still require a 

person to live close to 4 800 years. 

2 They performed over 150 tests to come to this conclusion, which are described at 

https://cs.nyu.edu/faculty/davise/papers/GPT3CompleteTests.html. A common problem with the 

evaluation of AI systems is what is called the Eliza effect, i.e. that people are easily fooled by AI systems. 

People’s tendency to humanise technologies has been amply documented (Reeves and Nass, 2003[37]). 

3 Another common term is knowledge base. Typically, these terms are used interchangeably, but there is 

a subtle difference. Knowledge graphs are always constructed out of graphs, i.e. node and link data-

structures. While all knowledge graphs are knowledge bases, some approaches try to use distributed 

representations, e.g. statistical language models, as knowledge bases. 

4 Amazon acquired True Knowledge (Tunstall-Pedoe, 2010[38]) and has been building on it for general 

question-answering services. 

5 The BBC, for example, has made theirs available on line at www.bbc.com/ontologies.  

6 While many knowledge graphs contain URLs for images, there is little processing of such information to 

use it for reasoning. They typically display it to users to show what a product looks like. 

7 Vector representations consist of a one-dimensional sequence of numbers. Vector, matrix and tensor 

mathematical representations are commonly used in neural network models. 

8 Relational knowledge is expressed in the form of statements involving predicates and arguments. 

Statements are analogous to a verb and its arguments in a natural language sentence, but the predicates 

are drawn from a formal vocabulary and their meaning is constrained by rules of inference. Logics and 

procedural formalisms are two examples of representational systems that can be used to encode relational 

knowledge. 

9 Published examples include answering queries integrated across multiple databases by medical 

researchers expressed in natural language (Lenat et al., 2010[35]) and intelligent tutoring for mathematics 

(Lenat and Durlach, 2014[36]). 

10 A roadmap for an Open Knowledge Network is laid out in Gil and Selman (2019[30]), as part of a broader 

20-year roadmap for AI in the United States. 

11 This example is correctly handled by Google, Bing, Alexa and Bixby at this writing, but they do not handle 

all such simple two step inferences. 

12 This example is due to the late Marvin Minsky. 

13 Research on qualitative reasoning has done the most to formalise model formulation (Forbus, 2019[14]), 

but there is still much more research needed on this topic. 

14 Imagine AI assistants for doctors, lawyers, and engineers that accumulate experiences as they work 

with people. Now imagine that experience is being accumulated across assistants within an organisation 

 

 

https://cs.nyu.edu/faculty/davise/papers/GPT3CompleteTests.html
http://www.bbc.com/ontologies
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or within a profession, combined into a massive library of experience that would go beyond what any 

person could ever experience. 

15 Typical venues include the journal and conference Advances in Cognitive Systems (www.cogsys.org) 

and the Cognitive Systems track at the AAAI conference. 

16 ACT-R, SOAR and Companions have been used in deployed systems but not yet at a scale or frequency 

to constitute a revolution in the sense used here. On the other hand, today’s deployed systems may lead 

to more experiments in autonomy. In an apocryphal story, an apprentice too lazy to manually supervise 

the steam engine invented the governor to do it for him. Similarly, there may be stirrings of autonomy in 

today’s AI pipelines as engineers find ways to let the system take on more of their work, but that is operating 

at the margins.  

17 In Gil and Selman (2019[30]), the Integrated Intelligence workshop report is mostly concerned with such 

issues [e.g. expanding the kinds of memories available to AI systems (page 25) and reducing the 

maintenance footprint of AI systems (page 26)]. The Meaningful Interaction workshop report addresses 

multiple relevant issues, including the integration of diverse natural modalities for communication and 

challenges involved in collaboration with people. The Self-Aware Learning workshop report addresses both 

expanding the kinds of knowledge that learning techniques can handle (page 66) and controlling their own 

learning (i.e. durable machine learning systems, page 74). 

http://www.cogsys.org/
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Part II. Taxonomies and 

tests of human skills 
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Patrick C. Kyllonen, Educational Testing Service, Princeton, NJ, United States 

This chapter reviews taxonomies of human cognitive abilities and measures 

of those abilities. It recalls the history of key models and frameworks, 

analysing their strengths and weaknesses. It gives special attention to the 

second order of frameworks, which comprises approximately nine distinct 

abilities, including fluid, crystallised, spatial and broad retrieval/creativity 

abilities. The primary factors associated with these nine abilities are 

discussed, along with sample tests and test items reflecting the different 

abilities. It proposes two additional abilities: emotional intelligence and 

collaboration/communication. Finally, it discusses the prospects and 

feasibility of using human abilities and their associated tests to evaluate 

machine intelligence, discussing the advantage of having a justification for 

the selection of tasks.  

 

  

3.  Taxonomy of cognitive abilities 

and measures for assessing artificial 

intelligence and robotics capabilities  
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Introduction 

This chapter reviews taxonomies of human cognitive abilities and measures of those abilities. It recalls the 

history of key models and frameworks, analysing their strengths and weaknesses as a group and relative 

to one another. It gives special attention to the second order of frameworks, which comprises 

approximately nine distinct abilities, including fluid, crystallised, spatial and broad retrieval/creativity 

abilities. The primary factors associated with these nine abilities are discussed, along with sample tests 

and test items reflecting the different abilities. It proposes two additional abilities: emotional intelligence 

and collaboration/communication. Finally, it discusses the prospects and feasibility of using human abilities 

and their associated tests to evaluate machine intelligence, discussing the advantage of having a 

justification for the selection of tasks. 

Various taxonomies of human skills and abilities  

There are numerous taxonomies of human skills and abilities based on various approaches for developing 

them. This section first explores human cognitive abilities, and psychometric and sampling models. All 

these models acknowledge the phenomenon of positive manifold. First noted by Spearman (1904[1]; 

1927[2]), positive manifold is a label for the universality of positive correlations between performance scores 

on any pair of cognitive tests. There have been many attempts to determine the cause of positive manifold 

(e.g. general factor or bonds or network), or, if a general factor, then the nature of the general factor. The 

section ends with a discussion of executive function, cognitive architectures and general artificial 

intelligence (AI).  

From Spearman to Cattell-Horn-Carroll 

Perhaps the oldest and most well-known taxonomies come from the human cognitive abilities literature (or 

sometimes, factor analytic tradition). This began with Spearman (1904[1]; 1927[2]) who analysed 

correlations among scores (i.e. tallies of numbers correct from a set of items) from various cognitive tests, 

primarily samples of school-like tasks. That led to the fluid-crystallised (Gf-Gc) mode (Horn and Cattell, 

1966[3]) and the extended Gf-Gc model (Horn and Blankson, 2005[4]; 2012[5]); the three-stratum model 

(Carroll, 1993[6]); and their synthesis in the Cattell-Horn-Carroll (CHC) model (McGrew and Woodcock, 

2001[7]). Annex 3.A compares the three models. 

The various models within this framework agree on a strong general factor that accounts for 30-70% of the 

between-person variance in any test score [called “gf” in the Horn-Cattell model, see Carroll (1993[6])]. 

Consider, for example, math, verbal, science and problem-solving scores in the OECD Programme for 

International Student Assessment (PISA). These scores show intercorrelations ranging from r = .8 to r = 

.9. There is a general fluid versus crystallised distinction; these two factors can be highly correlated, but 

developmental trajectories differ (fluid ability peaks at an earlier age). There are roughly 8 to 10 group 

(second order) factors, and 80 or so primary (first order) latent factors that account for covariances among 

test scores. 

Vernon’s hierarchical model 

There are alternative approaches within the human abilities/factor analytic tradition, or what is sometimes 

called the psychometric model of intelligence (Hunt, 2011[8]). The hierarchical model of Vernon (1950[9]) is 

realised in the g-VPR (general factor, verbal-perceptual-memory, image rotation) model (Johnson and 

Bouchard, 2005[10]; Johnson, te Nijenhuis and Bourchar, 2007[11]). This model does not differ qualitatively 

from the Carroll (1993[6]) or CHC models. However, it differs in emphases: there is a general factor at a 
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fourth order, three major factors at the third order (verbal, perceptual and image rotation), about nine 

factors at the second order and numerous primary factors. 

Sampling models 

Sampling is another alternative to the abilities model. This tradition began with the bond sampling model 

(Thomson, 1916[12]), where any test samples a set of mental bonds rather than component abilities per se 

(Tirre, 1994[13]). More recently, the sampling approach is represented in network (van der Maas et al., 

2019[14]) and wiring models (Savi et al., 2019[15]). 

Executive function 

One popular concept relates the general factor to working memory capacity (Conway and Engle, 1996[16]; 

Kyllonen and Christal, 1990[17]). Working memory capacity can be characterised as executive attention 

[i.e. one’s capacity to control attention, see Engle (2002[18]) and Kane et al. (2001[19])]. 

This line of findings arguably underlies the executive functioning literature, which has become popular in 

education circles (Zelazo, Blair and Willoughby, 2016[20]). Executive functioning is defined as “skills related 

to working memory, inhibitory control and mental flexibility” (Shuey and Kankaraš, 2018[21]). These skills, 

in turn, are defined as the temporary activation or storage of information while engaged in cognitive 

processing (Baddeley, 1986[22]; Cowan, 2017[23]); directing or sustaining attention in the face of distractions 

(Diamond, 2013[24]); and the ability to shift between different mental sets or tasks (Archambeau and 

Gevers, 2018[25]), respectively. 

Cognitive architectures 

Other lines of research that fall outside the factor analytic tradition of conventional abilities contribute to a 

positing or understanding of a human abilities taxonomy. One of these lines of research is computational 

modelling, or cognitive architectures. These include Adaptive Control of Thought-Rational (ACT-R) 

(Anderson and Lebiere, 1998[26]; Anderson et al., 2004[27]); Cortical Capacity-Constrained Concurrent 

Activation-based Production System (4CAPS) (Just and Varma, 2007[28]); Executive Process Interactive 

Control (EPIC) (Kieras and Meyer, 1997[29]); SOAR (Newell, 1994[30]); and Hypothesis Generation 

(HyGene) models (Thomas et al., 2008[31]).  

These models are designed to simulate human problem solving. As a side effect, their architectures 

suggest constructs that may be treated as human abilities. For example, ACT-R distinguishes procedural 

(production rules) and declarative (chunks) memory. It includes specialised perceptual-motor, goal and 

declarative memory modules, as well as learning processes. HyGene, which is designed for diagnostic 

reasoning, includes processes of information sampling, derivation of prototypical representations, 

generation of candidate hypotheses, probability estimation, hypothesis testing and search termination.  

Many of these processes and modules map to the lower-order factors in the hierarchical abilities’ models. 

However, they are implemented more precisely with respect to how they function, which is required for a 

computer simulation. 

Artificial intelligence ability taxonomies 

Related to cognitive architectures is the more general AI literature. This is not concerned with simulating 

human cognition but with building intelligent entities more broadly. A popular AI textbook (Russell and 

Norvig, 2010[32]) includes chapters entitled problem solving; knowledge, reasoning and planning; 

knowledge representation; probabilistic reasoning; making simple (and complex) decisions; learning; and 

perception. These chapters include many methods for addressing these topics, such as induction, case-
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based reasoning and reasoning by analogy, which also map to the abilities identified in the Carroll (1993[6]) 

model. Identifying the constructs included in AI can inform discussions of human abilities. 

Cognitive tests associated with these taxonomies 

Each of the literatures reviewed in the previous section is based on empirical research that involves 

performance of cognitive tests. The most extensive of these is from the cognitive abilities/factor analytic 

tradition because the associated taxonomies are derived directly from scores on batteries of cognitive 

tests. This section looks at cognitive tests associated with these taxonomies. 

From school tasks to intellectual tasks 

Originally, cognitive tests were essentially samples of school tasks (e.g. spelling) along with perceptual 

(e.g. pitch perception) and memory (e.g. logical, visual, auditory) tasks from the laboratories of 

experimental psychology (Wissler, 1901[33]; Spearman, 1904[1]).  

Over time, new kinds of intellectual tasks were added, such as Thurstone (1938[34]), and World War II led 

to a considerable expansion of measures. A unit of the US Army (the Army Air Force) developed tests to 

measure every conceivable mental function (Humphreys, 1947[35]; Damos, 2019[36]). These included tests 

of verbal and mathematical skills, reasoning, mechanics, judgement, foresight, planning, integration, 

memory, attention, mental set, perceptual skills, spatial orientation and visualisation, and general 

information, as well as a set of motion picture tests (Gibson, 1947[37]; Lamkin, Shafer and Gagne, 1947[38]). 

Later, Guilford (1950[39]) expanded even this lengthy list to include new measures to fill out his structure of 

intellect model (Guilford and Hoepfner, 1971[40]). Perhaps the most significant area of expansion was in 

measures of divergent thinking, or creativity (Guilford, 1950[39]). 

Test kits and tool boxes 

Educational Testing Service (ETS) produced a kit of cognitive reference tests. They comprised a sample 

of tests from the most important 46 factors associated with this work (Ekstrom et al., 1976[41]; 1976[42]). 

These tests, still used widely in research, are available for free or a nominal charge.  

Condon and Revelle (2014[43]) and Dworak et al. (2020[44]) produced the International Cognitive Ability 

Resource (ICAR). This open-source tool measures 19 domains of cognitive ability, including fluid ability 

(progressive matrices and matrix reasoning, propositional reasoning, figural analogies, letter and number 

series, abstract reasoning), emotional ability (emotion recognition), mathematical ability (arithmetic), verbal 

ability (verbal reasoning), creativity (compound remote associates), face-detection (aka the Mooney Test), 

perceptual ability (melodic discrimination, a perceptual maze task), and judgement (a situational judgement 

task). This is not as systematic as the ETS resource. However, given the open-source nature of the ICAR, 

it may eventually become more comprehensive.  

The CHC taxonomy is tightly tied to a commercial instrument: the Woodcock Johnson III Tests of Cognitive 

Abilities (WJ III) (Schrank, 2011[45]) and Woodcock Johnson IV (WJ IV) (Schrank, Mather and McGrew, 

2014[46]). Annex 3.B describes the battery factors and tests. 

Executive functioning research is associated with tests that measure working memory capacity, inhibitory 

attentional control, and cognitive and attentional flexibility. Jewsbury, Bowden and Strauss (2016[47]) show 

how the CHC model can accommodate these measures. Numerous publications describe working memory 

measures [e.g. Kyllonen and Christal (1990[17]) and Wilhelm, Hilldebrandt and Oberauer (2013[48])]. 

The US National Institutes of Health (NIH) provides the NIH toolbox, which comprises a set of 100 stand-

alone measures to assess cognition, emotion, motor ability and sensation. NIH cognition measures (Zelazo 
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et al., 2013[49]) include attention and executive function (Flanker Inhibitory Control and Attention Test), 

working memory (list sorting), executive function (Dimensional Change Card Sort), along with episodic 

memory, language and processing speed measures. These are separated by age range (3-6, 7-17 and 

18+). 

The cognitive architecture literature has been primarily driven by laboratory tasks from experimental 

cognitive psychology. Such measures are most often designed to test specific aspects of cognitive 

theories. They predominantly measure response time (e.g. fact retrieval, lexical decision) and memory 

recall (e.g. free recall, recognition memory). They tend to be simpler than tests in the psychometric 

tradition, as they are typically designed for narrower purposes.  

The AI literature is voluminous and therefore difficult to characterise. It is equally difficult to characterise 

the kinds of cognitive measures associated with the literature.  

Criteria for establishing taxonomy and suitable tests 

An ideal taxonomy for this project would provide a list of human abilities, identified through a methodology 

or methodologies that enable a strong scientific justification. Such a list would be comprehensive but 

parsimonious. In this way, there would be minimal conceptual or empirical overlap between abilities. The 

definition of the ability would also need to be demonstrable or transparent. These, and other, principles are 

elaborated below. 

Comprehensiveness could prove difficult to demonstrate capability with respect to all the abilities proposed. 

Parsimony would minimise burden in any application exercise, such as rating jobs. Demonstrability or 

transparency can be measured with processing requirements that are clear and easily understood. 

Empirically there must be a strong connection between the test and the construct it is intended to measure. 

Other considerations for determining the suitability of particular tests are their correlation with the factor of 

interest; amount of time (or number of items) needed to achieve a reliable score; and susceptibility of the 

test to (contamination with) other factors (test impurity).  

Cattell-Horn-Carroll framework 

This section reviews one of the lines of literature in more depth: the human cognitive abilities literature 

from the factor analytic tradition. 

The factor analytic tradition in depth 

The factor analytic tradition begins with Spearman (1904[1]; 1927[2]). His analyses of cognitive tests found 

that a general latent factor accounted quite adequately for the correlations among test scores. However, 

each test score additionally had to contain test-specific variance.  

Thurstone (1938[34]) administered a broader sample of tests to a larger group of college students. Through 

the development of multiple-factor analysis and the concept of simple structure, Thurstone (1934[50]) 

showed evidence for a set of narrower group factors (verbal comprehension, word fluency, number facility, 

spatial visualisation, associative memory, perceptual speed, reasoning). He referred to these as primary 

mental abilities.  

Others showed the Spearman and Thurstone findings were compatible through a hierarchical mode 

(Undheim, 1981[51]; Gustafsson, 1984[52]) or the similar bifactor model (Holzinger and Swineford, 1937[53]; 

Holzinger and Harman, 1938[54]; Schmid and Leiman, 1957[55]). In other words, performance on a test could 

be a function of general, group and specific latent factors simultaneously.  
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Horn and Cattell (1966[3]) proposed two general factors [fluid (Gf) and crystallised (Gc) ability], along with 

a set of correlated group factors or broad abilities. This line of research (Horn and Blankson, 2005[4]; Horn 

and Blankson, 2012[5]) culminated in 80 first-order primary mental abilities and 8 second-order abilities. 

These are Gc; Gf; short-term memory (Gsm) [later, short-term apprehension and retrieval (SAR)]; long-

term memory (Gsl) [later, fluency of retrieval from long-term storage (TSR)]; processing speed (Gs); visual 

processing (Gv); auditory processing (Ga); and quantitative knowledge (Gq). 

Carroll (1993[6]) analysed 460 datasets comprising test correlation matrices accumulated over almost a 

century of research. He reanalysed them using a version of the Schmidt-Leiman procedure and 

synthesised findings primarily based on informed but subjective judgements of content (and process) 

overlap. He proposed a three-stratum model (Carroll’s “stratum” is synonymous with the more common 

term of “order”) with a general factor at the apex and eight second-stratum factors.  

The second-stratum factors were fluid intelligence, crystallised intelligence, general memory and learning, 

broad visual perception broad auditory perception, broad retrieval ability, broad cognitive speediness and 

processing speed. Each of the second-stratum factors covered 4 to 14 first-stratum factors. For example, 

the second-order fluid intelligence covered the first-order (primary) factors: general sequential reasoning, 

induction, quantitative reasoning and speed of reasoning. These, in turn, were determined by the 

correlations among the manifest scores from various tests of those factors.  

The CHC model was proposed as a synthesis of the Carroll (1993[6]) and Horn and Cattell (1966[3]) models 

(McGrew and Woodcock, 2001[7]). It has subsequently been revised and expanded regularly with the 

incorporation of new research findings [e.g. Schneider and McGrew (2018[56])]. However, these remain 

three distinct frameworks or models. Carroll (2003[57]) updated his model, and Horn did as well (Horn and 

Blankson, 2012[5]) to accommodate new findings. Still, it is useful to treat them or their synthesis as a 

common framework. They differ in some details (Carroll, 2003[57]) but are based on mostly common data 

and methods. 

Critiques and modifications of the CHC framework 

The CHC model has become a popular framework for the representation of human abilities, partly or 

perhaps primarily due to its application in school psychology for student cognitive diagnosis. Nevertheless, 

several important critiques have recently appeared. These include a special issue of Applied Measurement 

in Education (Beaujean and Benson, 2019[58]; Canivez and Youngstrom, 2019[59]; Geisinger, 2019[60]; 

McGill and Dombrowski, 2019[61]; Wasserman, 2019[62]). 

These critiques identify five limitations: over expansiveness; emphasis of group factors over individual 

factors; mental speed; treatment of quantitative factor; and its combination of two disparate factors. The 

issues are summarised below. 

Over expansiveness 

Like many abilities frameworks (Carroll, 1993[6]; Carroll, 2003[57]; Horn and Blankson, 2012[5]), CHC 

includes too many abilities with scant justification for their inclusion. More replication would be desirable, 

using a variety of tests (not just those in the WJ III and WJ IV commercial batteries). Users (e.g. teachers, 

school psychologists) like having many abilities to test to obtain a more complete picture of a student. 

However, there is a growing awareness that reliability is crucial to distinguish between tests or factors 

(Haberman, Sinharay and Puhan, 2011[63]). In addition, profile scores (e.g. a set of scores from several 

tests or factors) are often not justified due to the importance of the general factor. This critique suggests a 

smaller number of factors than are typically reported are scientifically justified.  
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General vs. group factors 

The general factor can often be shown to be more important in accounting for test score variance than the 

group (lower order or lower stratum) factor. However, CHC has mostly denied the general factor. It prefers 

to emphasise the group factors, which are empirically shown to be highly overlapping.  

Mental speed 

CHC does not treat mental speed in a way consistent with the recent literature on cognitive processing 

speed [e.g. Kyllonen and Zu (2016[64])]. New psychometric approaches suggest a rethinking of mental 

speed with respect to abilities models. 

Quantitative factor 

In the Carroll (1993[6]) framework, and in the CHC, quantitative ability is a lower-order factor of fluid 

intelligence. However, Wasserman (2019[62]) points to mathematics prodigies as an indicator that 

quantitative ability might deserve a higher ranking.  

Combining disparate functions 

Both Carroll (1993[6]) and CHC frameworks combine knowledge retrieval and idea production in a single 

long-term memory retrieval factor. However, these are disparate functions. Idea production is thought to 

be the essence of creativity, whereas knowledge retrieval is considered to be a non-creative process.  

Despite these criticisms, the CHC model and its constituents [e.g. Carroll (1993[6]) and Horn and Cattell, 

(1966[3])] may provide enough of a basis for a justifiable taxonomy of human cognitive abilities. In other 

words, it may satisfy the criteria of being comprehensive, reasonably succinct and transparent in principle. 

g-VPR as an alternative to the CHC framework  

Other human abilities frameworks are worth considering in addition to the CHC model. The general plus 

verbal, perceptual and image rotation (g-VPR) model (Johnson and Bouchard, 2005[10]; Johnson, te 

Nijenhuis and Bourchar, 2007[11]) has been shown to provide a better account of the test score data than 

the CHC model.  

Some prominent researchers such as Hunt (2011[8]) have suggested g-VPR as a viable alternative to the 

Carroll (1993[6]) or CHC models. However, showing a slightly superior fit for a few datasets is probably not 

a sufficient reason for claiming the g-VPR framework as a viable alternative. Even Johnson (2018[65]), one 

of the architects of g-VPR, has argued their model had not “’carved nature at its joints’” in any battery any 

better than Carroll had. This is because factor analysis spits back at us only what we put into it, and we 

have no tasks that uniquely measure any one particular ability or skill…” (p. 24).  

What are the most important abilities? 

As Carroll (2003[57]) noted in the title of one of his last papers, “Current evidence supports g and about ten 

broad factors.” There is considerable agreement across the three major CHC frameworks about those 

broad factors (see Annex A), although some make distinctions. The major categories are the nine-colour 

coded distinctions. In addition, one general factor is not listed (because it is at the third stratum). The 80 

or so primary (first order) factors are listed in Annex 3.B and Annex 3.C.  
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General factor and fluid intelligence 

The general factor is either identical or close to identical to fluid ability (gf). There is a strong overlap 

between executive function ability, working memory, attention and gf (Wilhelm, Hilldebrandt and Oberauer, 

2013[48]). Most of this research was conducted after Carroll (1993[6]). Still, the primary gf measures are 

reasoning measures, both quantitative and non-quantitative.  

Good examples listed in Annex Figure 3.D.1 are from Carroll’s (1993[6]) primary (first order) factors of 

inductive reasoning, deductive reasoning and quantitative reasoning.  

The first primary gf factor of inductive reasoning includes sets (classification tasks, “odd man out” tasks), 

series (e.g. number, letter, figure series) and matrices tasks. In Raven’s progressive matrices (Kyllonen 

et al., 2019[66]), for example, the goal is to induce a rule or set of rules describing an arrangement of a set 

of elements then to apply the rule(s) to identify or categorise new elements.  

The second primary gf factor of deductive reasoning includes tests for syllogistic reasoning and 

diagramming relationships using Euler diagrams, as shown in Annex Figure 3.D.1. This example and the 

other listed illustrate how inductive and deductive reasoning tasks can be implemented in verbal, numerical 

and spatial content.  

The third primary gf factor of quantitative reasoning is illustrated with the Necessary Arithmetic Operations 

test, which asks respondents to select the operations needed to solve an arithmetic word problem.  

All these example tasks (and others listed in Annex 3.D) are singled out because they are good 

representations of some key primary factors associated with second-order factors. Further discussion of 

the reasoning factor, the varieties of reasoning and evidence from diverse research traditions can be found 

in Kyllonen (2020[67]). 

Abductive reasoning 

Abductive reasoning involves deriving an explanation for a finding or set of facts. Consider the following 

example taken from a retired form of the GRE: because the process of freezing food consumes energy, 

many people keep their electric freezers half empty, using them only to store commercially frozen foods. 

Yet freezers that are half empty often consume more energy than if kept fully stocked.  

The example then proposes five possible explanations for the apparent discrepancy. This might be solved 

with deductive reasoning. However, it follows the form of an abductive reasoning problem in that a 

phenomenon is presented in search of a cause or explanation. The example presents possible 

explanations, but abductive reasoning could also involve an open-ended item. In that case, a person would 

have to retrieve relevant information to come up with an explanation. Consequently, this kind of problem 

overlaps to some extent with ones in the broad retrieval ability category, below.  

Crystallised intelligence 

Crystallised intelligence, in principle, represents acculturated knowledge but in practice overlaps highly 

with “verbal ability” (Carroll, 1993[6]). Some of the best example tasks are reading comprehension tests, 

vocabulary items (open-ended or multiple choice) and cloze tests. A cloze test presents a sentence or 

paragraph with missing words that need to be provided. This requires knowledge of the topic, vocabulary, 

grammar rules and the like. Crystallised and fluid intelligence tasks appear to be distinct, but empirically, 

fluid and crystallised intelligence are highly correlated in individuals. One explanation is that students use 

reasoning processes in developing verbal knowledge (Marshalek, 1981[68]). Annex Figure 3.D.2 lists 

examples of tasks. 
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Broad visual perception 

Broad visual perception is commonly called spatial ability. It involves the perception, memory, mental 

transformation and reasoning about presented or imagined spatial materials. Guilford’s blocks test 

provides an example of imagined spatial materials. Respondents imagine painting a wooden block red, 

dividing it into 3 x 3 x 3 blocks, then determining the number of blocks with exactly one side painted red. 

Example items from the most prototypical spatial ability tests covering the most prominent spatial ability 

primary factors appear in Annex Figure 3.D.3. The factors (and test examples) are spatial visualisation 

(mental paper folding), closure flexibility (the copying test) and perceptual speed (a picture matching test). 

Lohman (1979[69]) is a still useful review of this literature. 

Broad retrieval ability 

Broad retrieval ability is Carroll’s label for a set of factors that involve creativity and mental fluency. 

Prototypical fluency tasks are ones that involve rapidly generating lists of responses that follow a set of 

rules. This could be generating all the words that begin with “S” and end with “N”, or four letter words that 

do so; an example word fluency item is shown in Annex Figure 3.D.4. An analogous process is figural 

fluency, such as moving toothpicks around to create a form (see example in Annex Figure 3.D.4). Creativity 

measures are fluency tests that involve more complex ideas. For example, the consequences test from 

Christensen, Merrifield and Guilford (1953[70]) (Annex Figure 3.D.4) asks respondents to respond with as 

many plausible and non-repeating responses as they can in a short interval to prompts such as “What 

would happen if we didn’t have to eat?” or “How can traffic congestion problems be curtailed?”  

General memory ability 

Carroll (1993[6]) found evidence for a general memory ability factor based on performance on short-term 

and long-term memory tasks that have been studied in the verbal learning tradition in experimental 

psychology. These include memory span, associative memory and free recall, as well as a separate visual 

memory first-order dimension. There was also evidence for a loose learning ability factor.  

Memory and learning are obviously important human abilities, but this factor has not been shown to relate 

uniquely to educational outcomes in the way fluid and crystallised ability have. The factor may represent 

performance on the peculiar sort of arbitrary memory tasks that psychologists have devised, but not the 

ability invoked in typical educational learning situations.  

Another peculiarity is that simple forward memory span (repeating a string of 7 to 9 digits) seems to invoke 

an ability different from backward memory span (repeating the string backwards) (Reynolds, 1997[71]). The 

latter operates more like a working memory test, requiring simultaneous storage and processing 

(Baddeley, 1986[22]).  

Working memory is also highly correlated with fluid intelligence, as reviewed in a previous section. 

Consequently, it may not be useful to include memory ability factor in a test of AI. Technology may lessen 

the requirement for memorising arbitrary strings of words and symbols, which is another reason to exclude 

memory ability from an AI test. 

Broad auditory perception 

Carroll (1993[6]) found evidence for a distinct broad auditory perception factor, called “listening and hearing” 

in the Horn-Cattell model, and “auditory processing” in the CHC. These involve speech-sound and general 

sound discrimination, memory for sound patterns, musical discrimination and the like. These are important 

human abilities but are more perceptual in nature. They do not seem as pertinent to testing AI as abilities 

from the other categories. 
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Psychomotor ability  

Psychomotor abilities are important in many jobs and other human activities, such as playing sports and 

games. Carroll considered this literature outside the scope of his focus on cognitive abilities, but 

psychomotor ability is represented in the CHC model. Fleishman (1954[72]) provided a taxonomy and set 

of psychomotor tasks.  

Some decades later, Fleishman and Quaintance (1984[73]) and Chaiken, Kyllonen and Tirre (2000[74]) made 

further comments on psychomotor ability. They suggested a general psychomotor factor that could account 

for most of the psychomotor tasks. It can be measured with tasks such as multi-limb co-ordination and 

tracking tasks, such as pursuit motor co-ordination. 

Processing speed 

Processing speed is an important component of human cognition. Carroll (1993[6]) suggests there was an 

independent second-order speed factor (i.e. two independent speed factors). The nature of a processing 

speed factor is a complex topic within cognitive psychology and within the human abilities’ literature. This 

complexity is due to speed-accuracy trade-off, willingness or proclivity to abandon unproductive solution 

attempts and time management issues generally. In fact, Carroll’s two speed factors could be due to 

interactions among these factors (Kyllonen and Zu, 2016[64]).  

It is difficult to imagine how tasks designed to measure a processing speed factor in the human abilities’ 

literature could be used productively to measure AI abilities. A prototypical task is simply an easy version 

of a fluid or crystallised intelligence test (e.g. an easy vocabulary synonym judgement test). The primary 

dependent variable is the time it takes to retrieve the answer or solve the simple problem. Thus, little 

additional information is likely to be obtained by trying to determine machine capabilities on tasks sampled 

from the set of tests designed to measure human processing speed.  

Olfactory, tactile and kinaesthetic abilities 

This set of sensory abilities was also considered outside the realm of human cognitive abilities in Carroll 

(1993[6]). However, these abilities are represented within the CHC framework. This inclusion reflects 

research attempting to document these abilities within the context of human cognitive abilities. Stankov 

(2019[75]) summarises the research programme. However, like some of the other factors, this work seems 

to be outside the central focus of this study, which is primarily based on human cognitive abilities.  

Additional abilities 

Besides the abilities covered in the previous section, several ability factors could be noted: emotional 

intelligence, and collaboration and communication. 

Emotional intelligence 

Emotional intelligence only emerged as a concept with Mayer and Salovey (1993[76]). Therefore, it was not 

part of thinking about human cognitive abilities at the time of Carroll (1993[6]). Since then, there has been 

considerable research on the topic.  

The literature distinguishes between ratings and performance measures; only the latter would be 

considered relevant for the purposes of testing AI abilities. MacCann et al. (2014[77]) administered an 

emotional intelligence test battery along with a battery of CHC-type cognitive ability tests (e.g. fluid, 

crystallised, spatial ability, broad retrieval). They identified first- and second-order emotional intelligence 
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factors based on a set of emotional intelligence measures (two tests of each for emotion perception, 

emotion understanding and emotion management).  

Earlier research MacCann and Roberts (2008[78]) examined the Situational Test of Emotional 

Understanding (STEU) and the Situational Test of Emotion Management (STEM). STEU presented items 

such as the following: Hasad tries to use his new mobile phone. He has always been able to work out how 

to use different appliances, but he cannot get the phone to function. Hasad is most likely to feel? a) 

distressed, b) confused, c) surprised, d) relieved or e) frustrated. The related STEM measure comprises 

similar types of items. From the standpoint of this study, this factor does represent something distinct from 

say, crystallised intelligence: it includes a component on reasoning about emotions.  

There are other kinds of emotional intelligence measures. These include determining the emotional state 

of someone photographed (Baron-Cohen et al., 2001[79]; Olderbak et al., 2021[80]) or of someone 

expressing emotion through language (Scherer and Scherer, 2011[81]; Hellwig, Roberts and Schulze, 

2020[82]). The empathic agent paradigm asks test takers to study how another person depicted in vignettes 

tends to act in situations, and then to apply that knowledge to predict how that person will react in a new 

situation (Hellwig, Roberts and Schulze, 2020[82]). All these measures make clear that a second-order 

emotional intelligence factor is an important human cognitive abilities factor distinct from the others 

discussed here. 

Collaboration and communication 

Woolley et al. (2010[83]) found evidence for “collective intelligence”, meaning that some teams of individuals 

performed better than other teams across a diverse set of team tasks. Team tasks included brainstorming, 

planning a shopping trip, group typing, group matrix reasoning and group moral reasoning. This “team 

effect” was independent of individual abilities on the team (e.g. as indicated by how they performed the 

task alone). Instead, collective intelligence seemed related to members’ emotional intelligence – their 

ability to read their teammates’ emotions, goals and intentions.  

The future economy will likely put a premium on teamwork, collaboration and communication (Deming, 

2017[84]). Thus, it would seem important to determine the possibility of assessing teamwork skills. PISA 

2015 also included a collaborative problem-solving measure (OECD, 2017[85]). In reviewing small groups 

research (a branch of social psychology), Larson (2010[86]) concluded that some tasks exhibited synergy. 

This is defined as the situation in which a team outperforms the best member of the team, or at least does 

as well as the best member.  

Tasks exhibiting synergy include a letters-to-numbers problem-solving task and a hidden-profile decision-

making task. In the latter, different team members are provided overlapping but distinct knowledge about 

choices. Successful team performance depends on members sharing and considering their common and 

unique knowledge to arrive at a group decision. It is not clear if a scenario could be set up to evaluate, say, 

a machine’s ability to collaborate, but tasks drawn from this category suggest at least possibilities to 

consider.  

Feasibility of a human abilities framework for assessing artificial intelligence and 

robotics 

This section explores the viability of a human abilities framework to assess AI and robotics. 

The psychometric tradition: CHC and O*NET 

An abilities framework in the psychometric tradition (such as the CHC) has already proven viable. The US 

Department of Labor rates job requirements with respect to abilities similar to the kinds of abilities listed in 
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the CHC framework through the Occupational Network, or O*NET (National Center for O*NET 

Development, n.d.[87]); (National Research Council, 2010[88]); (Peterson et al., 1999[89]).  

O*NET, an occupational analysis system in the United States, collects ratings on job demands annually. 

Ratings fall into a variety of categories. These include tasks, generalised work activities, knowledge, 

education and training, work styles and work contexts). 

Significantly, for assessing AI and robotics, ratings are collected on the ability involvement (importance 

and level) for over 950 occupations (Fleisher and Tsacoumis, 2012[90]). It surveys 52 abilities, while eight 

occupational analysts provide ratings for every occupation. The abilities are grouped into the categories of 

cognitive, psychomotor, physical and sensory-perceptual.  

The framework is based on Fleishman, Costanza and Marshall-Mies (1999[91]) and Fleishman and 

Quaintance (1984[73]), but the cognitive part is largely consistent with the CHC framework. Cognitive 

abilities include oral and written comprehension and expression, fluency of ideas, originality, problem 

sensitivity, deductive and inductive reasoning, information ordering, category flexibility, mathematical 

reasoning, number facility, memorisation, speed of closure, flexibility of closure, perceptual speed, spatial 

orientation, visualisation, selective attention and time sharing. In addition, O*NET surveys perceptual and 

motor factors such as reaction time, auditory attention and speech recognition. It regularly publishes job 

descriptions with respect to their standings on these factors.  

The current O*NET system does not collect judgements related to emotional intelligence or to collaboration 

ability, but such ratings could potentially be included. Ability ratings using an abilities framework can be 

collected for occupational requirements and importance. Thus, abilities could be potentially useful 

constructs on which to collect ratings regarding machine capabilities. 

Three useful concepts to consider for machine intelligence 

There are significant differences between human abilities and machine abilities. However, the language 

and set of concepts have evolved over a century of abilities testing. These may still be useful in considering 

issues in machine intelligence. Many of these concepts are captured in the Standards for Educational and 

Psychological Testing (AERA, APA and NCME, 2014[92]). Three – “construct irrelevant variance”, “teaching 

to the test” and “construct underrepresentation” – are discussed below. 

Construct irrelevant variance 

Construct irrelevant variance is a test fairness issue. It refers to a test intended to measure a construct, 

such as mathematics. However, performance can be affected by other constructs, such as the ability to 

understand a diagram or language abilities. If performance is affected by factors that the test is not intended 

to measure, then a test cannot be considered a fair measure of the construct. This is a major fairness 

concern motivating accommodations for individuals who might have difficulties with aspects of the test that 

are not the target of assessment. Consider, for example, sight-impaired individuals. 

Teaching to the test 

Teaching to the test refers to the notion of instruction related to incidental test features that are not features 

shared generally with respect to the broader construct the test is intended to measure. Teaching to the test 

is likely to enhance performance on a test without enhancing the level of the construct the test is designed 

to assess. Psychometrically, this situation is revealed to the extent that one’s performance on a particular 

test is not consistent with performance on other related tests, a situation sometimes referred to as model 

misfit. 
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Construct underrepresentation 

Construct underrepresentation refers to a situation in which the set of tests to measure a construct does 

not reflect the full range of attributes or skills in the construct definition. Here, test performance might only 

indicate the level of the underlying trait or ability possessed by the individual. However, the test only 

captures a part of the larger construct. For example, a vocabulary test is a useful indicator of general verbal 

ability. However, verbal ability should reflect a broader set of skills than vocabular, such as paragraph 

comprehension or responding to general knowledge questions.  

Conclusions 

An abilities framework such as the hierarchical model (Carroll, 1993[6]) or the CHC (Schneider and 

McGrew, 2018[56]) are useful frameworks for evaluating human abilities and are likely to be useful for 

evaluating machine abilities as well. There is general agreement among various models at some of the 

major human performance distinctions. The second-stratum factors  (Carroll, 1993[6]) and their equivalents 

in the CHC and Horn-Cattell (1966[3]) models are a useful level for evaluation of the type envisaged for AI 

and robotics. These might be supplemented by two additional factors – emotional intelligence and 

collaboration/communication ability. On the other hand, some included second-order factors, such as 

processing speed, psychomotor ability and sensory abilities, might be less central for understanding 

machine intelligence in the context of a project designed to evaluate likely future work requirements.  

A solid body of evidence can be used both to identify measures of the various second-stratum factors and 

to evaluate the appropriateness of those measures as good indicators of those factors. Good measures 

from the standpoint of human abilities have several qualities. First, they produce a reliable assessment of 

ability in individuals. Second, their scores are highly correlated with the factor of interest (i.e. high factor 

loadings in a factor analysis). Third, they have high average correlations with scores from other measures 

of the factor (i.e. they have high centrality with respect to the construct of interest).  

High factor loadings and high centrality are also related to the concept of transferability of skills. Two tasks 

that are highly correlated should share common skills. Conversely, lower correlations and lower factor 

loadings indicate less commonality with respect to skill requirements. They suggest lower transfer relations 

between the tasks from a training perspective. 

There are many differences between machine and human intelligence. However, the evolved language 

used to describe tests and their relationships to the abilities intended to be measured is useful for 

describing issues in machine intelligence. Concepts such as reliability, validity, fairness, measurement 

invariance, construct representativeness and others may help clarify issues in evaluating machine 

intelligence in the same way they have for measuring human intelligence.  
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Annex 3.A. Comparison of second-order factors 
in three hierarchical abilities models 

Annex Table 3.A.1. Second-order factors in three hierarchical abilities models 

Carroll’s (1993) 3-stratum model Horn-Cattell’s Gf-Gc model (1966, 2021) CHC Model 

2F Fluid intelligence Gf Reasoning under novel conditions2 Gf Fluid reasoning4 

 Gq Quantitative mathematical Gq Quantitative knowledge 

2C Crystallized intelligence5 Gc Acculturational knowledge3 Gc Comprehension knowledge4 

  Gkn Domain-specific knowledge 

  Grw Reading and writing 

2Y General Memory/Learning SAR/Gsm Short-term apprehension, retrieval2 Gsm Short-term-memory4 

2V Broad Visual Perception Gv Visualization and spatial orientation Gv Visual processing4 

2U Broad Auditory Perception Ga Listening and hearing Ga Auditory processing4 

2R Broad Retrieval Ability TSR/Glm Long-term storage and retrieval3 Glr Long-term storage and retrieval4 

2S Broad Cognitive Speediness Gs Speed of thinking Gs Processing speed4 

2T Processing Speed  Gt Reaction and decision speed 

  Gps Psychomotor speed 

  Gp Psychomotor abilities 

  Go Olfactory abilities 

  Gh tactile abilities 

  Gk Kinesthetic abilities  

Note: 1 (Horn and Blankson, 2012[5]); 2 Decline with age; 3 Do not decline with age; 4 Appears in WJ III/WJ IV commercial tests; 5 2H combines 

2F & 2C. 

Source: Adapted from (Carroll, 1993[6]) (Horn and Cattell, 1966[3]) (Schneider and McGrew, 2018[56]). 
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Annex 3.B. The WJ III and WJ IV set of factors 
and tests 

Annex Table 3.B.1. WJ III and WJ IV set of factors and tests 

Test name Factor name Sub-Factor Description of task requirements  

Numerical Reasoning Gf Quantitative Reasoning Determine numerical sequences and a two-dimensional 

numerical pattern. 

Concept Formation Gf Induction Identify rules that make up geometric figures after being 

exposed to concepts. 

Analysis Synthesis Gf General Sequential Reasoning Analyse the structure of an incomplete logic puzzle and solve 

the missing parts. 

Block Rotation Gv Mental Rotation, Visualisation Choose geometric designs that match another design which 

have been physically rotated to a different position. 

Spatial Relations Gv Spatial Relations Select the component parts of whole shape. 

Picture Recognition Gv Visual Memory Study five images, remember them and recognise them in a 

larger set of other arranged images. 

Visual Matching Gs Perceptual Speed Quickly find and circle two identical numbers in a row of six 

numbers in 3 minutes. 

Decision Speed Gs Mental Comparison Speed Quickly analyse a row of images and mark two images that are 

the most closely related in 3 minutes. 

Cross out Gs Perceptual Speed & Rate of 

Test Taking 

Mark drawings that are identical to the first drawing in the row 

in 3 minutes. 

Rapid Picture Naming Gs Naming Facility Quickly name a series of pictures as fast as possible. 

Retrieval Fluency Glr Ideational Fluency State as many words from specified categories as possible in 

1 minute. 

Visual Auditory Learning: Delayed Glr Associative Memory Recall and relearn (after a 30-minute to 8-day delay) symbols 

presented in. 

Visual Auditory Learning Glr Associative Memory Translate visual symbols after being given orally presented 

words that are associated with them. 

Memory For Names Glr Associative Memory Remember an increasingly large number of names of novel 

cartoon characters. 

Memory For Names: Delayed Glr Associative Memory Recall and relearn (after a 30-minute to 8-day delay) names of 

novel cartoon. 

Sound Blending Ga Phonetic Coding Synthesis Listen to a series of individual syllables, individual phonemes, 

or both that form words and name the complete words. 

Incomplete Words Ga Phonetic Coding Analysis Listen to words with one or more phonemes missing and name 

the complete words. 

Sound Patterns Ga Speech-Sound Discrimination Indicate whether pairs of complex sound patterns are the 

same or different. The patterns may differ in pitch, rhythm, or 

sound content. 

Auditory Working Memory Gsm Working Memory Listen to a mixed series of words and digits and then to 

rearrange them by first saying the words in order and then the 

numbers. 

Numbers Reversed Gsm Working Memory Repeat a series of random numbers backward 

Memory For Words Gsm Memory Span Repeat lists of unrelated words in the correct sequence 

Memory For Sentences Gsm Memory Span Repeat complete sentences. 

Picture Vocabulary Gc Lexical Knowledge Name familiar and unfamiliar pictured objects. 

Verbal Comprehension Gc Language Development & 

Lexical Knowledge 

Name familiar and unfamiliar pictured objects and then say 

words similar in meaning to word presented, say words that 

are opposites in meaning to the word presented, and complete 

phrases with words that complete analogies. 
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General Information Gc General Information Provide characteristics of objects by responding to questions, 

such as “Where would you find…?” and “ What you would do 

with…?”. 

Academic Knowledge Gc General Information Provide information about biological and physical sciences, 

history, geography, government, economics, art, music and 

literature. 

Oral Comprehension Gc Listening Ability Listen to a short passage and orally supply the word missing at 

the end of the passage. 

Story Recall Gc Listening Ability Listen to a short passage and describe the details. 

Verbal Attention (WJIV only) Gsm Working memory capacity Listen to a series of numbers and animal words mixed together 

and answer questions regarding the sequence. 

Number Series (WJIV only) Gf Quantitative reasoning Participants have to identify the correct number in a series of 

numbers that correctly completed the series. Ex. (2, 4, ?, 8, 

10,…) 

Letter-Pattern Matching (WJIV 

only) 

Gs Perceptual speed Quickly find and circle identical letters and patterns. 

Visualisation (WJIV only) Gv Mental rotation, Visualisation Identify two sets of 2D pieces that form a specific shape; also 

identify two sets of 3D rotated blocks that match another 

shape. 

Phonological Processing (WJIV 

only) 

Ga Phonetic coding, Word fluency Name words that begin with a certain sound; also use parts of 

words to create new ones. 

Nonword Repetition (WJIV only) Ga Phonetic coding Listen to a nonsense word and repeat the word exactly. 

Segmentation (WJIV only) Ga Phonetic coding Listen to words and break them into syllables and phonemes. 

Note: *Appears in WJ IV, not WJ III. 

Source: Adapted from (Schrank, 2011[45]); (Schrank, Mather and McGrew, 2014[46]). 
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Annex 3.C. Factor hierarchy in Carroll’s three- 
stratum model of human cognitive abilities 

Annex Table 3.C.1. Factor hierarchy in Carroll’s three-stratum model 

Stratum III Stratum II Stratum I 

general intelligence fluid intelligence general sequential reasoning 

induction 

quantitative reasoning 

speed of reasoning 

 crystallised intelligence language development 

lexical knowledge 

learning ability 

phonetic coding 

communication ability 

oral production and fluency 

(seven more) 

 general memory & learning memory span 

associative memory 

meaningful memory 

free recall memory 

visual memory 

learning abilities 

broad visual perception 

 broad visual perception visualisation 

spatial relations 

coding speed 

flexibility of closure 

perceptual speed 

spatial scanning 

(six more) 

 broad auditory perception speech-sound discrimination 

general sound discrimination 

resistance to auditory stimulus distortion 

temporal tracking 

memory for sound patterns 

musical discrimination and judgement 

(five more) 

 broad retrieval ability ideational fluency 

associational fluency 

expressional fluency 

naming fluency 

word fluency 

originality/creativity 

(three more) 

 broad cognitive speediness rate of test taking 

numerical facility 

perceptual speed 

 processing speed simple reaction time 

choice reaction time 

semantic processing time 

mental comparison speed 
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Annex 3.D. Sample items 

Annex Figure 3.D.1. Example fluid intelligence test items 

Figure sets: A test of the Induction factor within the Fluid intelligence domain  

 

Note: Other Induction test examples include figural, verbal, or numerical sets, series, and matrices tests. The task is to classify the 8 items below 

into Groups 1 or 2 by inducing the rule from the exemplars above. 

Diagramming Relationships: A test of the Sequential (Deductive) Reasoning factor within the Fluid 

intelligence domain 

 

Note: Other examples include logical deductions. The task is to choose the Euler diagram that reflects the relationships among the listed entities. 

Necessary Arithmetic Operations: A test of the Quantitative Reasoning factor within the Fluid intelligence 

domain 

 

Note: Other examples include mathematics word problems. The task is to indicate which operations would be required to solve the problem. 

Source: Ekstrom et al. (1976[41]). 
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Annex Figure 3.D.2. Example crystallised intelligence test items 

Reading Comprehension: A test of Reading Comprehension within the Crystallized intelligence domain 

 

Note: The task is to select the best characterization of the passage from the choices given. 

Vocabulary: A test of Lexical Knowledge within the Crystallized intelligence domain 

 

Note: The task is to identify the closest synonym to the target word. 

Cloze: A test of Cloze Ability within the Crystallized intelligence domain 

 

Note: The task is to fill in the blanks through inferencing. 

Source: First two panels, (Ekstrom et al., 1976[41]); third panel, (Landauer, 1986[93]). 
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Annex Figure 3.D.3. Example broad visual perception test items 

Paper Folding: A test of Spatial Visualization within the Broad Visual Perception domain 

 

Note: The task is to select the unfolded diagram from the options on the right based on the pattern of folding and punched holes in the depiction 

on the left. 

Copying: A test of Closure Flexibility within the Broad Visual Perception domain 

 

Note: The task is to copy the image on the left by connecting the appropriate dots on the right. 

Identical Pictures: A test of Perceptual Speed within the Broad Visual Perception domain 

 

Note: The task is to select the picture on the right that matches the target picture on the left. 

Source: Ekstrom et al. (1976[41]). 
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Annex Figure 3.D.4. Example broad retrieval ability test items 

Word Beginnings and Endings: A test of Word Fluency within the Broad Retrieval Ability domain 

 

Note: The task is to generate as many words as possible within a time limit that meet the constraints given. 

Matchsticks: A test of Figural Flexibility within the Broad Retrieval Ability domain 

 

Note: The task is to generate as many solutions as possible within a time limit that meet the constraints given. 

Consequences: A test of Creativity within the Broad Retrieval Ability domain 

 

Note: The task is to generate as many implications as possible within a time limit. Scores are based on the number of unique, on topic responses 

given in 3 minutes. 

Source: First two panels, (Ekstrom et al., 1976[41]); third panel, (Christensen, Merrifield and Guilford, 1953[70]).
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Sylvie Chokron, Institut de Neuropsychologie, Neurovision & Neurocognition, Hôpital-Fondation Adolphe de 

Rothschild; Integrative Neuroscience and Cognition Center, CNRS UMR 8002 & Université de Paris. 

Neuropsychological evaluation aims at describing a child’s weaknesses and 

strengths to set an appropriate rehabilitation and education programme, as 

well as to better educate the school and family about the child’s needs. This 

chapter presents the most commonly used neuropsychological tests, as well 

as their limits and caveats in the understanding of the cognitive profile of 

children. It looks at selected cognitive and intelligence tests used in 

neuropsychological practice, including WWPSI-IV, K-ABC and NEPSY. It 

also looks at specific tests for attention, memory, visual and spatial cognition, 

visuo-motor co-ordination and executive functions. The chapter ends with a 

discussion about intra- and inter-variability during neuropsychological 

evaluation and dissociation within an intelligence test; intelligence, 

neuropsychological assessment and learning abilities; and sources of 

performance differences between children and robots.  

4.  Testing cognitive functions in 

children: A clinical perspective 



78    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

Introduction 

Neuropsychology represents the linkage between behaviour (including cognitive function) and the brain 

substrate. Neuropsychological assessment provides standardised, objective and reliable measures of 

diverse aspects of human behaviour. This allows for the specification of each individual’s unique profile 

(Ivnik, Smith and Gerhan, 2001[1]).  

Brain-behaviour relationships in a developing child are both qualitatively and quantitatively different than 

those in adults. Neuropsychological evaluation in children can thus be seen as measuring the result of the 

interaction between development, and in particular, brain maturation, environmental stimulations, 

education, effect of brain lesion (in brain-damaged children), brain plasticity and proposed rehabilitation. 

Referral to a child neuropsychologist is appropriate for diverse clinical, research and/or academic reasons. 

Whatever the context, tests results are considered along with a careful history-taking, precise clinical 

observations and respect for the socio-cultural context to best describe the child’s cognitive function. This 

is particularly important given that neuropsychological evaluation may have some predictive value for a 

child. It will, for example, often serve as a basis for academic or vocational decisions and therapeutic 

programmes. 

In clinical practice, the neuropsychological evaluation has several aims. First, it describes the child 

weaknesses and strengths to set an appropriate rehabilitation and education programme. Second, it aims 

to educate the school and family about the child’s needs.  

Testing models have different strategies. Indeed, the kind of test to be used among children referred for 

an evaluation is still debated. Should it be fixed battery, flexible battery, process approach or personal core 

battery?  

In clinical practice, some flexibility is often required between the models. A given test and the way it is 

administered will influence the evaluation. A fixed battery, for example, seems useful in obtaining normative 

and research data. However, an inflexible fixed battery approach often proved insensitive and 

inappropriate to children with instrumental deficits (verbal, motor, attentional or perceptual). In addition, 

using a fixed battery might be far from the clinical complaints of the child or from the family or school 

questioning about the child’s difficulties.  

These flexible batteries are thus built by adding some own personal core batteries, or some tests to a fixed 

battery based on individual needs. Tailoring the evaluation can better evaluate domains or subdomains 

omitted in the rigidly structured battery. In this way, the neuropsychological evaluation can include more 

qualitative data to nuance the objective, quantitative data obtained through fixed batteries. 

Of course, the child must be understood in a larger context. The tests rely on standardised, objective and 

reliable measures of behaviour. However, neuropsychologists have to compare these measures to the 

psychological, educational and socio-cultural context of the examined child. This helps understand to which 

extent the test results are imputable to brain-based mechanisms or to other environmental factors.  

The neuropsychologist usually performs a profile analysis at the end of the evaluation to define a child’s 

neurocognitive strengths and weaknesses. The analysis of quantitative features with respect to appropriate 

normative data is then integrated with qualitative observations about the child’s individual style, 

temperament and environment.  

What is observed during the evaluation could largely differ from the actual cognitive level of the child. The 

child’s cognition may be influenced by various factors. These range from personality traits such as 

intellectual inhibition, anxiety, fear and lack of self-confidence to biological factors such as fatigue and 

hunger. This intra-variability is inherent to human testing and is not expected in testing artificial intelligence 

(AI) devices or robots. From this point of view, psychometric tests are more adapted to robots than to 

humans. 
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Regarding the framework used for examining data, different approaches to interpreting neuropsychological 

test data use cross-sectional data: absolute scores, difference scores, profile variability and change scores. 

Absolute scores refer to a single score from each test that might best differentiate each diagnostic group. 

Difference scores compare performance on tests sensitive to neurocognitive dysfunction with that on tests 

resistant to these effects. Profile variability assumes that impairment will affect performance in a different 

way across a range of tests. Change scores refer to longitudinal data obtained at test-retest intervals (Ivnik, 

Smith and Gerhan, 2001[1]).  

Cognitive evaluation: A Neuropsychological approach 

Before describing the most commonly used neuropsychological tests around the world, the major 

advantages and limitations of intelligence tests are presented. 

Advantages of intelligence tests 

The ubiquitous IQ test provides the experienced clinician with a well-researched statistical basis for 

interpretation of individual subtest and factor index scores. Often, a quick appraisal of subtest scaled 

scores will offer the clinician pertinent cues about potential strengths and weaknesses, despite a 

successful performance. Although IQ tests are not designed to diagnose neuropsychological deficits, low 

performance on coding and picture completion, for example, will alert towards an attentional deficit. 

Conversely, lowered scores in block design subtest with intact verbal scores may point to praxis or 

visuo-spatial deficit. In addition, intelligence tests often consist of multiple parts that are co-normed, 

allowing the child’s performance on one subtest to be compared directly with performance on another.  

When the IQ is above what is expected at his/her age, this well-standardised measure will exclude any 

neuropsychological deficiency. However, when the IQ is below expectations, the question of the origin of 

this lowered score arises. A lowered IQ can be associated to various conditions ranging from intellectual 

deficiency to lack of motivation, cultural or even physical reasons (e.g. sleep debt, virus).  

Comparing the performance of a child and a robot on IQ tests raises the question of the underlying cause 

of the performance. In any case, many factors can potentially influence the performance of a human subject 

on IQ tests. Thus, they cannot be considered as a reflection of only a subject's intellectual efficiency.  

Limitations of intelligence tests 

Despite their prevalence in psychological testing, several limitations are associated with the administration 

of intelligence tests in child neuropsychology practice.  

First, IQ tests had not been standardised among pathological populations. It is thus difficult to propose 

such tests to children with instrumental (verbal, motor, perceptual) or attentional deficits.  

Along those lines, the results to IQ tests might be insufficiently sensitive or specific for neuropsychological 

evaluation. In particular, psychometric tests say nothing about the nature and the aetiology of the deficit 

causing the lowered IQ. This is probably because intelligence tests are not instruments validated with 

respect to brain function. Rather, they simply raise a suspicion that must be tested with other measures. 

For example, the interpretation of a significant split between verbal and performance IQ can be difficult 

(almost impossible) to interpret only on the basis of the intelligence test. Indeed, the performance scale 

might be lowered due to motor, spatial, visual or even non-cognitive factors, making discussion on IQ 

superfluous. This is a major concern in children whose motor or visuo-spatial deficit is still undiagnosed 

prior to the intelligence test administration.  

Thus, whereas IQ tests represent a broad sweep of cognitive performance, neuropsychological evaluation 

attempts to provide a finer delineation of meaningful elements about how a child perceives, integrates and 
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expresses information. In this way, the neuropsychological evaluation aims at examining the child’s 

discrete behaviour across a wide variety of domains, especially with tests validated with respect to brain 

function. 

Although intelligence tests are often used in children with learning disabilities, they are not 

“neuropsychological instruments” nor were they constructed for such use. In addition, an IQ score as a 

summary score does not reveal the basic processes that contributed to, or negatively impacted, the child’s 

functioning. Finally, the duration of standardised intelligence tests in neuropsychological evaluation of 

children who may suffer from attentional, perceptual or motor disorders is another disadvantage.  

Despite all these limitations, an intelligence test is routinely administered to a child referred for a 

neuropsychological evaluation when such testing has not been recently obtained. In many industrialised 

countries, the referral source, the socio-medical institutions and the school system often expect its 

administration.  

The cognitive tests most often used in neuropsychology are presented below. In addition, more specific 

tests evaluating precise cognitive functions are highlighted; they represent an alternative to IQ tests in 

children with instrumental or learning disabilities. 

Selected cognitive and intelligence tests used in neuropsychological practice 

This section focuses on the main cognitive tests used in neuropsychological practice. It begins with 

complete evaluations testing the whole cognitive function before examining other tests that evaluate more 

specific areas (see Table 4.1). In these tests, neuropsychology considers the following taxonomy of 

abilities: perception, attention, memory, executive functions, language, verbal and visual reasoning, and 

calculation. It then looks at how these different abilities are measured.  

Table 4.1. Examples of complete and specific tests used in neuropsychological practice 

Test Function Age 

WWPSI-IV Whole intellectual efficiency 2-7 

WISC-V Whole intellectual efficiency 6-16 

K-ABC Whole intellectual efficiency 3-12 

NEPSY Whole intellectual efficiency 5-16 

TEA-ch Attention 6-12 

CMS Memory 5-16 

Rey Figure Visuo-spatial 3-6 / 6-21 

EVA Neuro-visual 4-6 

Purdue Pegboard Visuo-motor co-ordination 6-10 

Neuropsychological evaluation: Complete tests 

WWPSI-IV 

Tests for younger children 

The following five subtests are proposed to younger children (ages 2-6 to 3-11): 

 Receptive vocabulary 

This subtest measures a child’s ability to identify correct responses to spoken words (e.g. identifying a 

picture of a “fish” that represents the word “fish” spoken by the examiner). However, most of the receptive 

or expressive vocabulary subtests use visual pictures that must be designated or named by the children.  
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If the child is unable to visually explore, perceive, analyse or recognise the visual items, it will be impossible 

for him/her to perform the task. If this happens, it most often leads to a suspicion of a verbal deficit because 

the task is considered as involving language. However, it is first a visual task that can be failed because of 

a visual or spatial deficit. 

 Information 

This subtest measures general cultural knowledge, long-term memory and acquired facts. This subtest is 

largely linked to culture, education and school knowledge. 

 Block design 

This subtest measures an individual’s ability to analyse and synthesise an abstract design and reproduce 

that design from coloured plastic blocks. It involves visuo-spatial analysis, simultaneous processing, 

visual-motor co-ordination, dexterity and non-verbal concept formation.  

 Object assembly 

As for the block design, this subtest measures an individual’s ability to analyse and synthesise an abstract 

design and reproduce that design from coloured plastic blocks.  

 Picture naming 

This subtest assesses an individual's ability to name pictorial stimuli. This subtest involves verbal 

capacities but also visual capacities. It can thus be seen as a language test but also as a visual recognition 

test. 

Tests for older children 

The 14 following subtests are proposed to older children (Ages 4-0 to 7-7): 

 Block design 

This subtest has the same principles as the one for younger children. 

 Similarities 

This subtest is supposed to measure verbal reasoning. However, like other subtests, it also involves visual, 

spatial and attentional cognition. Two similar but different objects or concepts are presented. The student 

is asked to tell how they are alike or different (e.g. what do the ear and eye have in common?) 

 Picture concepts 

Students are asked to look at two (or three) rows of pictured objects and indicate (by pointing) the single 

picture from each row that shares a characteristic in common with the single picture(s) from the other 

row(s). This subtest aims to evaluate categorical and abstract reasoning. However, it first measures visual, 

spatial and attentional processing. 

 Coding 

In this subtest, children must learn associations between non-verbal shapes and to complete (draw) the 

corresponding shape in an empty box as quickly as possible. Non-verbal associative and short-term 

(working) memory are involved. In addition, this subtest also involves other abilities such as visual analysis, 

fine motor dexterity, speed, accuracy and ability to manipulate a pencil. Given this context, so many 

processes contribute to success at this task that it can be failed for multiple reasons. In the simplest form 

of the test, children use their ink daubers and stamp the shape that goes with each animal according to 

the “key” given to them. For example, they would stamp a “circle” when they see a fish, a “star” when they 

see a cat and a “square” when they see a turtle.  
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 Vocabulary 

This subtest measures several verbal abilities: verbal fluency, concept formation, word knowledge and 

word usage. It is thus influenced by prior knowledge and, in this way, by culture and education. 

 Matrix reasoning 

In this subtest, the subject must perceive, analyse and understand the logical rule between shapes. As 

above-mentioned, although this task is supposed to evaluate non-verbal reasoning, it also measures 

visual, spatial and attentional cognition. 

 Comprehension 

In this subtest, the child must answer questions based on his or her understanding of general principles 

and social situations. This subtest measures the students’ verbal comprehension but also common sense 

social knowledge, practical judgement in social situations and social maturity. In addition, it evaluates the 

student’s moral conscience.  

 Symbol search  

This subtest requires the student to determine whether a target symbol (geometric form) appears among 

the symbols shown in a search group. This subtest requires perceptual, spatial, attentional and speed 

abilities. For this reason, children can fail this subtest because of visuo-spatial deficits or slowness. 

 Picture completion  

This subtest measures a student's ability to recognise familiar items and to identify missing parts (e.g. 

naming the missing sand in an egg timer). In this way, this subtest requires analysis of fine visual details, 

as well as visual, attentional and visual memory abilities. 

 Information measures  

This subtest measures general cultural knowledge and long-term didactic memory. For this reason, this 

subtest depends on the ability of the student to recall facts and information previously taught in school.  

 Word reasoning  

This subtest measures verbal abstract reasoning requiring analogical and categorical thinking, as well as 

verbal concept formation and expression.  

 Receptive vocabulary  

This subtest requires the child to look at a group of four pictures and point to the one the examiner names 

aloud. As in most of the verbal subtests, the child needs first to visually analyse and recognise the stimulus. 

However, this subtest is considered to rely mostly on prior verbal knowledge.  

 Object assembly  

This subtest embodies the same principles as the subtest for younger children. 

 Picture naming  

This subtest embodies the same principles as the one for younger children. 

Several non-verbal tests, as well as verbal subtests, are influenced by visual perception, spatial cognition 

and sustained attention. Indeed, among the 14 different subtests, 10 require good abilities in visual and 

spatial processing. In this way, failure on these subtests can easily result from visuo-spatial or attentional 

deficits rather than a pure intellectual deficit. In addition, many subtests are time-limited and can thus also 

be affected by slowness. On the other hand, several verbal tests involve prior word knowledge and in this 

way are sensitive to culture and education. 
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K-ABC 

The K-ABC (Kaufman and Kaufman, 1983[2]) was normed on 2 000 children, aged 2 years 6 months to 12 

years 5 months. This test is based on Luria’s theory of simultaneous and successive information 

processing. Its approach defines intelligence in terms of the child’s problem-solving and processing styles. 

Seven subtests are dedicated to simultaneous processing whereas sequential processing is tested through 

three subtests. There are also six achievement subtests. 

 K-ABC sequential process scale 

Hand movements: the child must reproduce a sequence of gestures shown by the examiner. 

Immediate memory of numbers: the child must repeat a series of numbers in the order of sequence. 

Sequence of words: the child points to object profiles in the order given by the examiner. For added 

difficulty, children over five years old must also give the colour names before pointing at the objects. 

 K-ABC simultaneous process scale 

Pattern recognition: the child mentally completes an unfinished drawing and names or describes it to the 

examiner. 

Triangles: triangles, blue on one side and yellow on the other, are presented to the child who assembles 

them to reproduce a model. 

Analogue matrices: the child completes incomplete matrices with pictures. 

Spatial memory: the child memorises the space occupied by drawings randomly arranged on a page. 

Series of pictures: the child puts back in chronological order pictures that form a little story. 

The resolution of the items by the tested child is not limited by time. To help assess cultural or linguistic 

minorities, as well as children with auditory or verbal deficits, a non-verbal scale of six subtests was 

included that involves pantomime presentation of instructions. This test battery also includes a series of 

tests in which the examiner gives instructions by gestures. 

The correlation between the Wechsler scale test results (Raiford, 2018[3]), which is the main intelligence 

scale for children, and the K-ABC test results is quite good. However, in the cases of learning disabilities, 

the K-ABC generally performs better than the WISC-R. The K-ABC would seem to be better suited than 

the other tests to analyse the reasons for academic failure. This is especially the case when the failures 

are unexpected or when the children come from a socio-cultural minority background. The K-ABC would 

allow a better perception of where the child's difficulties lie, especially in cases of autism spectrum 

disorders and dyslexia. 

NEPSY 

The NEPSY was composed of tests created for children from 3-12 years old (Brooks, Sherman and 

Strauss, 2009[4]). It allows neuropsychologists to understand the cognitive, behavioural and academic 

problems of young children. At the same time, it allows them to detect and define the deficit in 

brain-damaged children.  

As for the K-ABC, following Luria's approach, the NEPSY allows to identify the primary deficits that may 

underlie various learning disorders. The NEPSY was originally developed in Finland for young children. It 

was subsequently extended and normed on 1 000 English-speaking children, 100 at each age level, from 

3 to 12 years.  
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The NEPSY focuses on five broad functional domains: attention and executive functions; language; 

sensorimotor functions; visuo-spatial treatments; and memory and learning. Each domain is tested with 

specific subtests at each age (see Table 4.2). 

For each domain, there are core tests. In addition, supplementary tests allow a possible deficit to be 

examined in greater depth when the results of the core tests are low. Additional marks allow a particular 

deficit to be specified. Finally, qualitative observations are made (e.g. on the child's behaviour or strategy). 

Table 4.2. Subtests proposed at each age to test the five domains with the NEPSY 

Functional domains (NEPSY) Subtests 

Children 3-4 years old 

Subtests 

Children 5-12 years old 

Attention and executive functions 
 visual attention 

 statue 

 auditory attention/response set 

 visual attention 

 tower 

Language 

 body part naming 

 phonological processing 

 comprehension of instructions 

 speeded naming 

 phonological processing 

 comprehension of instructions 

Sensorimotor functions 
 imitating hand positions 

 visuo-motor precision 

 imitating hand positions 

 visuo-motor precision 

 fingertip tapping 

Visuo-spatial treatments 
 design copying 

 block construction 

 arrows and design copying 

 block construction 

Memory and learning 
 narrative memory 

 sentence repetition 

 narrative memory 

 memory for faces 

 memory for names 

Neuropsychological evaluation: Specific tests 

This section looks at different kinds of tests for attention, memory, visual and spatial cognition, visuo-motor 

co-ordination and executive functions.  

Attention 

Vast amounts of information reach humans at every moment, both from the outside world (visual, auditory, 

tactile, etc.) and also from the body (internal temperature, heartbeat, pains or position of the body in space). 

The central nervous system cannot process all this information simultaneously. Therefore, it selects the 

most relevant information to be processed at each moment by the brain (Chokron, 2010[5]).  

Among the information that comes to us, some is recurrent, usual and “predictable”. Other information will 

“capture our attention” because it is new, particularly interesting, unexpected, etc. The role of attention is 

to select and privilege the information to be processed on the basis of its novelty, relevance or the 

constraints of the moment and motivation. A degree of attentional control is necessary for any successful 

task performance.  

Sustained attention or vigilance corresponds to a state of alertness that allows us to be receptive to the 

presented information. Under normal waking conditions, humans possess sustained attention abilities that 

allow us to interact effectively with the outside world. Of course, there are great variations within and 

between individuals in the way they implement this ability. Sustained attention can thus vary from the 

normal state (without brain damage) depending on the time of day, physical condition, psychological state, 

external conditions or motivation (Chokron, 2010[5]).  
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In addition, there is selective attention, which, as its name suggests, is based on the notion of information 

selection. Selective spatial attention refers to the ability to select information in some portions of the 

external space. Divided attention refers to the ability to respond to more than one task or event 

simultaneously. Finally, alternating attention or mental shifting refers to the ability to maintain mental 

flexibility to shift from one task requirement to another when these have different cognitive requirements.  

The ability to orient attention develops gradually from birth. Internally driven ability to scan the environment 

is actively established by five or six years of age. The ability to focus attention on a sensory source or on 

a task is expected to be established by the age of seven, and sustained attention abilities develop until 

adolescence (Helland and Asbjornsen, 2000[6]). 

In clinical neuropsychology practice, attention is a process or domain that is assessed as one component 

contributing to the child’s overall neurocognitive competence. Fatigue affects attention, as well as several 

factors such as motivation, affective state, hunger, etc. Therefore, the failure of a cognitive test (whatever 

its nature) could be due to a decrease in attentional capacities. Attention is not mediated by a single brain 

region or by the brain as a whole. Instead, it is carried out by discrete anatomical networks, within which 

specific computations are assigned to different brain areas (Posner and Petersen, 1990[7]).  

A number of attention types, or subdomains, are described in the literature. Commonly, one refers to terms 

such as focused attention, switching or mental set shifting, and divided attention. 

TEA-Ch: Test of everyday attention for children 

The Test of Everyday Attention for Children (TEA-Ch) (Manly et al., 1999[8]) is a children’s version of the 

adult eight-subtest Test of Everyday Attention (TEA) (Robertson et al., 1995[9]). TEA-Ch measures different 

components of attention (selective attention, attentional control, sustained attention) through the nine 

subtests described below. 

 Selective attention 

Sky search: this subtest requires that the child filters information to detect relevant information and reject 

or inhibit distracting information. Specifically, the child must seek pairs of “spaceship” stimuli and rapidly 

circle all occurrences amid competing non-paired stimuli.  

Map mission: in this subtest, the children are given a printed A3 laminated city map. They have to circle 

as many as possible visual targets (among 80 targets) and ignore distractors. 

 Attentional control 

Creature counting: this subtest measures attentional control and switching that requires executive 

functions such as working memory and mental flexibility to count stimuli according to visual cues to either 

count up or count down. 

Opposite worlds: this is a timed measure of attentional control and switching requiring the child to read 

sequenced chains of numbers as they appear (same world condition) or to inhibit the prepotent response 

and respond with an alternate number (i.e. 1 for 2, 2 for 1 different world conditions). This subtest makes 

the stimulus (a digit) and the response (the word “one” or “two”) association explicit. This subtest is thus 

like the conflicting response requirement for the Stroop test. 

 Sustained attention 

Score!: this subtest presents ten item-counting measures. In each item, between 9 and 15 identical tones 

of 345 ms are presented, separated by silent interstimulus intervals of variable duration (between 500 and 

5 000 ms). Children are asked to silently count the tones (without assistance of fingers) and to give the 

total at the end. 
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Code transmission: this subtest is an auditory vigilance-level measure. The child has to listen to a taped 

12-minute recording of single-digit numbers presented at 2s intervals. The child has to immediately 

announce the digit presented just before “55” when they hear the number “55”. The score given is the 

number of digits correctly announced by the participant. There are 40 target presentations. This subtest is 

a variation of an n-back task. 

 Sustained, divided attention and response inhibition 

Sky search DT: in this subtest, children have to circle paired spaceship stimuli (as in the sky search task), 

while also keeping a count of auditory tones until all target stimuli are circled. 

Score!DT: this subtest measures sustained auditory attention requiring the child to listen to and count tape 

recorded tones, while also listening for an animal named by the announcer in a news broadcast. 

Walk/Don’t walk: this measures sustained attention and response inhibition. A child learns tones that allow 

progression (go) or require inhibition (no-go) and then makes a mark accordingly. The speed of tone 

presentation increases as the task progresses. The child must avoid making a mark in the no-go condition. 

Memory 

Many batteries have been developed largely by including downward extension of tasks from adult memory 

tests rather than by constructing tests with developmental principles in mind. The most used batteries are 

the Rivermead Behavioural Memory Test for children aged five-ten years old, the Test of Memory and 

Learning, and the NEPSY learning and memory subtests, as well as the Children’s Memory Scale (CMS) 

described below.  

The CMS is an extension of the Wechsler Memory Scale series for adults (Lichtenberger and Kaufman, 

2004[10]). The CMS was designed as part of a standard psychological or neuropsychological evaluation to 

provide a comprehensive assessment of learning and memory in children and adolescents of ages 5-16 

years.  

Summary scores of the CMS include verbal immediate, verbal delayed, visual immediate, visual delayed, 

general memory, learning delayed recognition and attention/concentration indexes. Immediate, delayed 

recall and delayed recognition scores are converted to scaled scores. Core subtests comprise stories and 

word tests (for verbal memory indexes); dot locations and faces (for visual/non-memory indexes); and 

numbers and sequences (for attention/concentration indexes) (Cohen, 2011[11]). 

Visual and spatial cognition 

Most of the subtests proposed in the different batteries involve visual and spatial cognition for two reasons.  

First, it is crucial to evaluate visuo-spatial cognition in children to disentangle a perceptual deficit from an 

intellectual deficit. Importantly, visuo-spatial deficits can bias not only non-verbal evaluation but also verbal 

subtests. For example, vocabulary is often evaluated in children through picture naming, which requires 

visual perception, analysis and understanding.  

Second, cortical visual impairments are frequent in at-risk children (born preterm or in a neurological 

context as with perinatal asphyxia). While visual acuity is often screened, visual function (i.e. visual and 

spatial cognition) is largely neglected. For this reason, children often receive a diagnosis of intellectual or 

co-ordination or motor disorder whereas they suffer from a visual deficit that affects cognitive tasks 

involving vision, or motor or co-ordination tasks.  

Specific batteries such as the Developmental Test of Visual Perception (DTVP) (Hammill, Pearson and 

Voress, 2013[12]) or the Evaluation of Visuo-attentional abilities (EVA) (Cavézian et al., 2010[13]; Chokron, 

2015[14]) are available to evaluate visuo-spatial and attentional capacities in children. In the DTVP, for 

example, the subject has to retrieve and point to the shapes embedded in the figure presented on the top. 
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In the EVA battery, the subject is first presented with the figure on the top and, then ten seconds later, 

must find the represented figure among the six propositions.  

Visuo-motor co-ordination 

Visuo-motor co-ordination is tested as visual cognition is required in a number of tasks. It can be assessed 

in children to evaluate the presence, nature and impact of a visuo-motor co-ordination disorder on other 

cognitive tasks.  

The Purdue Pegboard, developed in 1948, has been used most extensively in personnel selection for jobs 

that require fine and gross motor dexterity (Podell, 2011[15]). The test measures the gross motor dexterity 

of hands, fingers and arms, as well as the fine motor dexterity of fingertips. In addition to being employed 

in personnel selection, the Purdue Pegboard test has also been used in neuropsychological assessments. 

It has been found to be sensitive to the presence of brain damage (especially frontal or parietal) or of 

visuo-motor co-ordination deficit.  

The Purdue Pegboard is a board featuring two rows of 25 holes each. At the top of the board are four cups. 

The pins (pegs) are kept in the outer left and right cups, and the collars and washers are kept in the middle 

cups. There are four subtests of the Purdue Pegboard, done with the dominant hand, the non-dominant 

hand and with both hands. The subject has 30 seconds to place as many pins as possible in the holes, 

starting at the top of the right row in the right-hand test and at the top of the left row in the left-hand test. In 

the third subtest for both hands, the subject fills both rows, starting at the top, for the same amount of time. 

In the fourth subtest, the subject is asked to use both hands to construct “assemblies” of a pin, a washer, 

a collar and another washer for 60 seconds.  

Executive functions 

Besides global cognitive evaluation, it might be necessary to measure specific cognitive processes such 

as executive functions. Executive function has been defined in various ways [see Eslinger (1996[16]) for a 

review]. Executive function maintains an appropriate set to achieve a future goal (Luria, 1973[17]). For 

Baddeley (1986[18]), executive function refers to those mechanisms by which performance is optimised in 

situations requiring the simultaneous operation of a number of different cognitive processes. For Welsh, 

Pennington and Groissier (1991[19]), it involves mostly strategic planning, impulse control and organised 

search, as well as flexibility of thought and action. For Denckla (1989[20]), it requires the ability to plan and 

sequence complex behaviours, simultaneously attend to multiple sources of information, grasp the gist of 

a complex situation, resist distraction and interference, inhibit inappropriate responses and sustain 

behaviour for prolonged periods.  

In this way, executive functions are thus higher functions that integrate others that are more basic, such 

as perception, attention and memory. These higher functions include the abilities to anticipate, establish 

goals, plan, monitor results and use feedback (Stuss and Benson, 1986[21]). Executive function also refers 

to regulatory control (Nigg, 2000[22]) and to a set of processes that guide, direct and manage cognitive, 

emotional and behavioural functions, especially during active, novel problem solving (Gioia et al., 2000[23]).  

According to Baron (2018[24]) executive function can be seen as the “metacognitive capacities that allow 

an individual to perceive stimuli from his or her environment, respond adaptively, flexibly change direction, 

anticipate future goals, consider consequences and respond in an integrated or common sense way, 

utilising all these capacities to serve a common purposive goal.” 
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Subdomains of executive functions 

Executive function is thus heterogeneous and includes both broad and specific behaviours. Indeed, 

executive function has become an umbrella term that encompasses a number of subdomains, some more 

consistently endorsed than others.  

In summary, executive function refers to a set of subdomains such as set shifting, hypothesis generation, 

concept formation, abstract reasoning, planning, organisation, goal setting, fluency, working memory, 

inhibition, self-monitoring, initiative, self-control, mental flexibility, attentional control, anticipation, 

estimation, behavioural regulation, common sense and creativity.  

Inhibition and neuropsychological evaluation 

As its role in executive function, inhibition mediates response selection in planning and problem-solving 

tasks (Levin et al., 2001[25]). To respond accurately to a question, one has to inhibit inaccurate responses, 

as well as incorrect reasoning. During the two last decades, inhibition has received a lot of interest as 

investigators attempt to parcel out contributions to effective or impaired inhibitory function. A variety of 

forms of inhibition are described (Nigg, 2000[22]), such as cognitive (intellectual) inhibition, interference 

control and motor or oculomotor inhibition. Intellectual inhibition may bias the results of cognitive evaluation 

even in gifted children (with IQ largely above average).  

There are substantial data indicating that response inhibition is mediated by frontal cerebral regions (Stuss 

and Benson, 1986[21]; Mega and Cummings, 1994[26]). Patients with frontal dysfunction may exhibit too 

much or not enough inhibition depending on the lesion location and the type of task proposed. The 

developmental trajectory on inhibition tasks appears linked to prefrontal maturation (Levin et al., 2001[25]). 

Anterior regions of the frontal cortex continue to develop throughout childhood and into adolescence, thus 

influencing the level of inhibition. 

Because frontal lobe is developing in children, unlike in adults, a clinician must consider that various 

strategies and/or neural pathways might operate at different maturational stages. Often the qualitative 

observations of the child’s performance will add critical insight into inhibitory strength or weakness. As a 

result, behavioural observations and error analysis become particularly useful. For example, repetition 

errors suggest a failure to successfully self-monitor. Perseverative errors further suggest difficulty inhibiting 

previous response patterns and shifting to a new response set.  

Inhibition can also be evaluated in attentional tests where, for example, subjects have to inhibit distractors 

in visual search tasks or in divided attention tasks. The Wisconsin Card Sorting Test (WSCT) is commonly 

used to measure inhibition and executive function (Kolakowsky-Hayner, 2011[27]). This test assesses 

judgement, reasoning, hypothesis generation, initiation, flexibility and inhibition. In the standard 

administration of the WCST, four stimulus cards are placed in front of the child. Two sets of 64 response 

cards become the child’s deck. The child must match each consecutive response card to the examiner’s 

stimulus cards according to the examiner’s (unstated) principle or rule. However, the principle keeps 

changing at a designated time. The child must thus discover the principle and adjust the sorting 

accordingly. The child will propose an answer and be told if it is right or wrong. The criterion is six complete 

correct sorts or until all 128 cards are attempted. 

Discussion 

The demand for neuropsychological evaluation varies considerably according to many needs. What are 

the deficits observed in the context of a neurological pathology? What are the effects of treatment? What 

is the nature of a learning disability? What are the risks of extreme prematurity or what are the effects of a 



   89 

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

psychological disorder? What are the child's needs in terms of academic adaptation or management? Is 

there a neuropsychological explanation to a specific behaviour?  

Depending on the origin of the request and the needs, the neuropsychological evaluation takes the form 

of a screening intervention, a complete check-up with a view to a diagnosis or a more in-depth analysis 

with a view to a rehabilitation or a pedagogical project. The neuropsychological evaluation must establish 

not only the weak and strong points of cognitive functioning but also give the best possible account of the 

difficulties encountered in daily life. For this reason, questionnaires are also often used with parents and 

teachers to assess socio-adaptive behaviour, emotional and behavioural disorders and quality of life. 

Indeed, these factors may well influence or interact with the cognitive abilities being assessed. At the same 

time, more ecological tools using stimulations have proven their relevance in child neuropsychology.  

For a long time, the neuropsychological evaluation process was confronted with a lack of tools. Today, the 

offer in terms of tests is considerable. Nevertheless, this does not guarantee a valid assessment of the 

child's cognitive profile.  

The next section discusses these tests, the interpretation biases that may result and functions that remain 

impossible to evaluate. 

Intra and inter-variability during neuropsychological evaluation and dissociation 

within a test 

The performance of a robot, machine or program is considered stable and invariable over time. However, 

neuropsychological tests have shown significant variability in the performance of human adults and 

children. This could occur between different subtests of a battery or within the same subtest over time.  

Measuring natural intra-individual variability in neuropsychological tests is thus crucial. It allows the 

evaluator to avoid systematically interpreting these variations as an improvement or deterioration in 

performance. This variability could be associated with a recovery or a worsening of the disorders in the 

case of a brain injury.  

Schretlen et al. (2003[28]) investigated the normal range of intra-individual variation in neuropsychological 

tests in adults. The authors derived 32 z-transformed scores from 15 tests administered to 197 adult 

participants in a study of normal ageing. The difference between each person's highest and lowest scores 

was computed to assess his or her maximum discrepancy (MD). The results show that 66% of participants 

produced MD values that exceeded three SDs. Eliminating each person's highest and lowest test scores 

decreased their MDs, but 27% of participants still produced MD values exceeding three. Although 

conducted in adults, this study revealed that marked intra-individual variability is common in normal 

participants, which of course, is not expected in machines.  

Along the same lines, Zabel et al. (2009[29]) examined the test-retest reliability of selected variables from 

the computerised continuous performance test (CPT). Participants were 39 healthy children aged 6-18 

without intellectual impairment. The authors found that test-retest reliability was modest for CPT scores. 

This study suggests a considerable degree of normal variability in attentional scores over extended 

test-retest intervals in healthy children. These findings suggest a need for caution when interpreting test 

score changes in neurologically unstable clinical populations. They also underline that one cannot expect 

stable performance during a test (especially involving attentional resources) over time in humans unlike 

with robots and machines.  

Taken together, these studies emphasise the difficulty to directly compare human to machine performance 

in neuropsychological, psychometric or attentional tests. In this way, machine performance could only be 

compared to a range of human performance. 
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Difficulty in establishing the origin of failure in a neuropsychological test 

Despite the use of standardised tests in child neuropsychology, it remains difficult to precisely establish 

the cognitive origin of a deficit. For example, a subject can fail a spatial reasoning subtest due to an 

attentional, visual, spatial or reasoning deficit. In a similar way, the naming task, most often considered as 

a verbal task (lexical evocation) can be failed because of a visual recognition problem. Indeed, in the 

WWPSI, the vast majority of the proposed subtests involve visual perception or visuo-spatial analysis. 

They can therefore be failed due to a perceptual rather than intellectual disorder.  

Only the clinical sense of the neuropsychologist can enable him/her to propose a set of tests involving the 

different processes involved in the failed subtest. By analysing the associations and dissociations between 

the performance in these different tests, the neuropsychologist will be able to rule on the cognitive process 

at stake. This point can be illustrated through a simple example of dissociation between performances on 

similar tasks that differ only in the sensory modality involved. A child may be able to write a word when it 

is dictated orally but be unable to copy it when it is presented visually. Is there a disorder of perception 

and/or visual analysis that makes the copying task impossible?  

In a similar way, the performance of a battery of perceptual, language and memory tests for several hours 

in a row, without difficulty, makes it unlikely there is a disabling sustained attentional disorder. Conversely, 

a decrease in performance as a test is taken argues in favour of a problem sustaining attention over time. 

Because of the multitude of cognitive processes involved in such complex tasks, a failure on a given task, 

analysed in isolation, does not say anything about the underlying deficient processes. 

In addition, regarding machines, the use of psychometric tasks will require a good understanding of the 

way the task is executed to compare robot and human performance. Different strategies used by robots 

and humans, for example, could explain the discrepancy between their performance. When asked to name 

an object presented visually, humans cannot avoid activating its function, although this is not useful for the 

naming task. For this reason, a tool will take longer to be named than a flower because humans cannot 

prevent themselves to activate its function (although this is totally irrelevant to the task). Of course, a 

machine will never do that. For this reason, it will remain difficult to compare the performance of machines 

and humans. Machines can thus outperform humans because they have less access to related knowledge. 

Intelligence, neuropsychological assessment and learning abilities 

Many authors have attempted to correlate IQ with children's academic success or adults' career success. 

The results in this area are contradictory. No clear link can be established between IQ score, grade level 

and subsequent success.  

High potential children can also have relatively disabling learning and academic difficulties. These 

disorders can sometimes be so marked that they can mask the diagnosis of intellectual precociousness. 

Neuropsychologists will often see children with severe academic difficulties for whom a psychometric 

assessment is requested to eliminate an intellectual disability. Yet these children may obtain an IQ score 

much higher than the average. These children can sometimes present a heterogeneous profile on 

psychometric tests with an over-investment of verbal skills to the detriment of visual-spatial skills.  

The origin of these disorders is not clearly understood. However, it is often hypothesised that these children 

need tasks of sufficient complexity to recruit their attention and enable them to complete a task. Thus, in a 

completely counter-intuitive way, a high IQ may interfere with the performance of overly simple tasks for 

which the subject does not recruit his or her attention and therefore scores below average. Moreover, this 

is observed in some subjects with more difficulty recalling a series of numbers in the same order (right-

side up) than in reverse (reverse order).  
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Similarly, there is no strong argument in favour of a correlation between IQ and academic achievement, 

except perhaps for subjects whose performance is well below their age group. Some studies do show such 

correlations, but a critique is nonetheless warranted.  

IQ tests were originally developed with the constraint of correlating with grade level. Not surprisingly, some 

subtests such as the arithmetic test correlate well with academic performance. IQ and academic 

achievement are both products of socio-cultural level and family environment. There is no formal evidence 

that IQ is exceptionally high among geniuses. The reverse is also true: a low IQ does not necessarily go 

hand in hand with a total lack of intelligence. This is especially true since failure on IQ tests may not be 

due to an intellectual deficit. Rather, it could be due to a deficit in the perceptual, motor and language skills 

required for IQ tests.  

In this way, if comparing children to robots through IQ tests, the question arises of what exactly is being 

compared. IQ tests, which are supposed to test intellectual efficiency, are unlikely to actually measure 

intellectual ability. Rather, these tests measure a subject's ability to respond to tests that are supposed to 

measure intelligence (Chokron, 2014[30]). This ability may be subject to a large number of factors far 

removed from intellectual ability. One can thus expect that a robot, a machine or an algorithm, can answer 

a question in a more adapted, invariable and systematic way if it has been well programmed for that. Does 

this mean it will be more intelligent than the human subject? 

Sources of performance differences between children and robots 

For the past few decades, tests have been over-used both in children for school orientation decisions and 

for adults in the context of professional recruitment. This is all the more surprising since IQ does not 

absolutely predict academic or professional success. It is sometimes even the opposite since a 

non-negligible number of intellectually precocious children can present significant learning disorders.  

Furthermore, training in one of the particular subtests of the IQ scales, such as number memory, induces 

an increase in performance for that subtest. However, it does not improve performance in the other 

subtests or in the same subtest carried out with other items (letters instead of numbers, for example). 

Therefore, how could one imagine the IQ score could predict an employee's skills in a specific position that 

requires the performance of tasks completely different from those required during the test?  

These results are confirmed in various studies among different populations such as young street vendors 

in Brazil (Carraher, Carraher and Schliemann, 1985[31]). In this study, the participants demonstrate 

remarkable mental arithmetic skills. Yet, when subjected to the arithmetic subtest of psychometric tests, 

their performance proves to be much lower than expected for their age group. Performance on the same 

problem proposed in an abstract way during a test and in a concrete way in an ecological situation generally 

has little correlation.  

This type of study underlines the need to consider two aspects of tasks when assessing cognitive abilities. 

First, there are the processes involved in the task to be performed. Second, there is the ecological 

character of the task and its proximity to tasks the subject performs in everyday life. This also refers to the 

distinction between a “psychometric test” and an ecological task. This must be considered when comparing 

subjects to each other or to machines. Along those lines, the notion of task seems more suitable to evaluate 

human performance than the one of test. 

The comparison of cognitive performance between human subjects and robots also refers to other 

important distinctions. Human subjects show a variability in their performance over time, as well as 

between different tasks in a battery that is not expected in robots. Moreover, robots, unlike human subjects, 

are not expected to be hampered by their affective state, their attentional or motivational level.  

Most intellectual efficiency tests evaluate conscious processes, whereas a large part of cognitive 

processes is unconscious or implicit (Schacter, 1992[32]). Intellectual efficiency would inevitably be different 
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without the good functioning of these conscious and unconscious processes. However, it remains difficult 

to model these unconscious processes. In a comparison of intellectual performance between robots and 

humans, it might be interesting to consider how the distinction between conscious and unconscious 

processes can be operationalised. 

Conclusion 

Child neuropsychology has made tremendous progress over the past 50 years. As the profession has 

grown, there has been a better understanding of cognitive and brain development and a growing interest 

in developmental issues. Tests for children are becoming increasingly specific and standardised rather 

than simple adaptations of tests for adults. In addition, research in child psychology is improving our 

knowledge of cognitive processes during development. It also makes it possible to develop new tests that 

correspond more closely to the dynamics of the child's cognitive and cerebral development. All these 

elements contribute to the development of child neuropsychology.  

Nevertheless, in spite of this considerable progress, much research is needed to compensate for persistent 

weaknesses in child neuropsychological testing. Indeed, intelligence tests also contribute to these 

weaknesses. This point is raised not to undermine the role and value of neuropsychological or cognitive 

assessment. Rather, it seeks to raise awareness of the limitations of testing. 

These limitations could be addressed both in clinical practice and research. In clinical practice, they can 

be addressed through the clinical meaning and judgement, knowledge and experience of the well-trained 

and responsible neuropsychologist in both normal and abnormal child populations. Meanwhile, in 

comparing human to machines’ intellectual performance, researchers can reflect on how much 

problem-solving processes may differ in and between humans depending on a multitude of factors that do 

not affect robots in the same way.  

In the case of a direct comparison between the performance of human subjects and of machines on 

psychometric tests, researchers would need to compare the subjects during tasks aiming at measuring 

basic functions. These comprise perceptual, attentional or memory tasks. They should involve as little 

affect as possible and use abstract stimuli to avoid biases in human subjects due to the use of semantic 

data that are totally inappropriate for the task. In addition, tasks should be performed within a limited period 

of time (ideally a few minutes for each subtest) to avoid any sustained attentional difficulties in humans 

that are absent in robots.  

Moreover, to avoid any problem of motivation or investment in the human subjects, researchers should 

choose voluntary subjects. The subjects need to invest themselves totally in the requested task to give the 

best of themselves. The proposed task may bring into play subjective judgements, involving affects, 

emotions and choice. It may also consider previous experience or data stored in memory that could be 

related to the resolution of the presented task. The more this occurs, the more humans will likely outperform 

machines. Conversely, machines can be expected to outperform humans as tasks become simpler, more 

automated, more abstract and even more repetitive. Of course, selecting only certain items and not the 

entire test battery to compare performance of machines to humans will require a reference population of 

human subjects. It will be impossible to use the test norms obtained when standardising the entire battery. 
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Annex 4.A. Subtests 

Annex Table 4.A.1. NEPSY subtests: Age range and description 

Domain Age range Description of subtest 

Attention and executive functions 

Animal sorting 7-16 Card sorting task assessing concept formation. 

Auditory attention and 

response set 
5-16 

Auditory selective and sustained attention task involving pointing to stimuli according to 
consistent and inconsistent examiner cues; it assesses shifting, inhibition and 

maintaining a new and complex set. 

Clocks 7-16 Clock drawing task. 

Design fluency 5-12 
Non-verbal fluency task during which the child must draw as many unique designs in a 

given time limit from both structured and unstructured dots arrays. 

Inhibition 5-16 

Visual task involving three components: naming, inhibition and switching. Naming 
involves rapid naming of shapes (squares and circles) in the direction of arrows (up or 
down). Inhibition involves rapid opposite naming of shapes (saying “square” for “circle”, 
saying “circle” for “square”) or arrows (saying “up” when they are pointing down or 

saying “down” when they are pointing up). Switching involves rapidly saying the correct 
shape or arrow direction if the object is coloured white or saying the opposite shape or 

arrow direction if the object is coloured black. 

Statue 3-6 
Response inhibition and motor persistence task by having child maintain a body position 

while ignoring examiner’s sound distractors. 

Language 

Body part naming and 

identification 
3-4 

Naming task for younger children that involves naming body parts on a structure of a 

child or on the child’s own body, as well as recognition of body part names. 

Comprehension of 

instructions 
3-16 

Auditory comprehension task that requires the child to point to the correct picture in 

response to examiner commands with increasing syntactic complexity. 

Oromotor sequences 3-12 
Oromotor co-ordination task involving repetition of “articulatory sequences” (i.e. tongue 

twisters).  

Phonological processing 3-16 
Two part test that requires the child to identify words from word segments and then to 

create a new word by omitting or substituting word segment or phonemes. 

Repetition of nonsense 

words 
5-12 

Phonological encoding and decoding task that requires the child to repeat nonsense 

words within specific semantic and initial letter categories. 

Memory and learning 

List memory 7-12 
Test of verbal learning and memory that involves learning over five trials, an interference 

list, immediate recall and delayed recall for a list of 15 words.  

List memory delayed 7-12  

Memory for designs 3-16 
List of visuo-spatial memory for novel visual designs that involves learning, immediate 

and delayed recall of the position of designs on two-dimensional grids. 

Memory for designs delayed 5-16  

Memory for faces 5-16 Face recall task involving recall of a series of photographs of children’s faces. 

Memory for faces delayed 5-16  

Memory for names 5-16 

Name-face association task that involves repeated exposure trials to a set of cards on 
which are children’s faces; the child is required to learn and recall the name associated 

with each face. 

Memory for names delayed 5-16  

Narrative memory 3-16 

Story recall task that involves the examiner reading a story to the child, followed by 
immediate free recall, immediate cued recall and immediate recognition (for ages three–

ten only). 

Sentence repetition 3-6 
Sentence repetition task where sentences are aurally presented to the child. The child 

recites the sentences to the examiner immediately after they are presented. 

Word list interference 7-16 
Recall task that involves two aurally presented series of words that are each repeated 

after presentation. The child is then asked to recall both series of words in order. 
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Sensorimotor 

Fingertip tapping 5-16 Tapping task that assesses motor speed and finger dexterity. 

Imitating hand positions 3-12 
Hand position task that Involves the child copying complex hand/finger position 

demonstrated by the examiner. 

Manual motor sequences 3-12 Rhythmic task involving imitation of hand movement sequences. 

Visuo-motor precision 3-12 
Paper-and-pencil task involving timed eye-hand co-ordination in which the child is asked 

to rapidly trace a path on paper without crossing any lines. 

Social perception 

Affect recognition 3-16 

Affect task where the child is asked to recognise affect (e.g. happy, sad, anger) from 
photographs of children’s faces in various tasks. The task progresses from affect 

identification to recognition memory for affect. 

Theory of mind 3-16 

Theory of mind task that involves showing a child pictures and asking questions, reading 
brief passages about people’s experiences and asking questions, comprehension of 

abstract phrases and matching of facial expression (feeling) to a person’s experience. 

Visuo-spatial processing 

Arrows 5-16 
Judgement of line orientation task involving selection of the arrow(s) from a number of 

arrows with different orientations that point(s) to the centre of a target. 

Block construction  3-16 
Block test that requires the child to reproduce three-dimensional block constructions 

using models or two-dimensional pictures, using unicoloured blocks. 

Design copying 3-16 
Motor and visual-perceptual test that involves the child copying two-dimensional 

geometric designs of increasing difficulty on paper. 

Geometric puzzles 3-16 
Mental rotation, visuo-spatial analysis and attention to detail test in which a child 

matches two shapes outside of a grid to two of several shapes inside grid. 

Picture puzzles 7-16 
Test of visual discrimination, spatial localisation and visual scanning that involves 

identifying the location of smaller parts of a picture on a grid for the larger picture. 

Route finding 5-12 Visuo-spatial task involving finding the correct route leading to a target on a map. 
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This chapter reviews the background and conceptualisation of 

social-emotional skills and how these are related to consequential outcomes 

in education and the labour market. It discusses taxonomies on how to 

structure and operationalise these skills, converging on an overarching 

model representing five broad groups. In addition, it explores how these skills 

are connected to various types of work performance. Multiple common 

methods to assess social-emotional skills are reviewed. These comprise 

Likert-based and ipsative self- and observer reports, more objective tests and 

situational judgement tests, as well as behavioural residue indicators. 

  

5.  Understanding and testing 

social-emotional skills 
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Introduction  

In recent years, the assessment and learning of social-emotional skills in education and policy making 

have garnered more attention (Kankaraš, 2017[1]; Kankaraš and Suarez-Alvarez, 2019[2]). Language or 

math achievement have long been traditional indicators of scholastic performance. Today, in addition to 

those skills, social-emotional skills are considered as both means and end products of education 

processes. 

Learning and training social-emotional skills became an explicit part of educational curricula for several 

reasons. Social-emotional skills are assumed to (in)directly affect consequential outcomes in the short and 

long term. These include outcomes such as employability and work performance, health and longevity but 

also happiness, interpersonal relatedness and civic citizenship (Heckman, Stixrud and Urzua, 2006[3]; John 

and De Fruyt, 2015[4]; Holbein, 2017[5]; Taylor et al., 2017[6]). In addition, there is also evidence that 

social-emotional skills facilitate learning processes at school and contribute to academic achievement 

(Durlak et al., 2011[7]; Sklad et al., 2012[8]; Taylor et al., 2017[6]; Corcoran et al., 2018[9]).  

This chapter reviews the background and conceptualisation of social-emotional skills and how these are 

related to consequential outcomes in education and the labour market. It discusses taxonomies on how to 

structure and operationalise these skills, converging on an overarching model representing five broad 

groups. In addition, it explores how these skills are connected to various types of work performance. 

Multiple common methods to assess social-emotional skills are reviewed. These comprise Likert-based 

and ipsative self- and observer reports, more objective tests and situational judgement tests, as well as 

behavioural residue indicators. 

Defining social-emotional skills and their conceptual space 

There are probably as many definitions of social-emotional skills as there are models structuring these 

skills. Literature identified social-emotional skills as three types of individual capacities (John and De Fruyt, 

2015[4]; Scheerens, van der Werf and de Boer, 2020[10]; John and De Fruyt, 2015[4]). First, they manifest in 

consistent patterns of thoughts, feelings and behaviours. Second, they can be developed through formal 

and informal learning experiences. Third, they influence important socio-economic outcomes throughout 

the individual’s life. Such a definition is comprehensive enough to accommodate a wide range of skills, 

while highlighting their malleability and consequential effects for individuals and society.  

The term social-emotional skills is to be preferred over “non-cognitive skills” because many of the skills 

subsumed under the previous definition also require specific cognitive abilities (De Fruyt, Wille and John, 

2015[11]). Collaborative problem solving, for example, entails both cognitive and non-cognitive abilities.  

Likewise, the term social-emotional skills is desired over “soft skills”. It is unclear why skills that are 

sometimes hard to learn are called “soft”. A better term often used in this debate is “transferable skills”. 

This underscores the idea that these skills are transportable from one context to another, and hence 

contribute to the individual’s adaptation across different life challenges. 

In the labour market, organisations usually describe jobs and job vacancies in terms of “competences”. 

Hoekstra and Van Sluijs (2003[12]) define a competence as: “the ability to perform a particular type of task 

effectively or respond appropriately to a particular type of problem.” They conceptualise competences as 

the result of the interaction between an “expertise” in interaction with a “behavioural repertoire”.  

In this interaction between expertise and behavioural repertoire, the expertise component is highly (but not 

exclusively) determined by cognitive ability factors. Conversely, an individual’s behavioural repertoire is 

chiefly determined by personality traits. The observed competence levels, however, are not merely a 

product of someone’s expertise and behavioural repertoire: attention and emotion fluctuations may 

interfere and impact on the finally manifested competence level. 
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Understanding socio-emotional skills also requires distinguishing between “how one is behaving typically” 

(also called a trait approach) relative to “how well one can behave” (or solve a problem). The latter is often 

represented as a maximal performance kind of construct such as mental abilities.  

The distinction between “how well one can behave’” and “how one behaves typically” can be made 

conceptually. However, it is much harder to distinguish at an operational level. For example, the 

social-emotional skills measure known as SENNA (Primi et al., 2016[13]) has both self-efficacy (“how well 

one can behave”) and identity (“how one behaves typically”) items to assess social-emotional skills. 

In sum, the terms social-emotional skills and transferrable skills are to be preferred over “soft” or 

“non-cognitive” skills. These concepts are synonymous with the term “competences” that is used more 

frequently on the labour market. Personality traits and cognitive abilities are to be considered as key 

building blocks of social-emotional skills, competences and transferrable skills. 

Towards an integrative taxonomy 

There is a broad amalgam of different social-emotional skill taxonomies. Some advocate only a few, while 

others propose 100 or more skills.  

Domains of social-emotional skills 

Elias et al. (1997[14]) described six major domains of social and emotional learning. These include 

recognising and managing emotions, setting and achieving positive goals, appreciating the perspectives 

of others, establishing and maintaining positive relationships, making responsible decisions and handling 

interpersonal situations constructively.  

Durlak et al. (2011[7]) advocated that social-emotional learning programmes should foster five broad 

competence sets: self-awareness, self-management, social awareness, relationship skills and responsible 

decision making.  

From a different angle, Saarni (1999[15]; 2011[16]) focused on what a child needs to learn to become an 

emotionally and socially competent adult. She distinguished eight affect-oriented behavioural, cognitive 

and regulatory skills that are presumed prerequisites for emotional competence:  

 awareness of one’s own emotional state 

 skills in discerning and understanding the emotions of others 

 skill in using the common vocabulary of emotion and expression 

 capacity for empathic and sympathetic involvement in others’ emotional experiences 

 skill in realising that inner emotional states need not correspond to outer expression 

 capacity for adaptive coping with aversive or distressing emotions by using self-regulatory 

strategies that ameliorate the intensity or temporal duration of such emotional states 

 awareness that relationships are defined by emotional genuineness of expressive display and 

reciprocity 

 capacity for emotional self-efficacy (i.e. individuals can accept their own emotional experience and 

view themselves as generally feeling the way they want to feel).  

Trilling and Fadel (2009[17]) distinguished among a set of more than 160 different skill terms. These include 

terms as abnegation and altruism, engagement and enthusiasm, innovation and inquisitiveness, 

self-discipline and self-control, stability and tranquillity. Conceptually, these authors grouped these terms 

into the broader themes of what they call the 4Cs: creativity/innovation, critical thinking, communication 

and collaboration. 
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Grit: the jingle-jangle fallacy 

Although there might be obvious reasons why these frameworks look different, this mixture of models and 

diversity of vocabularies hampered an integrative and in-depth debate among various stakeholders. The 

field further suffers from the jingle-jangle fallacy. In this fallacy, similarly named constructs across 

frameworks refer to different skills (jingle), whereas nearly identical skills are labelled differently (jangle).  

The construct of “grit” provides an example of the fallacy. Grit, referring to perseverance and passion for 

achieving long-term goals, received considerable attention in education over the past decade (Duckworth 

et al., 2007[18]). Recent behaviour-genetic (Rimfeld et al., 2016[19]) and meta-analytic work (Crede, Tynan 

and Harms, 2016[20]) showed that grit is similar to the personality trait of “conscientiousness”.  

Grit has a well-documented history as an important trait for learning within the personality field (Poropat, 

2009[21]; Poropat, 2014[22]; Poropat, 2014[23]). Dumfart and Neubauer (2016[24]) showed that no other factors 

than conscientiousness and intelligence predicted languages and grade point average in eighth graders in 

Austria. In line with Rimfeld et al. (2016[19]), these authors demonstrated that grit showed no incremental 

validity beyond conscientiousness. 

Restructuring the field of socio-emotional skills 

The field of socio-emotional skills needs the kind of restructuring that occurred in the personality field. The 

challenge to bring order in the amalgam of (overlapping) social-emotional skill terms closely resembles the 

efforts of personality psychologists to structure the hundreds of personality descriptive terms available.  

Such terms were finally summarised in the Big Five personality dimensions (John, 1990[25]) as Neuroticism, 

Extraversion, Openness to experience, Agreeableness and Conscientiousness. Today, personality 

psychologists agree these five dimensions form the largest common denominator to describe personality 

differences observable in various age and cultural groups (De Fruyt and Van Leeuwen, 2014[26]; McCrae 

and Terracciano, 2005[27]).  

Advances on the Big Five framework 

The availability of the Big Five empirical framework helped solve the discussion on differentially labelling 

rather similar constructs and examine the overlap among presumably distinct constructs. This 

breakthrough considerably advanced the personality field leading to improved knowledge on how traits are 

best assessed and how personality traits develop across life.  

Primi et al. (2016[28]) advanced the discussion, demonstrating that items and scales of frequently used 

measures to evaluate social-emotional skills learning could be easily mapped within the Big Five scheme. 

A joint factor analysis of seven measures showed that all their items could be easily structured under the 

umbrella of the five major dimensions of personality. The measures analysed were the Nowicki-Strickland 

Locus of Control Scale (Nowicki and Strickland, 1973[29]), Rosenberg Self-Esteem Scale (Rosenberg, 

1979[30]), Strengths and Difficulties Questionnaire (Goodman, 1997[31]), Big Five Inventory (John and 

Kentle, 1991[32]), Self-Efficacy Questionnaire for Children (Muris, 2001[33]), Core Self-evaluations (Judge 

et al., 2003[34]) and the Grit Scale (Duckworth and Quinn, 2009[35]).  

Following analysis of the socio-emotional skills literature, John and De Fruyt (2015[4]) grouped 

social-emotional skills into five broad domains: collaboration, engaging with others, emotion regulation, 

task performance and open-mindedness. These domains parallel the psycho-social systems described by 

John and Srivastava (1999[36]). They are also fully in line with the empirical analyses by Primi et al. (2016[28]) 

of the content covered in instruments frequently used to assess social-emotional skills.  

In the John and De Fruyt (2015[4]) framework, the engaging with others and collaboration fields describe 

social-emotional skills related to vertical (hierarchical) and horizontal (attaching/bonding) interactions 
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among persons. Conversely, the emotion regulation field groups those skills that help individuals to deal 

with anxieties and uncertainties, recover from setbacks and control impulses. Both the interpersonal and 

the emotion regulation fields have been intensively studied in psychology. Finally, open-mindedness and 

task performance skills are crucial for adaptation and learning, grouping social-emotional skills related to 

exploration and exploitation, respectively, of the world around us.  

These broad domains group more specific skills that are described in Figure 5.1. For example, a domain 

like collaboration encompasses skills like compassion, respect, trust and harmonious relationship building. 

Conversely, open-mindedness includes curiosity, creativity, aesthetic sensitivity, appreciating diversity, 

self-awareness, and autonomy and independence. The domains of the social-emotional skill framework 

map directly onto the Big Five framework as used by personality psychologists, i.e. collaboration maps to 

agreeableness, engaging with others maps to extraversion, emotion regulation maps to neuroticism, task 

performance maps to conscientiousness, and open-mindedness maps to openness to experience. 

The Big Five framework has been successfully applied, along these lines, to structure competence models 

within the human resources field (De Fruyt et al., 2006[37]) or to classify the numerous social-emotional 

skills listed in the 21st century educational literature (John and De Fruyt, 2015[4]). The model is further 

helpful to structure needs and requirements of different jobs on the labour market, and connects well with 

the job descriptions included in Occupational Network (O*NET). 

Combining the Big Five framework with O*NET 

The O*NET database has turned out to be indispensable for practitioners and researchers to connect the 

worlds of education and the labour market. O*NET contains a detailed and updated set of job descriptions 

and requirements. This provides an overview of social-emotional skill demand at the level of the labour 

market.  

The O*NET skills and abilities’ sections, together with the work styles and values’ descriptions for job titles, 

easily translate into the social-emotional skills subsumed under the Big Five framework. Work styles, for 

example, are a more “neutral term” in O*NET to refer to personality traits. Conversely, skills and abilities 

are manifestations of either personality traits or specific cognitive abilities or the interaction between them 

(Hoekstra and Van Sluijs, 2003[12]).  

Relying on O*NET, McCloy et al. (2017[38]) recently identified those characteristics that are critical for 

effective performance in a broad range of occupations in 79% of O*NET occupations. This resembles 81% 

of the total US workforce in 2012 and 82% of the projected workforce in 2022. The top 20 skills of their 

analysis exclusively contained skills from each of the five domains of the social-emotional skills model 

proposed by John and De Fruyt (2015[4]), supplemented with problem solving. This type of knowledge 

makes it possible to compute an index of “work readiness” for each individual student relying on his/her 

scores on this identified skill set. 

The proposed model claims to be fairly comprehensive, accommodating most social-emotional skills listed 

in the literature. However, the framework is probably less suited to classify those skills with a stronger 

cognitive component. Such cognitive skills would include critical thinking, metacognition, complex problem 

solving, or surface/deep-level information processing, for example. The more social-cognitive of the skills 

certainly have associations with the key dimensions of the proposed social-emotional skill model. However, 

they are also linked to models of cognitive ability (Bartram, 2005[39]). 

From personality traits and cognitive abilities to interests and values 

Traits and cognitive abilities form the cornerstones of social-emotional skills. However, constructs of other 

individual differences are important to understand, assess and predict an individual’s behaviour and 
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performance at work. Contemporary psychology on individual differences converges on a well-studied set 

of four groups of constructs: personality traits, cognitive abilities, interests and values.  

There are well-researched models for each of these constructs. For personality traits, there are the Big 

Five/HEXACO models (Goldberg, 1993[40]; Ashton, Lee and Goldberg, 2004[41]). For cognitive abilities, 

there is the Cattell-Horn-Carroll (CHC) model (McGrew, 2009[42]). For (vocational) interests, there is 

Holland’s RIASEC model (Holland, 1997[43]). Finally, for values, there is the Schwartz value model 

(Schwartz, 1994[44]). 

Vocational interests  

Vocational interests can be defined as relatively stable individual differences that affect (choice and 

performance) behaviour through individuals’ preferences for particular work activities and environments 

(Wille and De Fruyt, 2019[45]). Holland’s (1997[43]) vocational interest model describes people’s interests 

and preferences in terms of their resemblance with six core interest domains, i.e. realistic, investigative, 

artistic, social, enterprising and conventional, that are structured in a hexagonal space.  

This resemblance is often expressed in a RIASEC letter code, e.g. SEAICR, with the first letter resembling 

the person’s prime interest field, the second letter her/his second interest theme, etc. The model can be 

further used to describe and structure environments (e.g. educational majors or jobs), enabling the 

computation of a fit index between a person’s interests and his/her (new) environment. O*NET provides 

RIASEC letter codes for a broad range of jobs. 

Cognitive abilities 

Several models have been proposed over the past 100 years to structure cognitive abilities. CHC (McGrew, 

2009[42]) is one of the most comprehensive for research and diagnostic specificity. To represent the positive 

manifold (Spearman, 1927[46]) among various intelligence measures, the model proposes a hierarchy of 

cognitive abilities. A broad general factor is on top, with more specific types of intelligence structured 

underneath (www.themindhub.com). 

Personal values 

Personal values can be defined as: “broad beliefs concerning desirable, trans-situational goals that serve 

as guiding principles in the individual’s life” (Vecchione et al., 2020[47]). The Schwartz (1994[44]) model on 

values provides a cross-cultural and comprehensive account of people’s values, distinguishing among ten 

core values that people may identify with to various extents.  

The values are structured in a circumplex model, in clockwise order from the top: universalism, 

benevolence, conformity, tradition, security, power, achievement, hedonism, stimulation and self-direction. 

The quadrants are labelled clockwise from the top as self-transcending, conservation, self-enhancement 

and openness to change. The model is well-supported and used in large-scale cross-cultural research 

(e.g. European Social Surveys). 

Interplay between the four core groups 

The pairwise relationships between these four groups of core constructs have been extensively described, 

often meta-analytically. They represent distinct, though somewhat related, constructs. Personality and 

cognitive abilities, for example, correlate poorly. However, interest dimensions are to some extent 

associated with personality traits (Barrick, Mount and Gupta, 2003[48]) and cognitive abilities (Passler, 

Beinicke and Hell, 2015[49]). Meanwhile, personality traits are further associated with values (Parks-Leduc, 

Feldman and Bardi, 2015[50]).  

http://www.themindhub.com/
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Such background information is key to understanding the complex interplay of ingredients of specific 

social-emotional skills. For example, a social-emotional skill like “collaboration” requires specific 

interpersonal personality traits at work and verbal abilities. However, it will also be determined and 

embedded in a context related to the interests (e.g. the field one is working in) and the values that the 

individual embraces.  

Against this background of (small to moderate) interrelationships, a good conceptual framing and 

understanding is needed of how these constructs hang together and affect work(-related) behaviour. From 

this perspective, “personality traits” and “abilities” are arguably key ingredients to explain how people will 

perform (in their jobs). Conversely, interests and values are predictors of the field (what and where) in 

which people will use and apply their social-emotional skills. For example, two persons can be alike in 

terms of their personality traits and abilities. Yet depending on their field of work (different interests and 

values; e.g. an artist vs. a cardiovascular surgeon), their salaries and options on the labour market may be 

different. 

Understanding work behaviour and performance 

Social-emotional skills are considered pivotal today to understand and predict work performance. In other 

words, they relate to attainment of desired outcomes but also avoidance of unwanted outcomes. Work 

performance is understood in terms of five main types of performance: task, contextual, adaptive, learning 

and counterproductive. Task performance (quantity and quality) basically refers to the tasks explicitly listed 

in a job description; contextual performance refers to how well a person gets along with others and 

contributes to the team; adaptive performance refers to how well a person deals with change and 

insecurity; learning performance refers to what and how people learn, what they do to strengthen 

employability; and counterproductive performance/derailment is an undesirable type of performance.  

Social-emotional skills and performance 

Social-emotional skills are differentially related to these different types of performances as described 

below.  

 Task performance 

Task performance (Renn and Fedor, 2001[51]) is overall predicted by cognitive ability (Salgado et al., 

2003[52]) and conscientiousness (Salgado, 1997[53]; Barrick, Mount and Judge, 2001[54]). However, other 

personality traits may be predictive as well depending on the nature of the job. In sales, for example, 

interpersonal traits are also important.  

 Contextual performance 

Contextual performance (Van Scotter and Motowidlo, 1996[55]) is more related to the interpersonal factors 

of extraversion (explaining the frequency of social interaction) and agreeableness (describing the quality 

of interpersonal behaviour).  

 Adaptive performance 

Adaptive performance (Pulakos et al., 2020[56]) relates to flexibility and openness, and how easily change 

triggers anxiety in the individual. This is related, in turn, to the dimensions of openness to experience and 

emotional stability (De Fruyt and Rolland, 2013[57]), respectively.  

 Learning performance 

For an understanding of learning performance, the combination of openness to experience and 

conscientiousness is critical. The so-called learning circumplex (De Fruyt et al., 2008[58]) is supplemented 

with cognitive ability (Salgado et al., 2003[52]).  
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Predicting and understanding performance 

Various types of counterproductive work behaviour/derailment are predicted by low agreeableness and 

conscientiousness (Salgado, 2002[59]), honesty/humility (Pletzer et al., 2019[60]) eventually combined with 

low emotional stability (De Fruyt et al., 2009[61]), especially for the prediction of derailment. A direct 

translation of these types of work performance into the skill language of the OECD framework can be found 

in Table 5.1. 

Predicting and understanding different types of work performance involves choosing the right 

social-emotional skill constructs, as well as analysing the nature of the kind of performance that one is 

interested in. In some cases, performance can be defined in terms of the best possible solution for a 

problem, referring to the maximal potential of the individual’s skills to accomplish a goal. Other types of 

performances refer to more daily and habitual expressions. These might include being friendly and 

respectful, or how one generally deals with stressors and everyday hassles.  

From a select-out perspective, one wants to avoid derailment and counterproductive work behaviour in 

organisations. The prevalence of some of these behaviours might be infrequent, but a single malevolent 

act (e.g. a pilot making a mistake) can have a devastating impact. Consequently, in addition to selecting 

the appropriate social-emotional skill constructs, one also has to adequately model the relationships 

between such constructs and various performance indicators in structural relationship models and 

equations. 

Most contemporary psychology and econometric models are primarily focused on understanding (work) 

performance differences between individuals. This was mainly driven by a focus in selection psychology 

to select those individuals among job applicants that will best perform in a job. Work performance in this 

context was mainly understood as a kind of static process where an individual provides a consistent level 

of performance.  

Today, job performance is also considered a dynamic construct, with people demonstrating “performance 

fluctuation” around a mean.  

Debusscher, Hofmans and De Fruyt (2016[62]) examine state neuroticism and task performance using an 

experience sampling design. They demonstrate that 60.9% of the variance of momentary task performance 

and 66.7% of the variance of state emotional stability was within-person. Hence, how well people 

(maximally) master a particular skill may differ from how people behave typically with variation across the 

day.  

Debusscher, Hofmans and De Fruyt (2016[62]) convincingly demonstrate that people do not always perform 

to their maximal mastery level but rather show fluctuations. Others observe that roughly half of the variance 

in job performance is within the person (Debusscher, Hofmans and De Fruyt, 2014[63]); (Sosnowska et al., 

2020[64]). However, it requires specific assessment tools and methodology to capture such variance (Lang 

et al., 2019[65]; Lievens et al., 2018[66]). AI has great potential to complement and eventually replace 

ambulatory assessments with ecologically valid information that can be electronically assessed and 

estimated and updated by algorithms. 

Assessing social-emotional skills 

This section reviews how social-emotional skills are assessed. It identifies several caveats in terminology, 

reflects on rating scales, and proposes situational judgement tests as an alternative assessment method. 

It explores more objective assessments to supplement self-report and rating-scale approaches. Finally, it 

examines personal living spaces and digital footprints as a source of information on personality traits, 

cognitive abilities, interests and values. 
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Correct use of terminology 

Tests vs. assessments 

The term “test” should be avoided (or correctly used) when it comes to the assessment of social-emotional 

skills. A “test” refers to examining someone’s maximal knowledge or capacity to solve a problem or 

perform. In a test, one typically assesses a person’s specific knowledge, cognitive abilities, memory, 

attention span or physical fitness. Often, tests include a set of items or exercises with an increasing level 

of difficulty (e.g. a reasoning task) or effort (e.g. physical tasks), with cognitive tasks usually having a right 

or wrong answer.  

An exam for obtaining a driver’s licence, for example, first tests the knowledge of traffic rules, with “pass 

or fail” as the result. In addition, an examiner wants to know how this person performs typically in 

day-to-day traffic situations. Thus, the (broader) term “assessment” is preferred to “test”, which refers to 

the examination of these more typical modes of behaving and acting. In assessments, some of the 

behaviours can be considered “right or wrong”. However, they may also point to a continuum of behaviours 

that are more subtle and gradual in nature (e.g. “anticipatory driving” or “respecting others”). The broader 

term “assessment” better reflects this complexity. 

Constructs vs. assessment methods 

Constructs such as social-emotional skills should not be equated with the methods used to assess them. 

Constructs can be assessed using various methods that may either supplement or complement each other. 

A person’s collaborative skills, for example, can be described via self- or peer reports. However, they can 

also be assessed in a group exercise rated by independent assessors or via a situational judgement test.  

Prediction in psychological measurement further relies on the principles of aggregation and triangulation. 

Aggregation measures across multiple indicators of a construct, while triangulation measures across 

different methods to assess this construct. Social-emotional skills, for example, are assessed using 

multiple items covering the bandwidth of a construct.  

One also tries to explain incremental validity by picking up variance in a construct using alternative 

assessment methods. Peer ratings, for example, can complement self-ratings on assertiveness. 

Meanwhile, scores on a situational judgement test can supplement self- and peer reports. Schmidt, Oh 

and Shafer (2016[67]) have conducted a meta-analytic summary of the validity of methods commonly used 

to predict work and training performance. 

Rating scales 

Social-emotional skills are most frequently assessed using self-reports on an item set covering the 

bandwidth of a set of skills. Homogeneous groups of items are presented with Likert scales and anchors 

referring to either descriptive labels or frequency indicators. A descriptive label might be a five-point scale 

ranging from “not characteristic at all”, “barely characteristic”, “more or less characteristic”, “characteristic” 

to “very characteristic”. Frequency indicators might include “not at all”, “once a month”, “a few times a 

month”, “once a week”, etc. An example of such Likert-based assessment for skills enclosed in the OECD 

model can be found in Kankaraš, Feron and Renbarger (2019[68]) (Table 3.5). 

In accordance with the aggregation principle, multiple items referring to various nuances of emotion 

regulation are administered to assess a person’s standing on this skill. Often, the item set includes both 

positively and negatively keyed items (e.g. “I can control my emotions well” versus “My emotions 

overwhelm me completely”). This allows to correct for acquiescence bias (a response tendency to say 

“yes” to items) (Primi et al., 2020[69]). 
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The psychometric characteristics of the scale and demonstration of measurement equivalence are both 

critically important. The former measures reliability, consistency and structural characteristics, while the 

latter allows comparisons across groups (e.g. across gender, age, culture). Such Likert-based 

assessments are sometimes preceded by an anchoring-vignette to be in a position to correct raw scale 

scores for group-reference bias (Primi et al., 2016[28]; Primi et al., 2016[13]).  

“Observer reports” of an individual’s social-emotional skills form an alternative and complementary 

approach to self-ratings. The addition of this type of information adds predictive power to understand 

various outcomes (Connelly and Ones, 2010[70]). Similar psychometric requirements account for observer 

reports as for self-ratings. Preferably, the observer is well acquainted with the target individual. For 

example, the observer could be a parent or teacher rating the social-emotional skills of a child, partners 

rating each other or a supervisor rating a collaborator or vice versa. However, zero-acquaintance reports 

also have some small validity. Observer or peer reports are most useful to assess overtly observable 

behaviours (e.g. assertiveness). They are less suited to assess more internalising forms of behaviour such 

as emotion regulation skills. 

Ipsative assessments of social-emotional skills have been introduced as an alternative for Likert scales. 

This is because the latter may be subject to different rater biases, including self-presentation bias (i.e. how 

people tend to portray a more socially desirable picture of themselves). In an ipsative assessment, the 

person must select from different sets of three to four items. The items in a set, which refer to different 

social-emotional skills, are illustrated in the triplet of items that follows: 

I can calm down myself easily. 
I get distracted quickly. 
I can easily keep my promises. 

The three items are indicators of emotion regulation, concentration and sense of responsibility, 

respectively. The subject indicates the item that is most like her/him and least like her/him. Although 

ipsative assessment creates interdependencies among the assessed constructs, more recent 

psychometric techniques have been developed to deal with this problem (Brown and Maydeu-Olivares, 

2013[71]). As a result, ipsative item administration can be used to assess differences between individuals. 

More research, however, is needed on how to design optimal groups of items, including both positive and 

negative indicators of a construct so the model can be identified properly. 

Situational judgement tests 

Situational judgement tests (SJTs) are an alternative method to assess personality or social-emotional 

skills. In an SJT, persons are presented items describing a short situation, the so-called stem, together 

with a set of possible reactions. The stem can be a narrative description, but more recent approaches also 

use videos, animations or avatars to present the situation. Assessees are required to select from the set 

of responses the one that bests represents how they will behave in that situation, or are requested to rank 

those responses.  

The responses are indicators of specific social-emotional skills. Subject matter experts a priori align 

responses to constructs, or their allocation is determined in a separate study and derived empirically. 

Assessees are presented several of such SJT items and their position on constructs is computed across 

their choices or rankings of responses across the different SJTs. 

An example of an SJT stem assessing an element of leadership behaviour could be as follows: “You (as 

the team leader) have scheduled an online meeting with members of your team to discuss an adjustment 

in the work plan. You see in the chat function of the communication tool that one team member comments 

disrespectfully about someone from a different department (not participating in the meeting). What do you 

do?” The assessee can select from:  

a) You react immediately and ask to clarify his point. 
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b) You react during the meeting, and tell him we do not communicate within the organisation with this 

tone. 

c) You wait until the meeting is over and approach him individually on line to tell him that this is not 

the tone we use to communicate within the organisation. 

d) You deny the comment in the chat because you consider it irrelevant for solving the work-planning 

problem. 

SJTs have become popular in assessment and selection psychology due to their face validity and 

favourable reactions from assessees (because the situations have a realistic and attractive appeal on 

candidates applying for jobs). There is meta-analytic evidence supporting SJTs’ predictive validity, beyond 

self-ratings on personality inventories (McDaniel et al., 2007[72]).  

However, SJTs have large developmental costs. They must often be developed to reflect the kind of (work) 

situations and behaviours that one wants to understand and predict. In a recent review, Lievens (2017[73]) 

suggested that the SJT format provides interesting possibilities for assessing both between and within 

individual differences. These possibilities emerge because the various situational descriptions in an SJT 

item set provide opportunities to study trait or skill variability (flexibility) across different situations. 

The use and especially the design of SJTs, however, was recently questioned. Several studies 

demonstrated the situation descriptions were unnecessary or only contributed to increased predictive 

validity for specific criteria (Krumm et al., 2015[74]; Schäpers et al., 2020[75]). For example, Schäpers et al. 

(2020[75]) demonstrated that SJT validity to predict in-role performance and organisational citizenship 

behaviour was not substantively affected when removing the stem. Conversely, they found it did have an 

impact for predicting interpersonal adaptability and efficacy for teamwork. They further showed the impact 

of dropping the stems on applicant reactions was negligible. Overall, these studies question the heart of 

the SJT approach. They suggest that SJTs are less situation-dependent than previously thought. 

More objective assessments 

Duckworth and Yeager (2015[76]) convincingly argued to supplement self-report and rating-scale 

approaches with more objective forms of assessing socio-emotional skills. They said rating scales may be 

less effective, especially for summative educational assessment, when stakes of evaluation are high. Both 

positive and negative self-presentation styles may distort self-descriptions when financial consequences 

are attached to the outcome of the evaluation. Schools may be rewarded for good but also for poor 

performance (getting extra funds to remediate). Therefore, intentional distortion of self-descriptions is 

possible in both directions.  

Other threats of the validity of self-reports are teaching-to-the-test bias or increasing awareness of a skill 

that was the target of an intervention. For example, after acquiring a better understanding of empathy 

through an intervention, students may adjust (towards the lower end) their self-described skill mastery 

level. In other words, they may describe themselves as lower on empathy skills after an intervention to 

improve empathy. Taken at face value, this would lead to the paradoxical conclusion that empathy skill-

level decreased due to the intervention. 

Several studies have attempted to develop more objective measures to assess specific social-emotional 

skills. Santacreu, Rubio and Hernandez (2006[77]), for example, described three computerised tests that 

examine risk tendency: Roulette, Betting Dice and Crossing the Street. In the Roulette test, people have 

to bet and can win or lose for obtaining a prize. The Betting Dice test is similar to the Roulette test. In the 

third test, a figure on the computer screen has to cross a street as quickly as possible without causing 

accidents with satisfactory levels of reliability and validity. Falk et al. (2015[78]) assessed altruism using a 

donation task where people could contribute a certain amount of money to a good cause. 
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The Balloon Analogue Risk Task (BART) is an interesting objective measure to assess risk taking (a 

specific form of lack of impulse control) (Lejuez et al., 2002[79]) or derivative tasks. In BART, participants 

are shown 16 balloons on a computer screen, one after another. They are asked to pump the balloon that 

eventually will burst, and will get a dollar for each (extra) pump.  

Balloon burst points, however, are randomised. If a balloon pops before they cash their earnings, they lose 

everything collected with pumping that single balloon. When a balloon explodes, they are presented a fresh 

balloon and continue until they finish with all 16. The key dependent variable is the amount of money 

collected at the end of the experiment, which gives them extra chances for gaining a substantive and 

attractive prize.  

Alternatives to BART are so-called lottery tasks, where people have to imagine they won $100 000 with a 

lottery. The “bank” approaches them for a financial investment with the following strategy: double the 

investment in two years with a similar chance that half of the money will be lost. Participants are requested 

to indicate the amount of money they will invest under this condition: a) nothing (i.e. decline the offer), 

b) $20 000, c) $40 000, d) $60 000, e) $80 000 or f) the full amount of $100 000.  

The BART and lottery tasks are interesting examples because they strongly correlate with self-report 

measures of risk taking (Dohmen et al., 2011[80]). Grover (2018[81]) reported correlations of .73 and .62 

between a self-report measure of seven items (with a Cronbach’s alpha of .93) with the number of adjusted 

pumps and the number of explosions in the BART task, respectively. Financial risk taking in the lottery task 

had a correlation of .79 with the self-report measure. 

The previous examples made clear that more objective forms of assessment usually require more 

advanced ways of test administration. They also eventually require extra time beyond the easily 

administered paper-and-pencil self-descriptions. In addition, the number of constructs that can be 

evaluated more objectively is probably time-bound. Social-emotional skill inventories such as SENNA 2.0 

(Primi et al., 2016[13]) assess 17 different skills using 153 items and can be easily administered in 25 to 30 

minutes. Performance-based assessment of the same 17 constructs will probably require considerable 

extra time but also specific infrastructure.  

The available objective measures cover only a small part of the proposed social-emotional skill framework. 

The domains of emotion regulation, engaging with others and openness are poorly covered by objective 

assessment tools. In addition to availability, the construct validity of objective measures needs additional 

research. More objective measures typically correlate poorly with social-emotional skill self-reports, and it 

is unclear why this is the case (Ortner and Proyer, 2015[82]). In addition, objective measures of 

social-emotional skills are frequently task-based with considerable cognitive and motivational load. This 

puts into question their validity as pure indicators of social-emotional skills. 

Behavioural residue and digital footprint 

Personal living spaces and digital footprints are a final source of information on people’s standing on 

social-emotional skill building blocks such as personality traits, cognitive abilities, interests or values. An 

office or bedroom, for example, could represent personal living space. A digital footprint could be 

represented by social media activity (Facebook profiles, Twitter activity, Internet searches, cell phone use 

and tracking information).  

Gosling et al. (2002[83]) demonstrated that people’s offices and bedrooms contained so-called behavioural 

residue. Observers can make consensual and reliable ratings of people’s personality based on bits and 

pieces of information in these personal spaces. 

More behavioural residue can be found in people’s use of online social networking sites and their digital 

footprint. Back et al. (2010[84]) found that Facebook profiles reflect instances of their owner’s personality 

and not self-idealisation. Ratings of the Facebook pages showed correlation coefficients mounting to .39 
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and .41 with self- and peer-rated personality for extraversion and openness to experience, respectively, 

when ratings of the Facebook page were averaged across raters. Correlations were .25 and .24 when 

single observer ratings were considered. Facebook ratings were not correlated with ideal self-ratings, when 

corrected for actual personality ratings.  

Another study by Park et al. (2015[85]) analysed Facebook status messages and developed algorithms 

associating language use in Facebook posts with self-descriptions of personality. A subsequent validation 

study showed that Facebook language-based assessments were correlated on average .38 with 

self-ratings of personality. Similar accuracy results were obtained from analysing individuals’ smartphone 

behaviours, looking at communication and social behaviours, music consumption, app usage, mobility, 

overall phone activity and, finally, day- and night-time activity (Stachl et al., 2020[86]).  

Specific combinations of these passive variables that could be read from an individual’s smartphone were 

useful to predict openness to experience, conscientiousness and extraversion self-ratings, except for 

Agreeableness. Conversely, only carefreeness and self-consciousness from the emotional stability domain 

were significantly related with smartphone behaviour indices. 

Table 5.1. Work performance indices and associated social-emotional skills  

Type of performance Social-emotional skills (OECD model) Specific skills and narrative 

Task performance Cognitive ability (CHC model) 

Task performance 

Taking responsibility for tasks, persisting and 

steering own performance 

Contextual performance Engaging with others 

Collaboration 

Interacting and connecting with others, 
working in teams; trusting others and being 

trustworthy; acting respectfully 

Adaptive performance Open-mindedness 

Emotion regulation 

Being open and flexible, welcoming new 
ideas and people; controlling negative and 

defensive emotions and reactions 

Learning performance Cognitive ability (CHC model) 

Open-mindedness 

Task performance 

Having a curious mindset and acting upon 
that; making an effort, persisting when it gets 

tough and being ambitious to learn 

(prevention of) Derailment Collaboration and Task performance 

Emotion regulation 

Controlling selfish tendencies and negative 
emotions that may harm others; following 

rules and honouring commitments 
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Figure 5.1. OECD Framework on social-emotional skills 

 

Source: Kankaraš and Suarez-Alvarez, (2019[68]). 
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Anita Williams Woolley, Carnegie Mellon University 

This chapter summarises the research on collective intelligence (CI) in 

human groups over the last ten years. It describes key factors that lead to 

development of CI in human teams and discusses the approach taken to 

measuring it. It also examines different task taxonomies, including the 

McGrath Group Task Circumplex, and looks at the nature of interdependence 

in CI. Newer research on enhancing CI is explored, including possible roles 

for artificial intelligence (AI). The chapter discusses how these approaches 

could provide useful directions for shaping and evaluating AI, and particularly 

artificial social intelligence, for enabling teamwork in more complex settings.  

6.  Assessing collective intelligence 

in human groups 
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Introduction 

The ability to collaborate in teams is becoming increasingly important. Across every sector of society and 

the economy, there is growth in the delivery of emergency and medical services in teams (Hughes et al., 

2016[1]), the management of business in teams (Pearce, 2004[2]) and even the development of new 

knowledge in science and technology in teams (Wuchty, Jones and Uzzi, 2007[3]). 

At the same time, problems arise that are difficult for teams to address. These problems are due to 

complexity associated with geographic dispersion; language and cultural barriers; the large number of 

people required to co-ordinate; and the broad diversity of expertise, beliefs and motivations needed to be 

aligned to make progress. The right knowledge and tools to manage those barriers might enable powerful 

engines of progress for society. However, a workforce would need tools for effective collaboration and 

support from tools and technology to help manage the associated complexity. 

Enhancing collaboration to enable teams to address the toughest problems requires deep understanding 

of what helps teams perform well. Technology can likely play a role; however, knowing how to create 

technologies that will enable good teamwork consistently is also needed. This will require understanding 

both the individual characteristics and abilities that enable effective collaboration, and the group level 

features and behaviours that support good teamwork across a wide range of problems of varying 

complexity. 

Research on collective intelligence (CI) has focused on conceptualising and measuring the capabilities 

underlying teamwork. Woolley et al. (2010[4]) used an analogy between the individual intelligence of a 

person and the CI of a group. Research literature commonly defines individual intelligence with a statistical 

factor (“g” for general intelligence) that captures and predicts how well a person will perform on a wide 

range of different tasks. Woolley and colleagues found that, similar to individual intelligence, a single factor 

predicted over 40% of the variance in performance when groups completed a range of different tasks. They 

called this factor “collective intelligence.”  

Research on CI in human groups builds upon and extends traditional research on team performance. The 

latter is typically focused on elements that enable a team to perform well on a particular task. Conversely, 

research on CI examines what enables a group to perform tasks that vary in complexity over time. 

Accordingly, subsequent studies have tested and shown that measures of a group’s CI predicts future 

performance in a variety of settings (Woolley et al., 2010[4]; Engel et al., 2014[5]; Kim et al., 2017[6]; 

Aggarwal et al., 2019[7]; Glikson et al., 2019[8]). 

What are the key factors that cultivate collective intelligence? 

Several factors appear to be key drivers of CI in teams. These include individual characteristics, such as 

social perceptiveness, which enhance the quality of collaboration; group compositional features, such as 

various forms of diversity; and group process behaviours. These are discussed below. 

Individual characteristics 

Researchers have explored which individual characteristics can enable group CI. Most personality 

variables have relatively weak correlations with CI (Engel et al., 2014[5]; Woolley et al., 2010[4]). However, 

gender composition of the group emerged early as an important characteristic. Early studies showed a 

significant correlation between the proportion of women in the group and its CI (Woolley et al., 2010[4]; 

Engel et al., 2014[5]; Kim et al., 2017[6]). 

The relationship between having more women in the group and CI is explained by another characteristic: 

social perceptiveness. Social perceptiveness is the ability to take another’s perspective and reason about 
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their intentions, knowledge, beliefs and emotions (Premack and Woodruff, 1978[9]). In studies of CI, groups 

with higher average social perceptiveness are more collectively intelligent. Women, on average, tend to 

be more socially perceptive than men. Having more women in a group, then, raises CI because it raises 

the average level of social perceptiveness. Furthermore, groups with higher social perceptiveness tend to 

engage more in collaboration processes that enhance CI, which are discussed further below. 

Group composition factors 

In addition to the influence of specific individual characteristics, research on CI in groups finds several 

influential compositional factors. First, it appears that cognitive style diversity is important. Aggarwal et al. 

(2019[7]) evaluated individual member cognitive style using the Object-Spatial Imagery and Verbal 

Questionnaire (Blazenkova, Kozhevnikov and Motes, 2006[10]). They found that groups with moderate 

levels of cognitive style diversity reach the highest levels of CI. In related research, Aggarwal and Woolley 

(2018[11]) found that high levels of cognitive diversity were associated with group difficulties in settling on a 

shared task strategy. Task performers with different cognitive styles tended to approach the task in different 

ways. This finding has been illustrated in research in educational settings as well (Blazhenkova and 

Kozhevnikov, 2020[12]). Thus, to be collectively intelligent, a group needs a variety of perspectives but also 

a means of integrating them to produce better ideas or decisions and to act upon them. 
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Box 6.1. Cognitive styles and collective intelligence 

Cognitive styles refer to consistencies in an individual’s manner of acquiring and processing information 

(Ausburn and Ausburn, 1978[13]). Research in the 1970s argued for a visual-verbal cognitive style 

dimension (Richardson, 1977[14]; Paivio, 1979[15]). However, neuroscience research demonstrates that 

the visual areas of the brain divide into two distinct pathways: the object (ventral) and the spatial (dorsal) 

pathways (Ungerleider and Mishkin, 1982[16]). Furthermore, researchers have documented a trade-off 

in the abilities associated with processing in these areas; individuals with above-average object 

visualisation abilities (such as artists) tend to have below-average spatial visualisation abilities. The 

inverse is true for those with above-average spatial visualisation abilities (scientists). 

These observations led to the identification of two different cognitive styles associated with visualisation 

(i.e. object visualisation and spatial visualisation) in addition to the verbalisation cognitive style. In the 

past two decades, research has demonstrated these cognitive styles can be identified in children as 

young as eight years of age. They are also associated with related abilities and preferences for 

associated academic subjects (Blazhenkova, Becker and Kozhevnikov, 2011[17]).  

A self-report survey instrument, the Object-Spatial Imagery and Verbal Questionnaire  (Blazhenkova 

and Kozhevnikov, 2008[18]) has been developed and validated as a reliable measure of individual 

cognitive style in adults. A companion version has been developed for children (Blazhenkova, Becker 

and Kozhevnikov, 2011[17]). Items include statements such as, “I can easily imagine and mentally rotate 

three-dimensional geometric figures” as an indicator of spatial visualisation. Another statement is 

“When reading fiction, I usually form a clear and detailed mental picture of a scene or room that has 

been described” as an indicator of object visualisation. 

In teams, diversity in cognitive styles has important implications for collaboration and collective 

intelligence. Teams with insufficient cognitive style diversity lack the abilities and perspectives to reach 

the highest levels of collective intelligence (Aggarwal et al., 2019[7]). Conversely, teams with high levels 

of cognitive style diversity can struggle to collaborate effectively (Woolley et al., 2008[19]; Aggarwal and 

Woolley, 2013[20]). This occurs because of different approaches taken by individuals with different 

cognitive styles to organise information and solve problems (Blazhenkova and Kozhevnikov, 2020[12]).  

Highly cognitively diverse teams could be supported to collaborate effectively (Woolley et al., 2007[21]; 

Woolley et al., 2008[19]). However, this requires knowing the cognitive style strengths of all team 

members and helping them match members to the best task and roles. Artificially intelligent systems 

could be designed to sense the cognitive styles of individuals and represent information in a format best 

suited to their strengths. In addition, such systems could make cognitive style differences apparent to 

team members and aid in “translating” between them to facilitate co-ordination. For example, a strong 

verbaliser might be trying to convey a project plan through long prose to a team member who is a strong 

spatial visualiser. Such a system could help the verbaliser translate the prose into a schematic or a 

diagram. Conversely, the same system could also sense when a team was too homogenous in cognitive 

style. It would thus prompt them to consider alternative approaches or seek other inputs to broaden 

their options. In these ways, artificial social intelligence could play an important role in both creating 

and facilitating diverse perspectives in teams. 

There is evidence to suggest that racial diversity is beneficial for CI. Chikersal et al. (2017[22]) found that 

CI was higher when partners were of different ethnic backgrounds. In that study, the researchers examined 

facial expression synchrony, or the degree to which partners were mirroring the positivity or negativity of 

each other’s facial expressions during their interaction. They found CI was higher in pairs with greater 

synchrony in facial expressions. The level of racial diversity of each pair enhanced synchrony in facial 

expressions. This is likely because people exhibit increased attention to interaction partners who are of a 
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different race. They are more likely to attend to information they supply (Phillips and Loyd, 2006[23]) and 

process information more carefully in their presence in general (Sommers, 2006[24]). This heightened 

attention can translate into higher CI levels.  

Group process 

In addition to the characteristics of the people in the group, interaction processes in which group members 

engage advance CI. In the last few decades, there has been growing recognition that team cognition plays 

an essential role in enabling effective teamwork (DeChurch and Mesmer-Magnus, 2010[25]). Similarly, 

Gupta and Woolley (2021[26]) recently articulated a Transactive Systems Theory of Collective Intelligence. 

It describes the interconnected memory, attention and reasoning systems that operate at the individual 

and collective levels to enable the emergence of CI.  

These transactive cognitive systems give rise to three observable group processes: the group’s level of 

effort, their task strategy and their use of member knowledge and skill (Hackman, 1987[27]). Effort relates 

to the total amount of work that members put towards their collective task. Task strategy encompasses a 

group’s decisions regarding aspects of its work. This includes what gets completed first and what tasks to 

divide among members versus what tasks to do all together, etc. Use of member knowledge and skill 

captures a group’s proficiency at achieving agreement between relative member skills and their 

contributions to work on a task. Groups that make better use of member talents achieve higher levels of 

CI. Groups that engage in higher levels of effort, who engage in better task strategies, and who use the 

specific knowledge and skills of members more effectively develop higher levels of CI. Each of these 

pathways to CI suggest specific ways in which AI might be developed to enhance CI, as will be discussed 

further below. 

Measuring collective intelligence 

The primary approach to measuring CI in teams focuses on capturing group performance on a variety of 

group tasks that require different modes of interaction for completion. A group’s performance scores across 

a diverse battery of tasks then leads to an inference about the group’s CI. This approach is modelled after 

the traditional psychometric approach to measuring intelligence in individuals. 

A measurement battery should incorporate tasks that are sufficiently diverse to draw an inference of CI. 

Diversity is more important for the collaboration processes needed for completion than for content. 
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Identifying task types 

Figure 6.1. McGrath’s Group Task Circumplex 

 

Source: Adapted from McGrath (1984[28]).  

Several different task taxonomies have been proposed to capture and describe the essential differences 

in the types of tasks groups are asked to perform. McGrath’s Group Task Circumplex (see Figure 6.1); 

(McGrath, 1984[28]), for example, articulates four major types of tasks: generate, choose, negotiate and 

execute. These types vary in terms of the degree to which they require collaboration versus resolution of 

conflicting preferences. “Generate” tasks require teams to think as broadly and divergently as possible to 

develop a wide range of ideas. “Choose” tasks, by contrast, require groups to pool information or 

perspectives to converge on the single best or correct answer. “Negotiate” tasks require the resolution of 

conflicting objectives for group members to arrive at a solution that works best for the group. “Execute” 

tasks require the careful co-ordination of physical inputs to accomplish a specified product as quickly and 

accurately as possible.  

In addition to sampling task types, the level of task interdependence needed for the team to accomplish 

the task successfully should vary in a diverse battery. In the context of teamwork, one major driver of task 

complexity is the level and number of interdependencies a task involves (Thompson, 1967[29]; Steiner, 

1972[30]; Wageman, 1995[31]). The inference of CI in a group is most strongly supported by evidence that 

the group can handle tasks of varying complexity.  

Thompson (1967[29]) conceptualises three levels of interdependence (see Figure 6.2). This framework 

specifies the ways in which task contributors must combine their efforts to accomplish a task.  

“Reciprocal” interdependence is the highest level. Here, the final product cannot be traced back to the 

inputs of any one member. The solution to a complex problem often results from reciprocal 

interdependence. Different contributors provide different perspectives or pieces of information that get 

combined synergistically. 

“Sequential” interdependence represents an intermediate level. Here, each member works on and hands 

off their work to another member, who passes it down the line (e.g. a typical factory assembly line).  
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Figure 6.2. Interdependence of group members’ intelligence 

 

“Pooled” is the lowest level. Here, each member works relatively independently and then contributes their 

part to a shared product (e.g. independently written book chapters in an edited volume, which are typically 

assembled with little to no interaction among authors).  

The task types identified in the McGrath Group Task Circumplex can vary in their level of interdependence. 

For instance, “generate” tasks are generally best completed primarily using pooled interdependence; such 

tasks benefit from a broader range of divergent perspectives; however, there can be problems for which 

members need to integrate knowledge to generate solutions, which would involve higher levels of 

interdependence. “Choose” and “execute” tasks can also vary in the interdependence employed. A choose 

task completed with pooled interdependence could be an election or a crowd prediction of a future event 

such as a stock price. A choose task completed with sequential interdependence would benefit from 

multiple reviewers checking and correcting, such as a complex math problem. A choose task completed 

with reciprocal interdependence might be a hiring decision, where many different individuals need to give 

input and integrate information.  
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Box 6.2. Task types, interdependence and the workplace 

Most jobs in organisational settings involve a variety of task types and interdependence levels. The 

number of different task types or interdependence levels vary by job type. For instance, a custodian’s 

job might consist mostly of execute tasks. It could involve a small amount of decision making 

(i.e. choose) and maybe some occasional planning or creative problem solving (i.e. generate), 

conducted mostly with pooled or sequential interdependence with co-workers. A management position 

might incorporate more task types and more variation in interdependence. In these roles, individuals 

frequently shift across task types (e.g. developing options, making a choice, negotiating with others). 

They also shift between independent work and highly collaborative, reciprocally interdependent work. 

Performance in complex jobs, particularly those requiring ongoing learning of new functions, is shown 

to be the most strongly correlated with measures of individual intelligence and cognitive ability (Schmidt 

and Hunter, 1998[32]; Murphy, 1989[33]). Complex jobs involve a high level of social skill to facilitate high 

interdependence. Wages for these kinds of jobs have grown significantly faster over the last four 

decades than for jobs that require technical skills alone (Deming, 2017[34]). 

Developing test items 

The Test of Collective Intelligence (TCI) (Riedl et al., 2021[35]; Kim et al., 2017[6]) aims to sample different 

task types that vary in levels of interdependence. It also includes items that tap into both verbal and 

non-verbal content. The latter has become a larger priority over time. The inclusion of more non-native 

English speakers in studies suggested the CI of a group might be underestimated if all test items depended 

too much on facility with English.  

The Platform for Online Group Studies (POGS), a web-based platform, facilitates the administration of the 

TCI. It enables collaborators to work together from anywhere in the world, seeing the work of their fellow 

group members in real time. POGS regulates how much time groups work on each task and provides a 

chat feature to facilitate co-ordination. Administering the tasks on the platform enables the capture of 

detailed information about each member’s activities. This allows for a more accurate calculation of process 

measures in evaluating how different collaboration behaviours contribute to CI (Riedl et al., 2021[35]). 

“Generate” items 

Many standard examples of items from the “generate” quadrant of the McGrath Group Task Circumplex 

resemble standard brainstorming tasks. This is true as well for items on the TCI that tap into this quadrant. 

Figure 6.3 provides a verbal example; others in the TCI battery are more mathematical (i.e. brainstorm 

equations that satisfy specified constraints). Groups do best on tasks of this type when members work 

relatively independently to come up with as broad a range of ideas as possible. This finding is consistent 

with extant research on group brainstorming [e.g. Paulus and Yang (2000[36])]. Groups are scored based 

on both the number of unique ideas generated and the creativity of their ideas. Creativity is measured 

based on how often the same idea appears within the corpus of ideas submitted by groups across all 

samples.  
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Figure 6.3. Brainstorming task for the “generate” quadrant of the McGrath Group Task Circumplex 

 

Note: A screenshot from the Platform for Online Group Studies (POGS). 

Some “generate” tasks in the TCI vary in the level of interdependence required. For instance, some 

problems require that ideas later in the list incorporate information from the prior item in the list (e.g. use 

one of the same numbers in the equation). This then requires groups to work with at least a sequential, if 

not reciprocal, level of interdependence to generate a large list of ideas effectively. 

“Choose” items 

Common examples of tasks in the TCI related to the “choose” category resemble problem-solving and 

decision-making tasks used in a variety of studies of both individual and team performance. Some of these 

involve problems with demonstrably correct answers, such as unscrambling a word or solving a puzzle. 

Others involve matters of judgement, such as rating the quality of poems or photographs.  

Many “choose” tasks can be completed by groups using pooled or sequential interdependence. For 

example, members may independently suggest an answer and the group goes with the one favoured by 

most (pooled). In another scenario, a member attempts to solve the problem and others review it afterward 

to check their work (sequential). Some “choose” tasks require reciprocal interdependence, such as a 

Sudoku puzzle designed to permit more than one solution; any one member’s choice of number has 

implications for the numbers other members select in the grid. 
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Figure 6.4. Suduko task for the “choose” quadrant of the McGrath Group Task Circumplex 

 

Note: A screenshot from the Platform for Online Group Studies (POGS). 

“Negotiate” items 

As described above, “negotiate” tasks involve the resolution of conflicting motives. In these cases, an 

action that would provide better rewards for one member might compromise the outcomes of other 

members of the group or the group as a whole, and vice versa. A number of behavioural economics games 

facilitate the operationalisation of such situations, such as the minimum effort game (Anderson, Goeree 

and Holt, 2001[37]). In this game, each member chooses from a set of options without communicating with 

other members. Their payoff is determined based on the combination of their choice and the lowest choice 

of anyone else in the group. If they can trust other members to choose the highest number (i.e. 5), then 

they can win the maximum points. However, if they choose 5 and anyone chooses 1, they lose points (see 

Figure 6.5). This type of game creates incentives for co-operation; in some other games, such as “the 

prisoner’s dilemma”, individuals are rewarded for defecting. 

Figure 6.5. Minimum effort game for the “negotiate” quadrant of the McGrath Group Task 
Circumplex 
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“Execute” items 

Tasks that fall into the ”execute” category typically involve carefully co-ordinated psychomotor movements 

so the team can quickly and accurately complete a specified task. In the TCI, for example, team members 

need to retype a given text as quickly as possible into a shared online document. Members need to be 

careful not to type over each other or to skip over large blocks of text; missing text results in loss of points. 

In a variation meant to increase interdependence, different members can only type specified words, which 

forces team members to work together more closely in reproducing the text. 

Box 6.3. The psychometric structure of collective intelligence 

In their initial studies, Woolley et al. (2010[4]) found strong evidence of a single general factor in the 

performance scores of teams performing tasks sampled from existing team task taxonomies, such as 

the McGrath Group Task Circumplex. That factor was replicated in subsequently published studies 

(Engel et al., 2014[5]; Meslec, Aggarwal and Curşeu, 2016[38]; Kim et al., 2017[6]; Aggarwal et al., 

2019[7]). Some researchers have raised questions about the factor structure of collective intelligence 

(CI), questioning if there is truly a single factor or rather multiple factors (Barlow and Dennis, 2016[39]; 

Credé and Howardson, 2017[40]). Others have also raised questions about the size of the role of 

individual intelligence (Bates and Gupta, 2017[41]).  

A more recent analysis illustrated the group process was more than twice as important for predicting CI 

as individual skills. Riedl and colleagues (2021[35]) meta-analytically examined data from 22 different 

samples, including more than 1 300 teams that worked on a range of tasks such as those above. Their 

dataset included detailed process information describing how team members worked together on the 

tasks, as well as what level of skill each member possessed for working on the tasks independently. 

While they showed group process to be over twice as important as individual skills for predicting CI, 

they also identified variance in the degree to which team process predicted performance on different 

individual tasks of different types compared to individual skills. This suggested that studies showing a 

larger role for individual ability tended to oversample types of tasks that depend more upon individual 

skill. Furthermore, Riedl et al. (2021[35]) found that individual characteristics such as social 

perceptiveness were influential because they led teams to engage in the processes most strongly 

predictive of CI. In addition, it appears that whether a single factor or multiple factors of CI emerge 

depends on some methodological choices. These include whether one team member or multiple team 

members can record answers to problems simultaneously, and whether all task types are represented 

in the battery used to measure CI. 

Using artificial intelligence to enhance collective intelligence 

Can technology be used to enhance human group CI? Given the important role of group process and 

individual skill in creating CI, the answer is almost certainly “Yes”.  

Technological tools could enhance both individual skill and group process in a variety of ways. Gupta and 

colleagues (2019[42]) have experimented with “digital nudges”. Like other types of nudges (Thaler and 

Sunstein, 2009[43]), digital nudges are subtle changes in a digital environment that make it more likely that 

people will make certain choices over others – in this case, choices about how to do that results in group 

processes resembling those known to enhance CI.  

In their studies, the researchers deployed “bots” and other tools to prompt teams to consider critical aspects 

of group process. For example, a bot facilitator would ask the team questions that would lead them to 

consider whether they were using information about which member was good at what in deciding how to 
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divide a task, or whether they had co-ordinated their task strategy to cover all parts of the task. The 

researchers found that technological nudges helped encourage some group processes, particularly those 

related to getting groups to use information about individuals’ skills and abilities in structuring work.  

In a similar study, Glikson et al. (2019[8]) found that use of a digital nudge that provided feedback about 

the relative effort of members enhanced group CI. This was especially true in teams with members who 

were low in conscientious. The nudge effectively served as a “conscience” to help lesser-contributing 

members realise they needed to increase their effort.  

Given the consistent role of characteristics related to social intelligence in advancing group CI, another 

avenue for enhancing CI might be to help improve the social and communications skills of collaborators. 

How much these abilities can be enhanced in individuals is an ongoing debate. Some researchers have 

shown efficacy of interventions in improving individual skills in these areas through training (Kidd and 

Castano, 2013[44]; Hodzic et al., 2018[45]; Kotsou et al., 2019[46]). Others question that evidence (Panero 

et al., 2016[47]; Panero et al., 2017[48]; Kidd and Castano, 2017[49]). 

In still other areas, researchers are experimenting with technological tools to augment individuals’ natural 

ability to pick up on social cues. This helps individuals interpret otherwise ambiguous situations [e.g. Voss 

et al. (2016[50])]. Therefore, as technology develops, CI may be enhanced in the context of 

human-computer systems. Specifically, AI might enable technology to augment the individual skills and 

group collaboration processes that enable CI to emerge. 

Using collective intelligence to evaluate or enhance artificial intelligence 

Can the same approach to evaluating CI also be used to assess AI capabilities? Arguably, such an 

approach could complement perspectives on evaluating the utility of AI. This section explores the role of 

production and co-ordination technologies, and artificial social intelligence (ASI) in diagnosis and 

assessment. 

Production and co-ordination technologies 

Much of the work to date on AI has focused on development of production technologies. These are 

technologies designed to produce more accurate or higher-quality output more effectively or efficiently than 

traditional approaches. Decision aids that improve medical diagnoses or autonomous vehicles that can 

drive more safely than humans are examples of production technologies.  

Some argue that developing AI as a co-ordination technology has even more potential for enhancing CI. 

Such technology operates by co-ordinating and combining the inputs of other contributors. Examples that 

exist today include shared ride systems such as Uber or Lyft, or social network platforms that connect 

people with similar interests or complementary needs. As we think about evaluating and increasing the 

level of intelligence in technology, we might consider the types of tasks and levels of interdependence the 

technology can facilitate as an important indicator. High levels of intelligence would be evident in 

technology that could sense that different group members had conflicting goals or preferences and help 

resolve them or facilitate problem solutions requiring high levels of knowledge integration. Such a capability 

will only become possible as the field of AI makes progress in developing artificial social intelligence. 

Artificial social intelligence 

The next frontier in AI is artificial social intelligence (ASI) – the capacity of technology to pick up on the 

knowledge, beliefs, goals and emotions of users to anticipate their needs or potential response to events. 

To facilitate high CI, an ASI system would need to perform several kinds of functions that humans with 

high levels of social and emotional intelligence perform naturally. A high-functioning ASI technology would 
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accomplish this by facilitating collective memory, attention and reasoning processes (Gupta and Woolley, 

2021[26]).  

ASI enhances collective memory by: 

 sensing the skills and abilities of the human participants 

 suggesting roles based on ability 

 conducting or facilitating information transfer so that all participants know who is doing what and 

have the relevant information for their task. 

ASI enhances collective attention by: 

 reallocating work if some members are overloaded while others are underutilised 

 helping manage the work cue based on group priorities 

 drawing the group together to discuss tasks or problems as needed. 

ASI enhances collective reasoning by: 

 sensing when individual teammates are feeling frustrated, unmotivated or distracted, and 

intervening or prodding the team to address it 

 sensing when participants are annoyed with or ignoring the ASI system itself and altering its 

approach accordingly.  

Groups in which collective memory, attention and reasoning are functioning at a high level are 

characterised by several factors. They demonstrate a strong ability to match member skills with tasks and 

roles; they co-ordinate task strategy so their work gets accomplished efficiently; and their members exhibit 

uniformly high and consistent levels of effort and commitment (Riedl et al., 2021[35]; Gupta et al., 2019[42]). 

The intelligence level of an ASI agent or system could be tested by its ability to enhance CI in human 

groups working across a range of different tasks and levels of interdependence. Specifically, it would be 

tested on its ability to enhance collective memory, attention and reasoning processes, and how well it led 

the group to exhibit optimal skill use, task strategy and high collective effort. 

Agents with ASI could play a valuable role to facilitate CI in more challenging systems. Teamwork can 

become more complicated with more members or dispersion of members across different locations. In 

these contexts, agents with ASI could help facilitate CI in ways that humans alone could not manage. ASI 

abilities would need to be tested in highly complex environments, where teams are adapting to different 

types of tasks and levels of interdependence, and the development of collective memory, attention and 

reasoning is a significant challenge. 
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This chapter describes skills typically included in large-scale educational 

assessments and discusses how such assessments can be used for 

measuring the capabilities of artificial intelligence (AI). It focuses on two 

major skill domains covered in educational assessments: core domain skills 

such as mathematics, reading and science literacy, and transversal skills 

such as problem solving, collaboration and creativity. The chapter provides 

an overview of the skills in each domain, as well as their theoretical 

underpinning and measurement. In addition, it examines the role of these 

skill domains in occupational settings by drawing links to taxonomies of skill 

requirements in the workplace. The chapter concludes with 

recommendations regarding the use of education tests for scaling AI 

capabilities.  

7.  Skills assessments in education 



   135 

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

Introduction 

Educational systems must provide environments that foster and facilitate the highly diverse skill sets 

needed for the digital world. These skill sets can generally be represented by three different skill domains. 

First, students require literacy in core domains such as mathematics, reading and science (OECD, 2017[1]). 

Second, they need skills in transversal domains that span situations and contexts such as problem solving, 

collaboration and creativity (OECD, 2013[2]; 2017[3]; 2019[4]). Finally, they need basic cognitive skills such 

as general mental ability, fluid reasoning or working memory (McGrew, 2009[5]); these are often considered 

fundamental for acquiring more complex skill sets in the other two domains.  

In response to this three-part challenge, global student assessment initiatives, such as the Programme for 

International Student Assessment (PISA), have included skills from the transversal domain in addition to 

domain-specific knowledge (OECD, 2019[6]). Transversal skills are now part of many educational 

large-scale assessments and considered important markers of educational achievement (OECD, 2013[2]; 

2017[1]; 2019[6]). However, basic cognitive skills have been included to a lesser extent. On average, 

evidence suggests that countries improve with respect to the core domain skills, but basic cognitive skills 

are malleable to a lesser extent within education. This, in turn, has lessened the interest of practitioners 

and policy makers in basic cognitive skills. 

For all the importance of developing skills in the core domains, transversal skills and basic cognitive skills, 

educational systems face another challenge. Given the emergence of artificial intelligence (AI) and 

robotics, which skills will become obsolete for humans, both as a requirement of the workforce and as an 

educational goal?  

To approach this question, a taxonomy of skills is needed to assess and scale AI-related capabilities. 

Ideally, this taxonomy will relate to skill frameworks and the tasks associated with them, for instance, from 

international large-scale assessments. It also needs to distinguish skills from core domains (OECD, 

2017[1]), transversal skills (OECD, 2013[2]; 2017[3]; 2019[4]) and basic cognitive skills (McGrew, 2009[5]).  

This chapter focuses on core domains and transversal skills, leaving basic cognitive skills for Chapter 3. 

First, it provides a brief overview of skills from core domains and the transversal domain. It also looks at 

specific skills typically assessed in education and provides a brief background on the underlying theories. 

Second, it presents assessment instruments to measure these skills with a focus on innovative and 

technology-based instruments. Drawing on these two points, it then assesses the extent to which such 

tests could assess the capabilities of AI. 

Educationally relevant skills 

Core domains and transversal skills have different theoretical backgrounds, partly due to disparate 

research traditions. Research on reading literacy (skill set: core domains), for example, originates in the 

educational and learning sciences. Conversely, research on collaborative problem solving (skill set: 

transversal domain) is largely rooted in educational large-scale assessments and social psychology. 

Although the two skill domains and the nature of the associated skills vary in complexity, they might be 

equally important for success in life. Both domains relate to recognising, interacting with and solving real-

world situations. While core domains and transversal skills are interdependent (OECD, 2014[7]), this 

chapter considers them separately for ease of interpretation and readability. 

Assessment of the two skill sets: General concepts 

There is broad consensus that the two skill sets – core domain and transversal skills – are important across 

several outcomes. Thus, there is a strong need for measurement and assessment to keep track of them 



136    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

and their development. This could include, for instance, international comparisons of educational systems 

or tracking individual student progress across grade levels.  

Several skill sets continue to be the focus of international large-scale assessments, as well as of 

comprehensive research efforts. Some examples of specific measurements appear below. However, there 

are many ways of assessing the two skill sets, including classical paper-pencil assessments and highly 

innovative computer-simulations.  

This section focuses on innovative item types and the potential of such items for assessing AI skills. 

Innovative item types often provide additional information such as behavioural patterns of students when 

working with dynamically changing problem-solving items such as MicroDYN (see Greiff and Funke 

(2009[8]); skill set of transversal skills). Similarly, navigating complex texts in an online environment such 

as digital reading items (skill set of core domain skills) can also reveal behavioural patterns.  

Specifically, the chapter considers the field of international large-scale assessments:  

 PISA (OECD, 2013[2]; 2017[1]; 2019[9]) 

 Programme for the International Assessment of Adult Competencies (PIAAC); (PIAAC Expert 

Group in Problem Solving in Technology-Rich Environments, 2009[10]); (PIAAC Literacy Expert 

Group, 2009[11]) 

 National Assessment of Educational Progress (NAEP) (National Assessment and Governing 

Board, 2019[12]; 2019[13]; 2019[14]) 

 Trends in International Mathematics and Science Study (TIMSS) (Mullis and Martin, 2017[15]) 

 Graduate Record Examination (GRE) and the SAT (formerly known as Scholastic Assessment 

Test).1 

For each of the two skill domains, this chapter describes typical skills for the respective overarching set of 

skills; provides an overview and examples of assessments that include these skills; and summarises the 

theoretical backgrounds and sub-processes for the respective skills. After these subsections, the chapter 

presents possible dimensions of a skill taxonomy in relation to scaling AI capabilities. 

Core domain skills 

The core domain skills [i.e. mathematic literacy, reading literacy, science literacy; OECD (2017[1])] focus 

on knowledge and processes closely related to scholastic domains. Although the labels for these skills are 

not consistent across assessments, they are similar and show strong overlap (Table 7.1). While definitions 

and sub-processes of each skill might differ slightly across assessments (and even across different cycles 

within one assessment), their overlap is substantial. Table 7.1 summarises the definitions of the three skills 

and their sub-processes. Additionally, it provides an overview of several other large-scale assessments 

where these skills have been assessed.  

Several frameworks exist for each of the skills, including those developed by scientific expert groups within 

PISA through expert opinions and from the scientific literature. The framework documents are constantly 

refined as the assessment cycles progress. This provides a theoretical foundation in defining the skills and 

fans out sub-processes. The frameworks also make suggestions and provide specific guidance on how 

the theoretical background can be translated into specific and actionable assessments that are ultimately 

run in the respective assessments such as PISA or PIAAC.  
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Table 7.1. A comparison of large-scale assessment frameworks 

Skill 

 

Definition Sub-process Examples of large-scale 

assessments assessing these 

skills (and labels used in the 

assessment) 

Mathematical literacy  An individual’s capacity to formulate, 
employ and interpret mathematics in 

a variety of contexts. 

 Formulate mathematics 

 Employ mathematics 

 Interpret mathematical results 

PISA (Mathematical literacy) 

PIAAC (Numeracy) 

NAEP (Mathematics) 

TIMSS (Mathematics) 

GRE (Quantitative fluid reasoning) 

SAT (Mathematics) 

 

Reading literacy  The ability to make use of written 
texts, to achieve one’s goals, to 
increase one’s knowledge and 
potential, and to participate in 

society. 

 Access and retrieve 

 Integrate and interpret 

 Reflect and evaluate 

PISA (Reading literacy) 

PIAAC (Literacy) 

NAEP (Reading) 

GRE (Verbal fluid reasoning; 

analytical writing) 

SAT (English; Languages) 

 

Science literacy  The ability to engage with science-
related issues and with the ideas of 

science. 

 Explain phenomena 

scientifically 

 Evaluate and design scientific 

enquiry 

 Interpret data and evidence 

scientifically 

PISA (Science literacy) 

NAEP (Science) 

TIMSS (Science) 

SAT (Science) 

Note: Definitions are partly direct quotes. 

Source: OECD (2017[1]). 

Figure 7.1 provides an example of a set of items (labelled “unit” in the PISA context) that assesses 

mathematical literacy, as used in the PISA 2012 cycle. The unit consists of three items in a real-world 

context. The students need to solve them by interpreting and comparing the numbers in the table and 

performing calculations themselves. More technically, they use sub-processes indicated in Table 7.1 to 

interpret mathematical results for items 1 and 2, and then to employ them for item 3. 

Figure 7.2 presents an example item assessing reading literacy in PISA 2018 (OECD, 2017[3]). Test takers 

need to reflect on and evaluate three texts on space exploration. They then write a comment on its benefits 

afterwards (i.e. employing the “reflect and evaluate” sub-process; see Table 7.1).  

Figure 7.3 displays an example item assessing science literacy in PISA 2012 (OECD, 2014[16]). Test takers 

are asked to interpret scientific information and explain why they do not support the conclusion of a fellow 

student (i.e. employing the “explain phenomena scientifically” sub-process; see Table 7.1). 
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Figure 7.1. Sample item assessing mathematical literacy 

 

Source: OECD (2014[16]). 

Figure 7.2. Sample item assessing reading literacy in PISA 2018 

 

Source: OECD (2019[9]). 
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Figure 7.3. Sample item assessing science literacy in PISA 2012 

 
 

 

Source: OECD (2014[16]). 

Transversal skills 

Transversal skills such as problem solving, collaboration, creative thinking, learning in a digital world and 

global competence are centred around two capacities (OECD, 2013[2]; 2017[3]; 2019[4]). First, they allow 

people to navigate successfully in dynamically changing environments. Second, they allow them to act 

competently both on a cognitive and a non-cognitive level in today’s world.  
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By definition, these skills are important in a variety of situations (i.e. domain-general) and involve 

adaptability and flexibility as defining parts (Griffin and Care, 2015[17]). For instance, adaptability and 

flexibility are inherent parts of problem-solving activities that require dealing with unknown situations and 

successfully choosing the right actions to solve the problem. Indeed, adaptability and flexibility are at the 

core of adaptive problem solving that is planned for the PIAAC 2022 assessment (Greiff et al., 2017[18]). 

Large-scale assessments have repeatedly focused on transversal skills. PISA 2012, for example, focused 

on creative problem solving. Meanwhile, PIAAC 2012 looked at problem solving in technology-rich 

environments, and PIAAC 2022 will look at “adaptive problem solving” (PIAAC Expert Group in Problem 

Solving in Technology-Rich Environments, 2009[10]; OECD, 2013[2]; Greiff et al., 2017[18]). PISA 2015 

assessed collaborative problem solving (OECD, 2017[3]) and PISA 2018 looked at global competence 

(OECD, 2019[9]). PISA 2022 envisages assessment of other and equally diverse transversal skills such as 

creative thinking (OECD, 2019[19]), while PISA 2025 plans to assess learning in a digital world.  

As with core domain skills, conceptual frameworks exist or are in development for each of the transversal 

skills. Again, these have been derived through expert opinions and from the scientific literature. They 

provide a theoretical foundation both in defining the skills and their sub-processes, and in guiding the 

developments of appropriate assessment instruments.  

Table 7.2 displays how frameworks from the completed cycles and drafts for the planned cycles define the 

above-mentioned transversal skills. It also displays definitions and sub-processes for the transversal skills 

of problem solving, collaboration, creative thinking, learning in a digital world and global competence on 

the basis of PISA 2012, 2015 and 2018 assessment frameworks, as well as for the draft of PISA 2022. 

Additionally, it provides an overview of the large-scale assessments where similar skills have been 

assessed or will be assessed in future cycles (comparable to Table 7.1 above).  

Again, as with the core domain skills, the sub-processes of the transversal skills displayed in Table 7.2 

largely define what items ultimately need to assess. However, unlike for core domain skills, innovative item 

formats are generally required for assessment of transversal skills. Both PISA and PIAAC typically use 

dynamic, scenario-based approaches where the assessment situation changes through actions of the test 

taker. In these scenarios, test takers are presented with a problem in a real-world setting, such as working 

out how to use a new air conditioner (see sample item presented in Figure 7.4). 

Innovative item formats provide a more realistic simulation of real-world situations. They are particularly 

relevant for scaling AI as skills in general are measured against their real-world (and less their theoretical) 

relevance. In addition, the availability of such item types has implications both for face validity and for how 

well an assessment can represent the underlying theoretical concept.  

To this end, innovative item formats come with several advantages. First, they provide dynamically 

changing and interactive environments that cannot be simulated using traditional paper-pencil formats. In 

this way, they allow for assessment of new constructs such as transversal skills [i.e. problem solving, 

collaboration, creative thinking, learning in a digital world and global competence; OECD (2013[2])]. 

Second, these innovative items can be easily constructed in divergent ways and can include direct 

simulations of complex real-world situations. As such, they allow for an increasing construct coverage 

(Greiff and Funke, 2009[8]). Third, they record the test takers’ behaviour, saving it into so-called log files 

(these come in addition to the final test score). This allows gathering of insights about the processes 

operating in solving the items (Greiff et al., 2016[20]). Finally, as innovative item formats allow to simulate 

everyday situations, they offer increasing face validity and engagement, and increased ecological validity 

(Greiff and Funke, 2009[8]).  

  



   141 

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

Table 7.2. Definitions and sub-processes for five key skills in large-scale assessments 

Skill Definition Sub-process Examples of large-scale assessments 

assessing/planning to assess these 

skills (and labels used in the 

assessment) 

Problem solving The ability to engage in cognitive 
processing to understand and resolve 
problem situations where a solution is not 

immediately obvious. 

 Explore and understand the 

problem. 

 Represent and formulate a mental 

model of the problem. 

 Plan and execute strategies to 

solve the problem. 

 Monitor and reflect the progress 

made in solving the problem. 

PISA (Creative problem solving, 2012 

cycle)  

PIAAC (Cycle 1 in 2012: Problem solving 

in technology-rich environments; Cycle 2 

in 2022: Adaptive problem solving)  

Collaboration The ability of an individual to engage 
effectively in a process whereby two or 

more agents attempt to solve a problem. 

 Establish and maintain a shared 

understanding of the problem. 

 Take appropriate actions to jointly 

solve the problem. 

 Establish and maintain team 

organisation. 

PISA (2015 cycle: Collaborative problem 

solving) 

Creative thinking The ability to generate, evaluate and 
improve ideas directed towards original 
and effective solutions, advances in 
knowledge and impactful expressions of 

imagination. 

 

 Creative expression (written and 

visual). 

 Problem solving (scientific and 

social). 

PISA (2022 cycle: Creative thinking) 

Learning in a digital world Forthcoming. Forthcoming PISA (2025 cycle: Learning in a digital 

world) 

 

Global competence A combination of skills, knowledge, 
values and attitudes facilitating 
individuals to act and interact 
respectfully, successfully and in 

sustainable manner on a local, global 

and intercultural level. 

 Examine local, global and 

intercultural issues. 

 Understand and appreciate 

different perspectives and 

worldviews. 

 Interact successfully and 

respectfully with others. 

 Take responsible action towards 
sustainability and collective well-

being. 

PISA (2018 cycle: Global competence) 

Note: Definitions are partly direct quotes. 

Source: OECD (2013[2]; 2014[7]; 2019[9]; 2019[19]); PIAAC Expert Group in Problem Solving in Technology-Rich Environments (2009[10]). 

Figure 7.4 provides an example item from PISA 2012 assessment of creative problem solving (OECD, 

2014[7]). In a simulated microworld, test takers need to figure out how to use a new air conditioner without 

further instructions. To this end, they must first explore how the three input variables (i.e. top control, central 

control and bottom control) influence the outcome variables of temperature and humidity (i.e. sub-process 

“explore and understand the problem”; see Table 7.2).  

In a mental model (see bottom part of Figure 7.4), the test takers then represent how input and output 

variables are connected based on their explorations. This engages the “represent and formulate a mental 

model of the problem” sub-process; see Table 7.2). Based on this mental model, test takers derive 

strategies for solving the problem (i.e. reaching certain target values for temperature and humidity) and 

subsequently execute them (i.e. plan and execute strategies). At the same time, they monitor their 

progress (i.e. “monitor and reflect the progress” sub-process; see Table 7.2). 
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Figure 7.4. Sample item assessing problem solving in PISA 2012 

 

 

Source: OECD (2014[7]). 

Figure 7.5 displays an example item assessing collaboration in PISA 2015 (OECD, 2017[3]). The item 

requires test takers to work in teams to gather information about a fictional country named Xandar. To this 

end, the test takers need to interact with computer agents in a chat to establish and maintain a shared 

understanding of the problem. They subsequently plan and execute strategies to solve the problem 

together with team members (see sub-processes in Table 7.2). 
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Figure 7.5. Sample item assessing collaboration in PISA 2015 

 

Source: (OECD, 2017[3]). 

Role of the two skill sets in occupational settings 

This section analyses how core domain and transversal skills relate to explicit skill models in the workforce. 

It focuses on commonalities and overlap between skills in education and in the workforce. To this end, it 

introduces two skill models from the workforce (ISCO-08 and O*NET). It also connects the two skill 

domains with the two skill models to provide an overview of which skills will be important for which types 

of jobs.  

Given the focus of this chapter on scaling AI capabilities, it focuses only on skills found in education and 

relevant for the workforce. For skill requirements on the job, comprehensive skill models from the 

workforce, such as ISCO-08 (ILO, 2012[21]) and O*NET (National Center for O*NET Development, 

2020[22]), have been derived. In ISCO-08, four skill levels with increasing complexity are distinguished (see 

Table 7.3).  

  



144    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

Table 7.3. Skill levels and their description in the workforce skill model ISCO-08 

Skill level Description Example tasks requiring the skills 

1 Skills for performing simple and routine 

physical or manual tasks. 

Cleaning; carrying materials; performing 

earthworks. 

2 Skills for interacting with machines and 

information. 

Operating, maintaining and repairing 
machines and electronic devices; 
manipulating, ordering and storing 

information. 

3 Skills for performing complex technical 
and practical tasks that require extensive 

factual, technical and specialised 

knowledge. 

Resource calculations for projects; 
technical support for professionals; 

ensuring compliance with regulations 

and schedules. 

4 Skills involving complex problem solving, 

decision making and creativity. 

Understanding and communication of 
complex information; research and 

diagnose; designing buildings and 

machines. 

Note: Cell content is partly direct quotes. 

Source: ILO (2012[21]). 

In the O*NET taxonomy (National Center for O*NET Development, 2020[22]), skills are not arranged in 

levels of complexity but rather combined in six different groups (see Table 7.4). 

Table 7.4. Skill groups and their description in the workforce skill model O*NET 

Skill group Description Example skills 

1 Basic skills Mathematics; reading 
comprehension; writing; 

science. 

2 Complex problem solving Complex problem solving. 

3 Resource management Management of financial, 
material, human and time 

resources. 

4 Social skills Co-ordination; negotiation; 

persuasion. 

5 System skills Judgement and decision 
making; systems analysis; 

systems evaluation. 

6 Technical skills Equipment maintenance; 
operation and control; 

repairing. 

Note: Cell content is partly direct quotes. 

Source: National Center for O*NET Development (2020[22]). 

Table 7.5 summarises the connection of the two skill sets relevant for education (and their components) 

with the ISCO-08 levels and O*NET groups. In sum, core domain skills are relevant in almost any type of 

job according to ISCO-08 and O*NET (i.e. no isomorphic mapping). In contrast, transversal skills are mainly 

required in non-routine, cognitive occupations that are associated with higher ISCO-08 skill levels and the 

O*NET groups of complex problem solving, social skills and resource management skills. 

For the core domain skills, mathematical and reading literacy are important skills in almost any occupation 

and can therefore be linked to all ISCO-08 skill levels. However, their involvement may vary across skill 

levels. For instance, ISCO-08 Skill Level 1 requires only minimal mathematical literacy and reading literacy 

whereas Skill Level 4 requires extensive proficiency in these skills. In contrast, science literacy is only 

required at the higher ISCO-08 Skill Levels 3 and 4.  
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With respect to the O*NET taxonomy, some skills are directly allocated (labelled as mathematics, reading 

comprehension, writing and science) in the group of basic skills. However, mathematical and reading 

literacy are required for all other skills groups except for group social skills. 

Transversal skills are essential for performing non-routine cognitive tasks, and thus not required on the 

lowest ISCO-08 skill level. In general, these skills are required in ISCO-08 Skill Levels 3 and 4. However, 

collaboration and global competence might already be useful on Skill Level 3. This level includes jobs such 

as bus driver or police officer that involve social interactions and require individuals to understand their 

role and responsibilities in greater groups and society as a whole. In contrast, creative thinking is only 

connected to ISCO-08 Skill Level 4.  

Table 7.5. Integration of core domain skills and transversal skills into the workforce skill models 
ISCO-08 and O*NET 

Skill domain Skill ISCO-08 Skill level O*NET Skill group 

Core domain skills 

Mathematical literacy  1-4 Primarily basic skills, but also 
complex problem-solving skills, 

resource management skills, 

systems skills and technical skills 

 

Reading literacy  1-4 Primarily basic skills, but also 
complex problem-solving skills, 
resource management skills, 

systems skills and technical skills 

 

Science literacy  3-4 Basic skills 

 

 

Transversal skills 

Problem solving 3-4 Complex problem-solving skills 

 

Collaboration 2-4 Social skills; resource 

management skills 

 

Creative thinking 4 Basic skills 

 

Global competence 2-4 Social skills; resource 

management skills 

 

 

How to scale the capabilities of artificial intelligence? Some recommendations 

This chapter identified two sets of skills relevant for concurrent educational efforts: skills from the core 

domains and transversal skills. It has provided definitions for each of these skill sets, referenced theoretical 

frameworks and provided examples of items. It has also drawn connections to ISCO-08 and O*NET, two 

commonly used frameworks to describe demands on the job. Through these frameworks, it has shown 

that many skills relevant in education can be found, in one way or another, in taxonomies of work 

requirements. 

From a content perspective, both skill sets (and the specific skills therein) are relevant for educational 

success and beyond. The same holds for the set of basic cognitive skills covered in Chapter 3. Thus, in 

principle, all of them can be used to assess and scale the capability of AI. This is comparable to the 

assessment of the capacity of a student or educational system on different levels and skills. In fact, it is for 

good reasons that international large-scale assessments measure different dimensions to gain an 
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adequate overview. The same approach should be considered when assessing AI capabilities (i.e. looking 

at different dimensions from all available skill sets). 

In addition to a broad content coverage of different skill sets from the set of domain-specific, transversal 

and basic skills, educational tests to scale AI capabilities should consider these five recommendations. 

Recommendations  

 Select skills based on established relevance  

There is a limited number of skills towards which the capability of AI to reproduce human capabilities can 

be assessed and, subsequently, scaled. With this in mind, selection of skills should be driven by the 

available body of existing theory-driven empirical research. Moreover, it should include only skills for which 

there is a minimal level of agreement across researchers, practitioners and policy makers about their 

theoretical, empirical and curricular relevance. For instance, mathematics and science are clearly relevant 

skills that have been part of curricular teaching across the globe for decades. Conversely, transversal skills 

have accumulated less research and are not (yet) consistently included in school curricula. A hierarchy of 

skills that considers consensus on theoretical, empirical and practical levels, and curricular relevance in 

education and the workforce, will be beneficial when assessing and scaling AI-related capabilities. 

 Ensure enough high-quality items are available to measure the skill 

AI capabilities, as all other skills, should not be judged on specific items and their content but rather on 

underlying psychological constructs (so-called latent traits). To this end, assessments need sufficiently 

high numbers of items that all tap into the same construct in a reliable and valid manner. More specifically, 

this implies that empirical research has identified a set of items as reliable and valid indicators of a 

measurement. Moreover, many items are needed to allow for testing across different item contexts. This 

becomes particularly challenging when looking at scenario-based, computer-administered item types. 

Such item types are laborious to develop and so usually fewer are available, even though they are better 

representations of a real-world scenario. Thus, when choosing assessments to scale AI capabilities, 

constructs with large and empirically tested item banks should be preferred. 

 Use only skills linked to a measurement theory to scale AI-related capabilities 

Only skills for which items as the direct observable entities and the construct as the latent entity are 

explicitly linked through a measurement theory should be used to scale AI-related capabilities. Different 

measurement theories are available but most large-scale assessments use Item-Response-Theory, which 

links specific item responses to the underlying traits in a probabilistic way. The recommendation primarily 

relates to measurement theory but extends to the need for scoring rules and linking procedures that are 

clearly spelled out and theoretically justified. Linking of item banks from different studies is difficult and 

requires specific statistical procedures. It is, for instance, not possible to link items of different assessments 

empirically such as PISA or GRE, even if they theoretically claim to measure the same concept. Thus, 

skills for which measurement is rooted in an established psychological measurement theory and for which 

enough items are empirically linked to each other are preferred. 

 Ensure the underlying process towards the correct solution of item can be described 

Scaling AI capabilities is unlikely to stop at the evaluation of whether an AI algorithm can solve a particular 

item or where it stands on a dimensionally measured construct. It will be more informative to measure and 

describe at what point an AI algorithm fails in solving an item and its distance from a pre-specified goal 

(i.e. the solution). Scenario-based items usually provide information that goes beyond a correct/incorrect 

judgement of the response and bear the potential to explicate more fine-grained information. Of note, it 

would also be interesting to see whether AI can improve after receiving feedback (related to the concept 
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of formative assessment). To this end, preference should be given to assessments that provide information 

beyond the mere correctness of a response and provides data on the underlying solution process. 

 Use items to assess skills that AI can understand and perform  

Only tests that involve tasks AI can understand and that contain operators that, in principle, AI can perform 

should be used. For instance, it is not meaningful to confront an AI algorithm with a task that requires some 

physical intervention.  

The five recommendations should be carefully weighed against each other when scaling AI capabilities for 

educationally relevant skills. This exercise allows choosing a taxonomy that predicts which skills AI can 

replace and make human input – at least to some extent – superfluous.  

This is an interdisciplinary undertaking that requires substantial evaluation and great expertise. It should 

involve experts from relevant fields including education, cognitive science, computer science, AI and 

machine learning, and economy with both scientific and policy perspective. Together, they can fill such a 

taxonomy with the aim of making informed judgements on how the state of the art allows to predict the role 

of AI in education and the workforce within the next decades. 
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Notes

1 Another assessment program, the International Baccalaureate (International Baccalaureate 

Organization, n.d.[28]), is not strictly a large-scale assessment. The IB aims at equipping students with 

subject-specific as well as subject-general skills through different programs. In the Diploma Programme, 

for example, students complete three core disciplines: theory of knowledge (i.e. reflecting on the concept 

of knowledge), extended essay (i.e. conducting and reporting a piece of research), creativity, activity, and 

service (International Baccalaureate Organization, n.d.[27]). In addition, students choose one subject out of 

each of the following six subject groups: Studies in language and literature, Language acquisition, 

Individuals and societies, Sciences, Mathematics and the arts (International Baccalaureate Organization, 

n.d.[27]).  
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Phillip L. Ackerman, Georgia Institute of Technology 

This chapter makes recommendations towards an approach for comparing 

human and artificial intelligence (AI) capabilities. It stresses the need to 

compare domain knowledge and skills rather than broad, higher-order 

abilities such as intelligence. The chapter provides the theoretical and 

empirical foundations of domain knowledge and skills assessments. It 

discusses methodological challenges arising from humans’ use of tools, 

differences in learning between humans and AI, and the inaccuracy of skills 

assessments at high performance levels. Finally, the chapter proposes an 

assessment strategy that draws on tests developed for jobs subject to 

licensing examination. 

8.  Abilities and skills: Assessing 

humans and artificial 

intelligence/robotics systems 
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Introduction 

This chapter argues the pedagogical rather than the psychological method of assessment holds more 

promise for assessing the respective capabilities of human and artificial intelligence (AI)/robotics systems. 

A psychological approach assesses underlying abilities identified from research on human intelligence. 

Conversely, a pedagogical approach seeks to understand and assess specific knowledge and skills of an 

individual that allow for the successful (or unsuccessful) accomplishment of real-world tasks. The latter 

approach will usefully allow a contrast between the relevant respective capabilities of both human and 

AI/robotics systems. These knowledge and skills repertoires typically have both declarative knowledge and 

procedural knowledge components. In many cases, they also have tacit knowledge involvement [see 

(Polanyi, 1966/1983[1])]. 

The chapter provides the theoretical and empirical foundations of such assessments, especially in the 

domain of certification tests. Different types of knowledge, along with issues of tool use, learning and 

differentiating between competence and expertise are discussed. Finally, it proposes a strategy for 

developing a sampling of tests and tasks for comparative assessments.  

Intelligence assessment from psychological and pedagogical methods 

The mainstream theory and application of human intelligence/abilities assessment are fundamentally 

mismatched with assessing the adequacy of AI/robotics systems to replace human systems. This 

mismatch derives from how psychologists have explored the taxonomy of human abilities and used ability 

assessments to predict individual differences in learning and task/job performance.  

Starting with Binet and Simon (1961[2]) in 1905 and 1908, and even with Spearman (1904[3]), abilities 

researchers and practitioners have primarily sought to determine the factors underlying human capabilities 

and limitations to help develop respective tests and measurements. The results could then be used to 

predict individual differences in success or failure in future academic and occupational situations. Binet 

was interested in predicting failures of children in overall academic performance. Spearman, in contrast, 

wanted to determine the fundamental characteristics of individual differences in a general intellectual ability 

– sometimes called a “mental engine”.  

Tests and measurements derived from both approaches’ attempt to assess the underlying abilities that 

give rise to individual differences in learning and performance. However, they say little about whether an 

individual can perform any particular task beyond the tests themselves. For example, Spearman’s 

advocates commonly use the Raven’s Progressive Matrices test. This measure requires inductive 

reasoning with non-verbal test content [e.g. Burke (1958[4])]. The test has obvious limitations for predicting 

academic or job performance [e.g. Vernon and Parry (1949[5])]. Moreover, the test scores provide no useful 

information about the individual’s knowledge and skills for any other task.  

Broad intelligence tests, such as the Stanford-Binet or one of the Wechsler tests, have some advantages 

over the Raven’s test. Stanford-Binet and Wechsler provide more detailed information about a range of 

different abilities than the Raven’s test. For example, they assess spatial, verbal and math abilities, as well 

as some general/cultural knowledge.  

Yet, like the Raven’s test, the broad intelligence tests fall short in key areas. For example, they fail to 

indicate whether the examinee is good at physics, carpentry, medicine, plumbing or just about any other 

occupation. Furthermore, the design of these tests actually precludes assessment of basic literacy skills. 

Information processing tests, such as assessments of simple and choice reaction time, perception, 

attention and working memory, may attempt to determine individual differences in the “building blocks” for 

human intelligence. However, they too provide little insight into the knowledge and skills of the individual 

examinees.  
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At best, all these tests may simply predict an individual’s likelihood to succeed in an academic learning or 

occupational training programme. The tests resemble Aristotle’s depiction of a block of bronze in terms of 

“potentiality” and “actuality” (Ackerman, 2008[6]). In other words, intelligence tests only assess current 

performance (and not actual “potential”).  

However, the use of intellectual ability tests is fundamentally a matter of prediction of some criterion, such 

as future academic or occupational performance. These tests do not directly measure the knowledge, skills 

and abilities needed for any specific task, except in highly limited and artificial circumstances (e.g. mental 

arithmetic).  

The idea of “potentiality” and “actuality” can be transposed to the AI/robotics domain. A central processing 

unit and a six-axis robot arm have enormous “potential” to perform basic or advanced human tasks/jobs. 

However, their “actual” capability is limited by lack of software to guide them in such tasks. Thus, the 

discussion about potential is practically useless in determining what tasks the systems can accomplish 

today, and likely limited in predicting tasks they will accomplish tomorrow. 

The pedagogical method of intelligence assessment 

Binet referred to his method of intelligence as the “psychological method” of assessing intelligence. Such 

an approach assesses higher-order mental abilities (reasoning, memory, comprehension). He contrasted 

this with the “pedagogical method” [see Ackerman (1996[7])], which assesses “intelligence” by examining 

what the individual knows.  

The shortcomings of psychological tests have been known for more than a century. As early as the 1910s, 

when psychologists developed the first “trade” tests, they recognised the limitations of the psychological 

method for assessing current capabilities [see Chapman (1921[8])]. In the First World War, trade tests 

aimed to determine which individuals had expertise in trades such as electronics, automotive mechanics, 

butcher, cook, barber, etc. The pedagogical approach allows individuals to be assigned to a specialty and 

perform the job without additional training. These tests took a variety of approaches, including self-report 

background, open-ended tests, multiple-choice questions and hands-on performance. The key theme is 

that the tests were designed to sample the knowledge and skills of individual examinees. The most 

successful versions were those that required actual hands-on demonstration of expertise and thus a direct 

assessment of skills. 

Such techniques are still used in competence assessments (see Chapter 9). Similar assessments might 

be used across a variety of jobs/tasks1 to compare human and AI/robotics systems for at least two of the 

three major types of knowledge: declarative, procedural and tacit. These are discussed below. 

Declarative knowledge (knowing that) 

Declarative knowledge is essentially factual knowledge. In earlier eras, such information could be found in 

an encyclopaedia. Today, the search for facts on a country, historic figures, literature and so on is often 

easily accessible through an Internet search.  

Declarative knowledge may be isolated facts but can also consist of principled and organised information. 

Examples of organised information include the Periodic Table of chemical elements and classification 

systems in botany. Adler (1974[9]), for example, outlined five branches of knowledge that mainly represent 

declarative knowledge (Logic, Mathematics, Science, History and the Humanities, and Philosophy). 

A wide range of paper-and-pencil occupational certification tests is designed to assess job domain-specific 

declarative knowledge. Although multiple-choice tests are common, Carroll (1982[10]) and others have 
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discussed their limitations. Apart from their dependence on literacy/reading comprehension, these tests 

depend mainly on “recognition” of correct answers.  

Conversely, a reliance on “recall” requires deeper knowledge of human examinees and may place similar 

demands on AI/robotics systems. Other techniques have also been used, such as oral examinations and 

extensive use of photographs or physical objects (Figure 8.6).  

Figure 8.6. Selected item from Carpenter trade test 

 

Source: Chapman (1921[8]). 
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Procedural knowledge (knowing how) 

Procedural knowledge consists of sequences of actions (e.g. baking a cake, operating a table saw). In 

some cases, procedural knowledge of a sequence can be represented as declarative knowledge (e.g. a 

musical score or a recipe for a meal). However, for procedural knowledge, the action sequence must be 

performed to assess the individual’s competence.  

Thus, someone who can write down from memory the score from a Beethoven sonata could only be said 

to have declarative knowledge of the sonata. Someone who can play it competently in real time on a piano 

could be said to have procedural knowledge of the sonata (regardless of whether that person could write 

down the score). 

The task list to acquire a barber’s licence in the state of New York (United States) offers a suitable example 

of procedural knowledge assessment. Among 14 areas of job tasks, for example, the examination tests 

“haircutting techniques”. This, in turn, has the following subcomponents: “comb the head, taper the nape 

area, sideburns, top, back & sides, arching, re-drape, and prepare for finish [the hairstyle]” (Government 

of New York, 2020[11]). 

Tacit knowledge (knowing with) 

Human adults are said to have acquired various degrees of knowledge that cannot be easily subsumed 

under either declarative or procedural knowledge categories. Polanyi (1966/1983[1]) described this as “tacit 

knowing”. This kind of knowledge is not typically articulated. Frequently, it is not even accessible through 

personal introspection.  

Broudy (1977[12]) called this type of knowledge as “knowing with”. He proposed that, for educated people, 

this knowledge would be what the individual “thinks, perceives and judges with everything that he has 

studied in school, even though he cannot recall these learnings on demand” (Broudy, 1977, p. 12[12]).  

These concepts of tacit knowledge share similarities with Gestalt principles of organisation [e.g. Köhler 

(1947[13])]. However, Bransford and Schwartz (2000[14]) offer more explicit examples of tacit knowledge in 

the context of transfer of knowledge/training from one domain to another. For a discussion, see Ackerman 

(2008[6]).  

Job/task-relevant tacit knowledge may contribute to success in some occupations. However, it is not yet 

possible to develop assessments that reveal individual differences in tacit knowledge. This is mainly 

because it is difficult to articulate this type of knowledge to begin with.  

Task-independent components of tacit knowledge may exist, such as determining how to manage or 

motivate particular employees or interact with customers. However, there may also be task/job-specific 

elements, too. Ultimately, attention to this type of knowledge may be necessary to compare human and 

AI/robotic systems for effectiveness. 

Tool use 

One of the most salient elements in the human history of work has been the development and application 

of tools. The first tools augmented human muscles (e.g. the lever, pulley). The next tools augmented 

sensory and perceptual limitations (e.g. telescopes, radar). Finally, tools were developed to augment 

cognitive limitations (calculators and computers).  
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Most recently, of course, are the tools made available by the Internet. These tools provide both declarative 

knowledge of the sort available in news websites or Wikipedia. However, they also entail information 

relevant to the acquisition of procedural knowledge (such as explanatory YouTube videos).  

Historically, ability assessments have limited the availability of most tools for completion of problems. 

Notable exceptions include paper and pencil for group tests, and hand-held calculators for tests like the 

Scholastic Assessment Test (SAT) [e.g. Ackerman (2018[15])].  

Tools in occupations serve different uses. They may be required for day-to-day task completion (such as 

for a carpenter, electrician or surgeon). Tools may also serve mainly to augment individual capabilities 

(such as computerised spell checkers and grammar advisers for writing tasks).  

For many jobs, removing access to such tools might make required tasks difficult or impossible to complete. 

In these cases, individuals might need an entirely new set of skills or to relearn an old set of skills. This 

could happen, for example, if a dentist desired to diagnose the presence or absence of a cavity without 

being able to employ X-ray technology. 

On one hand, AI/robotics systems could be considered to be tools rather than agents. On the other hand, 

if AI/robotics systems are considered to be independent agents compared to humans, what would be a 

“fair” comparison? Would AI/robotics systems be assessed solely by what can be accomplished with a 

common set of “tools”? Would they be assessed without reference to other computerised sources 

(e.g. natural language processors or external databases)? It will be difficult to establish the boundary 

conditions for allowing either system to make use of tools during the assessment. 

Competence vs. expertise 

There are numerous examples of thorough assessment procedures for assessing “competence” of human 

jobs/tasks across many occupations. However, there is a significant limitation associated with using such 

assessments for comparing AI/robotics and human capabilities. This is because most competence 

assessment instruments and procedures are designed to determine whether the examinee has a 

“minimum competence” for certification.  

Such certifications range from law and health care (medical doctors, nurses, psychologists) to plumbing, 

electricians, taxi-cab drivers and practice in a variety of other occupations. Depending on the country, they 

could even include obtaining a high-school diploma. This is a reasonable threshold for determining whether 

the individual can perform a task at an acceptable level. However, when two individuals have obtained a 

passing grade, such assessments do not ordinarily determine whether one is more “expert” than the other.  

Some assessments set a higher threshold than “acceptable” performance (e.g. Board Certification for 

medical doctors in the United States). However, rather than assigning differential scores to individuals, 

these assessments mainly just raise the passing threshold to a higher standard. 

Ideally, assessments for comparing AI/robotics systems against human operators should distinguish 

between the two on continuous-graded scales. If not, they should at least be capable of reliable and valid 

assignment of categorical ratings, such as “novice, apprentice, journeyman and expert” Chapman (1921[8]). 

It may be difficult to use such assessments in a manner that allows for rank-ordering of expertise among 

human examinees. Various stakeholders (e.g. unions, individual employees) may resist disclosure of 

information beyond the certification. (For example, consider the doctor who received only a “barely 

passing” score on a Board-certification exam.) The employees may also fear the information might be used 

in ways that are deleterious or cannot be anticipated, such as when clients or customers do not know how 

to evaluate varying levels of performance on the certification exams. For example, in the United States, 

airline pilots are re-certified periodically to maintain their licences. However, in accordance with union 

agreements, all other data beyond whether they pass or fail are scrubbed after re-certification. 
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One could adapt many certification or competence assessments to assess the relative strengths and 

weaknesses of individual humans or AI/robotics systems. However, the traditional psychometric approach 

provides the maximal discrimination at the competent/not competent cut-off levels in these certification 

assessments. (In this sense, it is similar to how the original IQ tests were designed to differentiate more 

precisely at lower levels of performance. They give little attention to distinguishing among higher-ability 

individuals). Thus, a redesign of such assessments might be needed prior to use. This would remove 

ceiling-effect limitations and make more precise evaluations at the higher-end of performance. 

The “critical incident technique” (Flanagan, 1954[16]) develops/adapts assessments with greater focus on 

measuring varying levels of expertise rather than competence. This allows the measurement professionals 

to generate assessment scenarios that have historically been associated with exceptionally high/low levels 

of effectiveness for specific tasks/jobs. These scenarios can then be adapted for future assessments.  

The technique draws on descriptions of situations or scenarios with an outsized effect on the success or 

failure of a job task. From the collection of critical incidents, assessments can be designed to go beyond 

the “basic” requirements of the tasks/jobs, which typically focus on day-to-day requirements. Rather, they 

can focus on a more holistic assessment. These would look at situations that are likely to have greater 

impacts on performance than are identified through a more traditional job analysis.  

Learning 

The speed of acquisition of knowledge and skills (e.g. learning) of the respective systems is another 

consideration. The respective strengths and weaknesses of human and AI/robotics systems likely diverge 

in terms of the underlying characteristics for tasks of different learning demands.  

For some high-knowledge tasks, such as radiological diagnoses, humans can only attain successful 

performance through long and varied training and practice. Conversely, AI/robotics systems only need 

access to a substantial database to find patterns and draw accurate conclusions. As a result, humans may 

be highly limited in contrast to AI/robotics systems. 

Jobs/tasks that require relatively little training/learning for accomplishment pose an interesting contrast 

between human and AI/robotics systems. Human operators bring a basic repertoire of knowledge and 

skills to such tasks, such as sorting mail or “bussing” a restaurant table. Yet AI/robotics systems may be 

especially challenged for these same tasks.  

There is no suitable taxonomy of knowledge and skills that has a high prevalence or is nearly universal 

among human adults. It clearly runs the gamut – from gross body movements (e.g. walking, running, 

picking up widely different objects) and a variety of manual dexterity tasks (e.g. eating, bathing, cooking), 

to basic personal tool use (e.g. toothbrush, knife, fork, spoon or chopsticks) and occupational tool use 

(e.g. screwdriver, hammer). 

Similarly, although basic literacy skills are not nearly universal in many areas, humans have a wide 

prevalence of skills for recognising letters and numbers. This means many individuals can learn mail-

sorting skills without substantial investment in training. Conversely, machine learning of mail-sorting was 

a significant challenge to the early AI/robotics community. This was especially the case with hand-

addressed mail rather than mail with bar-coded address labels. In addition, most jobs/tasks also require 

understanding of natural language and other near-universal human skills. Such differences in competence 

must be considered in assessing the overall effectiveness of AI/robotics systems in comparison to human 

systems. 
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Recommendations 

The OECD wants to use taxonomies of human abilities as a starting point, presumably as a tool to provide 

the foundation for sampling of particular assessments to compare human and AI/robotics systems. 

However, the disconnection between ability taxonomies [e.g. Carroll (1993[17])] and real-world job 

knowledge/skills is a significant impediment for such an approach.  

The problem does not seem insurmountable. The following approach, followed in sequence, might be 

suitable:  

 Survey OECD countries for jobs that require explicit testing  

Survey OECD countries to find which jobs require explicit testing. Of particular interest are tests that 

combine domain-specific declarative knowledge assessments (e.g. written or oral tests) with hands-on 

procedural knowledge assessments (i.e. that require more than completion of course work or 

apprenticeship/supervised clinical hours).  

 Determine nature of analysis (jobs vs. tasks) 

Determine whether the analysis will take place at the broader level of “jobs” or the narrower level of “tasks” 

within jobs. 

 List jobs/tasks and sort by ability/skill 

Obtain a list of these jobs/tasks, and then have subject matter experts sort the jobs/tasks by similarity of 

underlying ability/skill demands.2  

 Conduct a cluster analysis 

Subject the aggregated sorting data to cluster analysis (Hartigan, 1975[18]; Arabie and Carroll, 1980[19]) to 

determine groups of similarly situated jobs/tasks.  

 Create representative set of jobs/tasks for use/adaptation 

Sample from the obtained clusters and then create a representative set of jobs/tasks from which 

certification/competence assessments can be used/adapted for comparing human and AI/robotics 

systems. 

It will not be easy to compare humans and AI/robotics head-to-head on a job level. This is because many 

jobs involve a multitude of tasks, some of which may be idiosyncratic to a particular individual and/or a 

particular day. Comparing humans and AI/robotics head-to-head will therefore likely need to start at the 

task level. At a later stage, accounting for an increasing number of tasks may approximate the majority of 

particular job requirements. 
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Notes 

1 “Jobs/tasks” is meant to capture the range of cognitively demanding activities associated with a particular occupation. 

One can consider “tasks” as the lowest-meaningful component of a job, and a “job” as typically subsuming a number 

of different tasks required of the employee. That is, in a particular job, the employee would be expected to perform a 

range of tasks. Job analysis and task analysis procedures have typically been used to decompose the requirements 

of a job into identifiable elements. These individual elements can be described at several levels of analysis. For 

example, psychologists have used many job and task analyses to hypothesise the underlying ability, knowledge and 

skill requirements for a particular occupation. 

2 Traditionally, with a set of 50 or so items to be sorted, each subject matter expert will create 8-12 sets of items that 

are conceptualised to be similar (within sets) and different (between sets). The resulting “data” for each subject matter 

expert will be a co-occurrence matrix (0’s indicate a pair of items is in different sets, and 1’s indicate the pair of items 

is in the same set). Data are then aggregated across the subject matter experts. In this way, each entry in the co-

occurrence matrix ranges from 0 (all experts agree the items are different) to n, where n represents the total number 

of experts (all experts agree the items are similar). 
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This chapter reviews the methods of competence assessment in German 

vocational education and training (VET) and discusses their suitability for 

assessing the capabilities of artificial intelligence (AI) and robotics. It 

describes how vocational competences are defined, the instruments used to 

assess them and how VET examinations are developed and administered. 

In addition, it discusses the validity and reliability of assessment instruments 

in VET, providing concrete examples of assessments. Finally, the chapter 

indicates the advantages of using VET tests for assessing AI capabilities and 

concludes with several considerations for applying VET examinations on 

machines. 

9.  Competence assessment in 

German vocational education and 

training 



   161 

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

Introduction 

Developments in artificial intelligence (AI) and robotics will have a substantial impact on future working 

environments. Technologies will partially or completely take over tasks previously performed by humans. 

Such developments will change the professional skills and competences required of future generations of 

workers.  

Which professional tasks are likely to be partially or entirely performed by AI or robotics? How can AI and 

robotics be trained to perform these tasks? What methods and tools can be used to assess their 

performance, particularly in comparison with humans? 

One approach to these questions is to review methods commonly used to train and assess competences 

in humans. These methods could then inform the training and assessment of AI and robotics. This chapter 

provides an overview of how competences are assessed in vocational education and training (VET) in 

Germany. It looks at how skills and competences are defined; methods and tools in use; and examples of 

tasks used in VET. Finally, it reflects on the suitability of these methods and tools to assess the capabilities 

of AI and robotics and offers recommendations.  

Vocational education and training in Germany 

Germany has 325 occupations that are state-recognised or deemed state-recognised under the Vocational 

Training Act (BBiG) or the Crafts Code (HwO) (BIBB, 2020[1]). Some occupations, such as in the medical 

field, are regulated in special laws (e.g. Nursing Act, Geriatric Care Act). Most vocational training 

programmes completed in Germany are based on the dual model (Baumgarten, 2020[2]). In these cases, 

the apprentices alternate between the vocational school and their respective training company with which 

they have made a contract for their training. In dual VET, framework curricula (Rahmenlehrpläne) regulate 

school-based vocational education. They provide a detailed overview over the learning fields and learning 

outcomes for each VET-occupation. In-company training is regulated by the Vocational Training Act 

(BMBF, 2019[3]) and the respective training regulations (Ausbildungsordnungen) for an occupation. Both 

the framework curricula and the training regulations are available for public inspection through the Standing 

Conference of the Ministers of Education and Cultural Affairs (KMK).  

This chapter refers primarily to dual VET since it is the most common training model in Germany.1  

Definitions of competence in German vocational education and training 

Empirical and normative definitions of competence  

The objective of VET is the acquisition of vocational competences. However, these vary on areas of 

application, and there is no uniform definition in VET (Koeppen et al., 2008[4]; Zlatkin-Troitschanskaia and 

Seidel, 2011[5]; Rüschoff, 2019[6]).This section briefly discusses definitions of vocational competences in 

different contexts to provide a framework for the illustrations of VET in Germany. A rough distinction can 

be made between empirical and normative definitions of competence. 

Empirical definitions are applied particularly when competences are to be measured. In empirical contexts, 

vocational competences are frequently described as “context-specific cognitive performance dispositions, 

which in functional terms relate to situations and requirements in certain domains” (Klieme and Leutner, 

2006[7]). Hence, they are context-specific dispositions for action (Weinert, 2001[8]; Klieme and Leutner, 

2006[7]; Rüschoff, 2019[6]). Such approaches usually aim at developing standardised assessment 

instruments. These would capture individual facets or sub-dimensions of vocational competence. In so 
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doing, they draw quantifying conclusions about the respective (sub-) competences of an individual, 

e.g. about specific knowledge or skills (Nickolaus, 2018[9]).  

Normative definitions of competence are used mostly in political and legislative debates when it comes to 

general educational objectives. Normative definitions may go well beyond the immediate work context. 

Thus, they might also consider non-occupational (e.g. societal) contexts as possible areas to apply 

vocational competences (KMK, 1996, 2007, 2011, 2017[10]; Roth, 1971[11]). Such comprehensive definitions 

are almost impossible to capture empirically due to their extensive scope. However, they are not generally 

designed with the aim of empirical measurement. Rather, they serve as an orientation framework for policy 

making and the description of educational goals such as by the Standing Conference of the Ministers of 

Education and Cultural Affairs of the Länder in the Federal Republic of Germany (KMK, 1996, 2007, 2011, 

2017[10]), the German Vocational Training Act (BMBF, 2019[3]), and the German Qualifications Framework 

for Lifelong Learning (DQR, 2011[12]; BMBF, 2013[13]).  

This difference between normative and empirical definitions has an important implication. While normative 

approaches often describe rather broad competence dimensions, empirical approaches will break these 

dimensions down into sub-dimensions to make them accessible for measurement. This distinction 

becomes relevant in the sections that follow that present both the normative frameworks of vocational 

competence and examples of different instruments for assessing competence. 

Dimensions of competence in vocational education and training 

At the policy level, the dimensions and levels of competence in German VET are largely based on the 

German Qualifications Framework (DQR, 2011[12]; BMBF, 2013[13]). This, in turn, is based on the European 

Qualifications Framework (EQF) (Cedefop, 2020[14]).  

The EQF offers a shared European reference framework to facilitate the recognition of qualifications across 

different countries and educational systems. It covers qualifications at all educational levels and in all 

education and training sub-systems. In so doing, it provides a comprehensive overview of the qualifications 

in the countries involved in its implementation.  

When applied in individual countries, the EQF is implemented in National Qualifications Frameworks that 

consider country-specific contexts and characteristics (BMBF, 2013[13]). The German Qualifications 

Framework, for example, presents a general taxonomy of competence dimensions that applies at all 

educational levels. It distinguishes between Professional Competence (Knowledge and Skills) and 

Personal Competence (Social Competence and Autonomy). It further distinguishes between eight 

educational levels – from pre-vocational training at Level 1 to a doctoral degree at Level 8 (BMBF, 2013[13]; 

DQR, 2011[12]).  

The general competence dimensions remain the same at all educational levels. However, the required 

learning outcomes increase. Thus, the complexity with which graduates at each level need to master the 

competences also increases. German VET is located either at Level 3 for occupations that require two 

years of training or at Level 4 for occupations that require 3-3.5 years of training (DQR, 2011[12]); (BMBF, 

2013[13]).  

Table 9.1 depicts the overarching competence dimensions along with the required mastery of these 

competences at Levels 3 and 4. Table 9.2 depicts an example of how these competence dimensions are 

applied to Industrial Electricians at Level 3 of the German Qualifications Framework. It also describes 

Industrial Electricians’ learning outcomes for each competence dimension (BMBF, 2013[13]). 
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Table 9.1. Competence requirements of the German Qualifications Framework at Levels 3 and 4 

Level Requirements 

Professional competence Personal competence 

Education 

(example) 

Knowledge 

Depth and breadth 

Skill 

Instrumental and 

systemic skills; 

judgement 

Social competence 

Team/  

leadership skills, 

involvement, 

communication 

Autonomy 

Autonomous 

responsibility; 

reflectiveness and 

learning 

competence 

3 

Being able to 
autonomously 
perform tasks that 
remain structured in 

some areas. 

Having extended 
general or 
professional 

knowledge. 

Having cognitive 
and practical skills 
for planning and 
processing tasks 

and evaluating them 
according to largely 
pre-determined 

criteria; transferring 

methods/results. 

Working in a group 
and occasionally 
offering support; 
helping shape the 

working 
environment; 
presenting 

processes and 
results to the 
appropriate 

recipients. 

Working 
autonomously and 
in less familiar 
contexts; appraising 

own actions and 
actions of others; 
requesting and 

selecting learning 

guidance. 

VET  

(2 years) 

4 

Being able to 
autonomously plan 
and process tasks 

in fields that are 

subject to change. 

Having deeper 
general or 
professional 

knowledge. 

Having a broad 
spectrum of 
cognitive and 

practical skills to 
autonomously 
perform tasks and 

problem solving and 
to evaluate 
processes and 

results; considering 
alternative courses 
of action and effects 

with neighbouring 
areas; transferring 

methods/solutions. 

Helping shape the 
work in a group and 
offer ongoing 

support; justifying 
processes and 
results; providing 

comprehensive 
communication on 
facts and 

circumstances. 

Setting own 
learning and work 
objectives; 

reflecting on and 
assessing these 
objectives and 

taking responsibility 

for them. 
VET  

(3-3.5 years) 

Source: Adapted from the German Qualifications Framework (DQR, 2011[12]), pp. 7-15. 
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Table 9.2. Exemplary competence dimensions for Industrial Electricians (excerpt) 

Level 

Professional competence Personal competence 

Knowledge 

Depth and breadth 

Skill 

Instrumental and systemic 

skills; judgement 

Social competence 

Team/Leadership skills, 

involvement, 

communication 

Autonomy 

Autonomous responsibility; 

reflectiveness and learning 

competence 

3 

Industrial electricians have 
an understanding of the 

interaction between 
mathematical and natural 
science contents and safety, 

economic and business 
administration, and 

environmental aspects.  

 

They have acquired 
extensive specialist 
knowledge particularly in 

electrical engineering, 
installation techniques, 
information technology, 

measuring and control 

technology.  

 

Industrial electricians are in 

possession of extended 
specialist knowledge allowing 

them to:  

 analyse electronic 
systems and test 

functions  

 plan and implement 

electrical installations 

 analyse and adapt 

control systems; roll out 

IT systems (…).” 

Industrial electricians are in 
possession of cognitive and 

practical skills which enable 
them to process and connect 
mechanical components and 

equipment and to analyse 
electrical systems and test 
functions. They can assess 

work results and provide 
transfers of methods and 

solutions.  

 

They ...  

 process, assemble and 

connect mechanical 
components and 
electrical 

manufacturing 

resources  

 measure and analyse 
electrical functions and 

systems  

 assess the safety of 
electrical installations 

and manufacturing 

resources  

 install and configure IT 

systems (…).” 

 

Industrial electricians are 
able to work in a team, 

provide mutual support, 
communicate correctly in 
technical language, help 

shape the learning and 
working environment, and 
present processes and 

results in a manner geared to 

their target group.  

 

They ...  

 work predominantly in 
a team and 

communicate, in their 
professional activity, 
using correct technical 

language both in house 
and externally with 

other people  

 apply work, time and 
learning planning 

methods  

 plan tasks within the 

team and co-ordinate 

them  

 research, procure and 

evaluate information 

 are able to present 
facts, draw up minutes, 
and use German and 

English technical terms 

(…).” 

Industrial electricians are 
able to work independently. 

Particularly when dealing 
with current-carrying 
components they act 

responsibly and carefully.  

 

They...  

 plan work processes 
and subsidiary tasks, 
taking into account 

economic and 

scheduling guidelines  

 calculate and evaluate 
material and labour 
costs, record services 

performed  

 apply customary 

requirements and take 
advantage of training 

opportunities  

 recognise their own 
training requirements 

and take advantage of 
training opportunities 

(…).” 

Source: German EQF-Referencing Report (BMBF, 2013[13]). 

Applications of competence dimensions in practice 

Comprehensive vocational competence dimensions, such as those in the German Qualifications 

Framework, must be broken into smaller sub-competences, both general and occupation-specific, to make 

them accessible for empirical assessment. General competences encompass a broad spectrum of basic 

skills related to mathematics, reading and writing or general problem solving, among others (Weinert, 

2001[8]; Klotz and Winther, 2016[15]). Occupation-specific competences are pertinent to a specific 

occupation or occupational area, for example, specific rules, principles and action patterns (Klotz and 

Winther, 2016[15]).  

Rüschoff (2019[6]) conducted a systematic review on the methods of competence assessment in German 

VET. This included both instruments used within VET examinations and those developed for research. 

The results show that most available methods and tools, roughly 60% of the instruments covered in the 

review, are focused on the assessment of occupation-specific professional competences. These include 

commercial knowledge and skills in industrial clerks (Klotz and Winther, 2015[16]) or problem-solving skills 

(e.g. error analysis/troubleshooting) in car mechatronics (Abele et al., 2016[17]; Gschwendtner, Abele and 
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Nickolaus, 2009[18]). Significantly fewer instruments, about 24%, were focused on general competences. 

Only 9% measured personal competences such as social or communicative competences (Rüschoff, 

2019[6]).  

Even if the professional competences and skills are clearly in the forefront, personal competences are 

equally relevant for most professions. The relative scarcity of instruments to assess social and 

communicative competences, then, does not indicate these competences are less important. Since these 

instruments are usually aligned with the framework curricula and training regulations, they typically 

emphasise professional aspects more than social and communicative aspects.  

Yet, social and communicative skills will likely become more important for most professions, as employees 

will focus on more complex activities that require interdisciplinary exchange. This is especially the case 

with greater automation for routine tasks. The ability to communicate in a goal-oriented manner with 

professionals from a variety of backgrounds will hence be an important skill in the future. 

Examinations in German vocational education and training 

Structure and grading of examinations 

Final examinations in (dual) VET are regulated by the Vocational Training Act or the Crafts Code (BBiG, 

§37 – §50/ §31-§40a HwO) and organised by the chambers for the respective occupations. The chambers 

appoint examination boards (Prüfungsausschüsse) and conduct the examinations. Examination boards 

consist of at least three people who are qualified experts in the profession. They must also include 

representatives of employers and employees (in equal numbers) and at least one vocational 

schoolteacher. The examination board may also obtain qualified expert opinions from third parties 

(e.g. vocational schools).  

The learning fields covered in the examinations are aligned with the framework curricula and training 

regulations for an occupation. Such an alignment and the explicit inclusion of occupational experts ensure 

that assessed competences and the occupational scenarios in the examinations correspond to industry 

practices and reflect workplace conditions.  

Examinations are structured in different examination areas. They must cover between three to five areas 

with “economics and social studies” being obligatory. Each area defines competences that apprentices 

must demonstrate and specifies certain instruments to assess them. Examinations are commonly designed 

to yield a total of 100 points across all tasks and examination areas. A very good performance or grade 

1.0 in the German system is awarded 100 points (BIBB, 2020[19]).  

Aggregated results for all final examinations held by the Chamber of Industry and Commerce (roughly 

300 000 annually) are available in their examination statistics. These statistics contain information on the 

examination areas of the individual occupations, the pass rate of the examinations and the distribution of 

grades and average scores for individual examination areas (IHK, 2021[20]). 

Development of examination tasks 

The examination tasks are developed by one of several entities: 

 the examination board 

 a task development committee put in place for a certain profession by the responsible chambers 

 a committee appointed by a chamber for a specific occupation in a federal state or region to develop 

the examination tasks, often together with a (supra-regional) development office for examination 

tasks 
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 development offices for examination questions, for example the PAL (www.stuttgart.ihk24.de/pal) 

for industrial and technical professions, the ZPA (www.ihk-zpa.de) or AkA (www.ihk-aka.de) for 

commercial professions and the ZFA (www.zfamedien.de) for professions in the printing and media 

industry. 

Development offices develop the examination tasks and carry out the examinations for a variety of different 

occupations. For example, the PAL develops examination tasks for 133 of the currently 325 recognised 

occupations in German VET (PAL, 2020[21]).  

The development offices usually hold the copyright and the exploitation rights to the examination tasks. 

For examination tasks still in use, secrecy regulations are strict. Examination tasks stemming from previous 

years can in some cases be acquired for inspection or exam preparation from the development offices.  

Types of examination tasks 

Table 9.3 provides an overview of the different types of tasks. Tasks can be written, oral or practical, and 

either closed (e.g. written multiple choice) or open (e.g. practical work assignments). The respective 

examination board decides which tasks are used; not all types of tasks are used in every examination. 

However, certain tasks are related in that the content of one requires the completion of a previous one. 

This is because many examinations are case-related. They have different tasks but refer to the same 

underlying work-related scenario and the results build on one another.  

The case-related approach makes it possible to depict complete action sequences. This, in turn, permits 

a more representative picture of the apprentices’ competences and skills in authentic work settings. For 

instance, apprentices might first complete a practical work assignment and then present and discuss the 

results. Table 9.4 depicts common and obligatory combinations of tasks. 

  

http://www.stuttgart.ihk24.de/pal
http://www.ihk-zpa.de/
http://www.ihk-aka.de/
http://www.zfamedien.de/
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Table 9.3. Types of assessment tasks in VET 

Instruments Description of the instruments Evaluated dimension(s)  

Practical tasks 

Product sample  Apprentices craft a product typical for their 
profession, e.g. a wooden product. 

 The final product 

Work sample Apprentices carry out a single professional 
activity (e.g. the provision of a service). 

 Work procedure 

Work task Apprentices carry out a complex professional 
activity. 

 Final result of the task  

 Work procedure  

Work assignment Apprentices carry out a typical assignment for 
their future profession (either in the company in 
which they receive their training or at the site of 
a customer).  

 Work procedure and/or 

 Final result of the assignment 

Oral tasks 

Case-related expert discussion Case-related expert discussions are based on a 
practical task that has either been completed 
beforehand or is described in detail as part of 
the examination. Apprentices may receive 
documents related to this practical task to 
prepare themselves and to be used during the 
discussion. 

 Understanding of backgrounds and 

contexts  

 Methodical approach 

 Quality of solutions 

 Communication skills 

Assignment-related expert discussion Assignment-related expert discussions are 
based on a professional assignment (e.g. a work 
sample) that has been completed beforehand 
and discuss procedures, problem solving and 
solutions. 

 Understanding of backgrounds and 

contexts  

 Methodical approach 

 Quality of solutions 

Situational expert discussion Situational expert discussions are based on a 
work sample or a work task and discuss 
apprentices’ procedures, problem solving and 
solutions. Situational expert discussions are held 
during the completion of work samples or work 
tasks. 

 Understanding of backgrounds and 

contexts  

 Methodical approach 

 Quality of solutions 

Conversation simulations Conversation simulations are a type of role play 
in which apprentices engage in conversations 
that are typical for their future professions. This 
can, for example, be conversations with 
customers or patients. 

 Understanding of backgrounds and 

contexts  

 Methodical approach 

 Quality of solutions 

 Communication skills 

 Customer orientation  

Presentations Apprentices hold a presentation on, for example, 
a previously completed professional work task, a 
work assignment or a typical professional 
situation and respond to questions regarding 
their presentation. 

 Methodical approach 

 Communication skills 

 Formal criteria of the presentation 

Written tasks 

Written tasks Tasks to be completed in writing are typical 
professional activities for a certain profession. 
This might cover drafting a business letter in 
commercial professions or a circuit diagram in 
technical professions. 

 Demonstration of professional 

knowledge 

 Understanding of backgrounds and 

contexts  

 Methodical approach 

 Quality of solutions 

Documenting with practice-based documents Documentations with practice-based documents 
are based on a previously completed 
professional work task, a created product or an 
assignment and documents the execution of this 
task in, for example, reports, work plans, 
operating instructions, etc. 

Practice-based documentations are drawn on to 
support the evaluation of the work and/or the 

results 

Source: Recommendation of the Main Committee of the Federal Institute for Vocational Education and Training (BIBB) on the structure and 

design of training regulations and examination requirements (BIBB, 2013[22]). 
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Table 9.4. Possible and obligatory combinations of tasks 

Types of tasks Can be combined with… Must be combined with… 

Practical tasks 

Product sample   Documenting with practice-based 

documents or 

 Presentation or 

 Assignment-related expert discussion 

 

Work sample  Documenting with practice-based 

documents or 

 Assignment-related expert discussion 

or 

 Situational expert discussion 

Work task  Written tasks or 

 Documenting with practice-based 

documents or 

 Presentation or 

 Assignment-related expert discussion 

or 

 Situational expert discussion 

Work assignment  Presentation  Documenting with practice-based 

documents  

 Assignment-related expert discussion 

Oral tasks 

Case-related expert discussion   

Assignment-related expert discussion  Product sample or 

 Work sample or 

 Work task or 

 Work assignment 

Situational expert discussion  Work sample or 

 Work task 

Conversation simulations  

Presentations  Product sample or 

 Work sample or 

 Work task or 

 Work assignment 

Written tasks 

Written tasks  Documenting with practice-based 

documents or 

 Situational expert discussion or 

 Work sample or 

 Work task or 

 Work assignment 

 

Documenting with practice-based documents   Product sample or 

 Work sample or 

 Work task or 

 Work assignment 

Source: Recommendation of the Main Committee of the Federal Institute for Vocational Education and Training (BIBB) on the structure and 

design of training regulations and examination requirements (BIBB, 2013[22]). 

Psychometric properties of assessment instruments in vocational education and 

training 

Regarding the psychometric quality of these examination tasks, one of the advantages lies in their validity. 

The validity of an assessment refers to the extent to which a method or instrument can depict the intended 

target construct (e.g. vocational competence). This can be established in a variety of ways. For example, 
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content validity addresses how well the tasks of a test cover the range of all possible tasks. Hence, it 

addresses how well the test represents the underlying construct to be assessed. The examinations aim to 

ensure content validity in two ways. First, they align examinations to the framework curricula and training 

regulations. Second, they draw on experts in the field develop and select tasks to reflect the behaviour and 

knowledge needed by apprentices in their occupation.  

A recent systematic review provides a comprehensive overview of the psychometric properties of the 

methods and instruments developed or in use in German VET (Rüschoff, 2019[6]), both in the context of 

VET examinations and in research contexts. Most instruments included in the review ensured the validity 

of the instruments through establishment of their content validity. They did this, for instance, by aligning 

the instruments with curricula and training regulations and drawing on expert ratings from the industry.  

Roughly 22% of the instruments were further subjected to a construct validation, primarily through one of 

two methods. On the one hand, their convergent validity was assessed (i.e. the relationship of the 

instrument to other instruments measuring the same construct). On the other, their discriminant validity 

was assessed (i.e. ensuring the developed instrument does not correlate [strongly] with validated 

instruments measuring different constructs). The review identified a scarcity of results on the predictive 

validity of the instruments. It is unclear whether findings regarding the predictive validity are entirely lacking 

or just not publicly available. Most instruments in the review showed good or acceptable reliability 

(Rüschoff, 2019[6]).  

An analysis of the psychometric properties of the final examinations in commercial professions in German 

VET studied the final examinations of 1768 apprentices (Klotz and Winther, 2012[23]; Winther and Klotz, 

2013[24]). The results suggest the examinations are clearly aligned with the requirements of an occupation. 

They also align with the practical training apprentices received before their examination.  

However, the relative weights of the examination areas sometimes deviate. For instance, a large part of 

the curriculum in commercial professions refers to the goods and services domain (roughly half of the 

curriculum and one-third of the practical training). Yet, only about 20% of the examination relates to this 

content (Winther, 2011[25]; Winther and Klotz, 2013[26]).  

The analyses also indicated that reliabilities of the tasks used in commercial final examinations are 

sufficiently high. However, reliabilities differed by apprentices’ ability levels. The examinations were 

especially reliable for test takers with average ability levels (with scores centred around the mean). They 

were somewhat less reliable for apprentices with either very high or very low ability levels (Winther and 

Klotz, 2013[26]). More detailed information on the psychometric properties of the examinations for individual 

professions is available to the respective chambers and is considered when tasks are to be reused. 

Exemplary examination tasks for Advanced Manufacturing Technicians 

Overall structure of the examination 

The following examples provide an overview of the tasks used in an examination of Advanced 

Manufacturing Technicians at Level 4 of the German Qualifications Framework. The examples show 

excerpts of an examination held in the summer of 2017. All displayed tasks stem from the same 

examination. The tasks displayed were developed in Germany by the PAL (PAL, 2020[27]) and translated 

by the German American Chamber of Commerce of the Midwest (GACCMidwest, 2020[28]). To facilitate 

communication with an international readership, only the English translation is shown here.  

The examination has a practical part, an oral part and a written part. As is common, the examination is 

case-related, meaning the different parts revolve around a typical professional scenario. In this case, they 

involve the construction and use of a disk separator. When completing the tasks, apprentices may use a 

mechanical and metal trades handbook, a collection of formulas, drawing tools and a non-programmable 
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calculator with no communication with third parties. They are further provided with a set of technical 

drawings. Figure 9.1 depicts one of seven technical drawings that were part of the examination materials. 

Figure 9.1. Example of a technical drawing forming part of the examination materials 

 

 IHK Region Stuttgart und GACC Midwest, alle Rechte vorbehalten/all rights reserved. 

Practical tasks 

In the practical component of the examination, apprentices demonstrate professional skills through the 

completion of a sequence of interrelated tasks (e.g. producing a functional module of a disk separator). 

Apprentices are provided with a functional description of the module to be produced, the setup 

requirements and the necessary drawings. They have 6.5 hours to complete the assignment. Their 

performance is evaluated according to pre-determined evaluation criteria on every sub-task. Figure 9.2 

shows an excerpt of the assignment as presented to apprentices during the examination. 

Oral tasks 

The oral part of the examination consists of situational discussions. During the practical assignment 

(i.e. while producing a functional module of a disk separator), apprentices will be asked questions related 

to the completion of the assignment. They are expected to provide short answers that show they can 

explain professional issues and hold situational expert discussions. 
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Figure 9.2. Excerpt of a work assignment for Advanced Manufacturing Technicians 

 

 IHK Region Stuttgart und GACC Midwest, alle Rechte vorbehalten/all rights reserved. 

Written tasks 

The written part of the examination has two parts. Part A consists of 23 multiple-choice questions of which 

6 are mandatory and 3 are optional. Apprentices can decide which three questions they wish to skip. Part 

B consists of eight short open questions that all need to be answered. Both parts A and B refer to the 

technical drawings provided beforehand (see Figure 9.1). Apprentices have 90 minutes to complete the 

two parts. Figure 9.3 provides examples of multiple-choice questions in part A. Figure 9.4 provides 

examples of short open questions in part B.  
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Figure 9.3. Examples of multiple-choice questions used in examinations for Advanced 
Manufacturing Technicians 

 

IHK Region Stuttgart und GACC Midwest, alle Rechte vorbehalten/all rights reserved.
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Figure 9.4. Example of a short open question used in examinations for Advanced Manufacturing 
Technicians 

 

 IHK Region Stuttgart und GACC Midwest, alle Rechte vorbehalten/all rights reserved. 

Evaluation and scoring of the results 

The practical assignment is scored in three areas:  

 performance (testing the function of the model, control technology, visual inspection of the 

mechanical module and dimensional inspection) 

 inspection (based on a test protocol) 
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 the oral situational discussion (which is deemed part of the work assignment as it is held during 

the assignment).  

Each of the three areas can yield a maximum of 100 points (with points already awarded and weighted in 

intermediate steps). In the final evaluation of the work assignment, a maximum of 100 points can be 

attained. The breakdown of points awarded is 85% for the performance phase; 10% for the test protocol; 

and 5% for the discussion phase. In the written part of the examination, each multiple-choice question 

yields 1 point, resulting in a maximum number of 20 points for part A (20 of 23 multiple-choice questions 

must be answered). Part B consists of eight short-answer questions that must all be answered. Each 

short-answer question yields 10 points, resulting in a maximum number of 80 points for part B. The divisors 

of parts A and B are 0.4 and 1.6, respectively (i.e. a maximum of 20/0.4 = 50 points for part A and a 

maximum of 80/1.6 = 50 points for part B). This gives parts A and B each 50 points or a weighting of 50% 

each. Together, apprentices can get 100 points for the written part of the examination. The practical and 

written parts of the examination each count for half of the final grade. 

Suitability of contemporary vocational education and training tests to assess 

capabilities of artificial intelligence and robotics 

Advantages of performance-based assessments  

The above review of the psychometric properties of the examination tasks in VET suggests these tasks 

are suitable for assessing vocational competences in humans. Are they equally suitable to assess 

vocational competences in machines? Addressing this question requires first understanding what the tasks 

reviewed above do and do not measure and how they differ from other assessment methods and 

instruments.  

The tasks presented above are action-oriented and inherently practical, which are advantages. With work-

related tasks, examiners can observe performance on the same behaviours (or very similar behaviours) 

that apprentices will need to demonstrate in their subsequent professions. Performance on these tasks is 

thus likely a direct predictor of later job performance.  

Although these tasks draw on observable task-related behaviour (e.g. crafting a certain product), they 

indicate more than task performance. The examinations aim to use action-oriented tasks to draw 

inferences on an underlying characteristic of the apprentices such as the competences (e.g. knowledge or 

skills) that enable apprentices to exert this task-related behaviour. Yet, in action-oriented examinations, 

the tasks themselves already have considerable meaning. They are not only abstract indicators of the 

underlying construct but also demonstrate the target behaviour. This distinguishes the action-oriented 

tasks used in VET from other tests seeking to assess underlying characteristics or constructs such as tests 

of general mental ability. Tests of general mental ability are likewise used to predict job performance and 

occupational attainments in humans (Schmidt and Hunter, 2004[29]; Bertua, Anderson and Salgado, 

2005[30]). However, they do not draw on work-related tasks to make inferences about future professional 

performance. Rather, they aim to assess general mental abilities that are expected to manifest in various 

domains, including future job performance. For example, individuals who score high on a general mental 

ability test have proven to be able to solve complex test items (observable behaviour). This observable 

behaviour is theoretically related to the concept of general mental ability. This, in turn, is assumed to relate 

to performance on other complex problem-solving tasks in real-life situations. 
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Advantages of performance-based assessments in artificial intelligence and 

robotics 

The results that hold for humans may not apply in the assessment of the capabilities of AI and robotics. 

Questions in a general mental ability test are only indicators of general intelligence. The resulting score, 

then, is not an end in itself. For example, individuals will likely attain a high score on a general mental 

ability test if they memorise the answers first. However, this score will not measure underlying general 

mental ability. Rather, it will represent their ability to memorise answers to a test. As the result would no 

longer measure general intelligence, it would also not predict outcomes beyond the immediate test. Hence, 

it would be unrelated to outcomes usually associated with higher general mental ability.  

In humans, the practice described above would be considered cheating on a test. When training an AI, 

algorithms are trained by knowing the answers in advance, at least for specialised/weak AI. Through 

repeated exposures to certain tasks or challenges, the AI is trained to solve tasks with increasing accuracy 

and efficiency. As a result, the AI’s performance will be a measure of its ability to learn the answers (or 

answering logics) to this type of test rather than of the presumed underlying characteristics (e.g. mental 

ability). Like an individual learning the answers to a test by heart, the resulting score will not be a measure 

of the intended underlying construct. Therefore, it will most likely no longer predict other outcomes typically 

associated with general mental ability because such measures gain their predictive value through links 

with other complex problem-solving skills.  

In humans, research has consistently demonstrated these links. However, to successfully apply their 

general mental ability to other problem-solving tasks, humans likely also draw on other sources of 

information. These could be basic knowledge about material objects and their properties, events and their 

effects, or beliefs and desires – what computer science calls “common sense knowledge” (McCarthy, 

1989[31]; Miller, 2019[32]). Whereas it can be assumed that humans possess this common sense knowledge, 

this is not (yet) the case in AI. Consequently, an AI trained on such tests might only be able to solve the 

questions on this type of test without allowing for inferences about their (job) performance beyond the tests. 

The tasks used in VET assess apprentices’ underlying competences through authentic professional tasks 

and requirements. In professional contexts, such work-related tasks are widely recognised as diagnostic 

instruments and are used successfully for assessment and selection (Hunter and Hunter, 1984[33]; Roth, 

Bobko and McFarland, 2005[34]; Lievens and Patterson, 2011[35]). Although practical work-related tasks 

also intend to infer underlying competences from task performance, the tasks themselves are directly 

related to vocation-specific requirements. In this way, they assess not only underlying competences but 

also vocation-specific task performance.  

Thus, training an AI to learn and reproduce specific procedures to complete a professional task or to solve 

a work-related problem would train it to perform vocation-specific tasks efficiently. However, performance 

on one task cannot or can hardly be generalised to performance on a different task or an unknown context. 

The generalisability of measures of this type of task performance are thus narrow. Still, it would be certain 

that a person (or AI) can successfully complete this specific task. 

Conclusions  

Instruments used in German VET offer several advantages that could be useful for training and assessing 

the capabilities of AI and robotics: 

 Reference to labour market requirements  

Measurements used in VET are aligned with the framework curricula and training regulations, and fall 

under the responsibility of the respective chambers. They are thus developed together with industry and 

reflect authentic labour market requirements. 
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 Performance-based measurements 

Measurements used in VET are performance-based. Performance-based measures capture competences 

through concrete professional behaviours. The assessed target behaviour has immediate relevance to 

exercise of the profession. 

 Interpretability 

Competence assessments draw strongly on psychometric procedures and aim to capture underlying 

competences. However, assessing performance on concrete vocational tasks relies far less on theoretical 

assumptions regarding underlying psychological constructs than other assessment approaches. Thus, in 

performance-based assessments, a “successfully completed” task is meaningful in itself and there is no 

need to draw inference on any underlying competences that enabled its completion.  

 Ongoing development process and topicality 

The respective chambers constantly develop and evaluate examination tasks through ongoing 

examinations. Hence, they exist for a large number of different occupations.  

In sum, training and assessing AI and robotics based on concrete work-related tasks might yield 

scientifically interesting results. Moreover, due to the strong practical orientation of the tasks, it can provide 

relevant insights for the industry when anticipating the capabilities of AI and robotics. Industry can then 

change the educational and skill requirements of their future workforce accordingly. 

Recommendations  

When seeking to select tasks to train and assess the capabilities of AI and robotics, the following points 

should be considered in this order of sequence:  

 Choose occupations that are subject to similar regulatory structures 

In German VET, there are different responsible authorities and regulations for different types of 

occupations and training. It is advisable to start with occupations that fall under similar legislation, so that 

the requirements for the occupations and the examination structures used are largely comparable. The 

majority of occupations are regulated by the Vocational Training Act (BBiG) or the Crafts Code (HwO).  

  Choose occupational areas that represent a broad spectrum of the working world  

Choose both industrial-technical and commercial professions, as well as craft trades and possibly health 

professions to represent as broad a spectrum of the working world as possible. Within these areas, a 

variety of occupations should be chosen that require different competences.  

 Choose common occupations 

The objective is to explore the future role of AI and robotics in the labour market. The most meaningful and 

relevant information will therefore be obtained by looking at occupations prevalent in today’s labour market. 

In addition, access to testing instruments will be easier for more common occupations than for less 

common ones. Statistics on the number of apprentices per occupation and year are publicly available in 

Germany (BIBB, 2019[36]).  

Against the background of representing a broad spectrum of the working world, other occupations with 

more diverse competence requirements can be selected if there is too much overlap between the most 

common occupations. 

 Cover different competence domains 
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Initially, one competence domain (e.g. skills or knowledge) can be chosen as a starting point. Ultimately, 

all relevant domains (i.e. skills, knowledge, social competences and autonomy) should be covered to give 

a comprehensive picture of AI and robotics capabilities. 

 Consider different types of tasks  

All types of tasks (i.e. practical tasks, written tasks and oral tasks) should be covered to gain a 

comprehensive picture of the capabilities of AI and robotics. Initially, only one type of task could be chosen 

as a starting point. The different types of tasks in the assessment of relevant competences are 

complementary. Consequently, all types of tasks should ultimately be considered to provide a 

comprehensive impression of the capabilities of AI and robotics.  

 Select individual tasks to be used  

As the last step, individual tasks to be used must be selected. The chambers, or the bodies commissioned 

by the chambers to develop the examination tasks, hold the rights to the examination materials. Therefore, 

materials should be obtained through the chambers.  

As some occupations stemming from the same occupational areas are also somewhat similar, they may 

overlap in their test instruments (e.g. in different sales occupations or different types of mechanic 

occupations). In such cases, tasks used across occupations within a field should be prioritised. 
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Notes

1 Other forms of training include full-time school-based training. For a more detailed overview of the overall 

German VET system, see the German Federal Ministry of Education and Research (BMBF, 2019[37]) or 

the German Office for International Cooperation in Vocational Education and Training (GOVET; 

www.govet.international). 
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David Dorsey, Human Resources Research Organization (HumRRO) 

Scott Oppler, Human Resources Research Organization (HumRRO) 

This chapter proposes an approach for comparing capabilities of human and 

artificial intelligence (AI) based on comprehensive occupational taxonomies. 

After a summary of general methodological recommendations, it describes 

four major steps of the proposed approach. As the first step, it discusses the 

identification of an occupational taxonomy and its requirements. Second, it 

proposes a strategy for sampling occupations from the taxonomy. Third, it 

provides guidance on collecting expert judgement on AI capabilities with 

regard to the selected occupations. Fourth, it considers the implications of 

data analysis from expert interviews. 

10.  An occupational taxonomic 

approach to assessing AI capabilities 
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Introduction  

This chapter proposes a four-step approach for comparing capabilities of human and artificial intelligence 

(AI) based on comprehensive occupational taxonomies. To that end, it looks to identify an appropriate 

taxonomy of human capabilities to assess and to identify available human assessments. After considering 

assumptions about design, it proposes a four-step approach to evaluate the capabilities of AI and robotics 

with regard to the world of work.  

“Work,” “skills,” “tasks,” etc. are often used in fundamentally diverse ways. Assessment developers 

typically start with a specific definition of work, usually via a job or practice analysis. This allows 

understanding of the essential underlying tasks (specific work behaviours) that comprise an occupation, 

job or position (Figure 10.1). Based on the tasks, one infers the underlying knowledge, skills, abilities and 

other key characteristics (KSAOs, or worker characteristics) needed to perform these tasks. These KSAOs 

then serve as the direct targets for assessment development.  

Assessment results can only be “valid” to the extent that they support inferences or linkages back to 

performing actual job-relevant behaviours. Therefore, developers use a variety of validation techniques to 

gather and form data-based validity arguments. In this way, they complete the inference chain back to 

“work”.  

Figure 10.1. An understanding of the work-related assessment development inference chain 

 

To build a regular programme of assessments that track development of AI capabilities and compare them 

to the distribution of human capabilities, over time, two related problems need to be solved: identifying an 

appropriate taxonomy of human capabilities to assess; and identifying available human assessments. It 

will also be necessary to sample occupations and work descriptors (rather than assessing all of them) and 

sample assessments from a limited set of occupations (based on the availability of relevant assessments). 

Assumptions and method design considerations 

There are several assumptions and key design considerations.  
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Subject matter experts will be required 

Subject matter experts (SMEs) are needed to judge whether AI can successfully perform a given work 

activity and/or correctly answer a particular assessment item. Sets of SMEs could include a combination 

of computer scientists, industrial-organisational psychologists and incumbents in the occupations to 

evaluate the capabilities of AI systems with regard to these elements. 

There is an implicit major “levels of analysis” question  

A major “levels of analysis” question is implicit in the methodology. Both human capabilities and AI 

technologies change in meaning and specificity as descriptions move from the abstract to the concrete. In 

the United States, for example, the Department of Labor’s Occupational Information Network (O*NET)1 is 

the official system for describing work at the national level. It describes the same type of work activity in 

general terms, somewhat more specific terms or very job-specific terms (Figure 10.2). Specific constructs 

implied in the activity can change at various levels of description.  

This same level of analysis question also applies to other work- and worker-oriented descriptors such as 

skills, knowledge and even aspects such as personality. At possibly the most specific level of analysis are 

individual assessment items (such as those shown in Appendix A). These are used to assess competence 

for hiring, advancement, credentialing, etc. within occupations.  

Within occupations, there are various career stages or career levels, often described as entry, journeyman, 

full performance and expert. Thus, the requirements of occupations change across career levels. The 

measurement of career levels and “career paths” is in and of itself a discrete area of practice and science 

[e.g. (Carter, Cook and Dorsey, 2011[1])].  

The capabilities of artificial intelligence can be judged against many different 

work-related descriptors 

In addition to determining the level of work description used for this research, work can be described in 

terms of a variety of descriptor types, including: 

 job characteristics (e.g. tasks, activities) 

 worker characteristics (e.g. abilities, skills) 

 occupational assessments (e.g. items on credentialing exams). 

Within the study of occupations, pre-employment conditions or requirements might correlate with 

“lower-level skills”. For example, the US Social Security Administration uses a set of “activities of daily 

living” (ADLs) to determine whether someone in a disability status can work. These include common 

activities that any self-sufficient person may be expected to perform, such as grocery shopping, dressing 

and going to work. There are various measurement approaches for determining the requirements of work 

in terms of such ADLs. 
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Figure 10.2. Levels of analysis in work descriptors 

 

Source: www.onetonline.org/. 

Significant trade-offs exist between “fidelity” and “generalisability” across 

occupations  

Within this research challenge, there is a trade-off between “fidelity” and “generalisability”. Specifically, the 

more fine-grained the information about a given occupation is, the larger the amount of this information 

gets, but it becomes harder to generalise to other occupations. For example, items on occupational 

credentialing exams tend to be specific with respect to occupations. This makes such exams an intuitive 

and presumably well-grounded basis for judging work-related capabilities pertaining to an occupation.  

However, the judgements associated with these exams have limited application to other occupations. In 

contrast, abilities and skills tend to be less specific to occupations. Therefore, judgements associated with 

them apply more readily to other occupations, given the required level of abilities and skills in the other 

occupations is known.  

As discussed above, job characteristics can range from specific tasks to more generally defined work 

activities. The latter allows judgements to apply across a wider range of occupations, assuming the 

required level in the other occupations is known. Further, the more occupationally specific the elements 

included in a judgement task are, the more judgements are required for a given occupation.  

Conversely, the less occupationally specific the elements included in the judgement task are, the fewer 

judgements are required for a given occupation. The challenge, then, is to determine the minimum level of 

occupational specificity needed to produce useful information about AI capabilities for a given occupation, 

while maximising generalisability.  

It is appealing to assume the “right” level of granularity of information for making decisions can be 

determined in advance. However, collective experience suggests this level depends heavily on the purpose 

and context of the decisions, and the ultimate use of the information. With respect to testing AI, there is 

limited prior research, calling for different approaches, via pilot testing, cognitive lab testing, etc. These are 

discussed below. 

https://www.onetonline.org/
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Worker-oriented characteristics (and related job performance) can also be divided into “can do” aspects. 

These are typically based on knowledge, skill or ability, whereas “will do” aspects focus on non-cognitive 

aspects such as motivation, personality, stress tolerance, etc. (Borman et al., 1991[2]). 

To put a fine point on the trade-offs mentioned above, specifically around the number of judgements 

needed, consider that O*NET currently contains information regarding requirements for nearly 1 000 

occupations. Taking as a prototypical credentialing exam, a given form of the widely known Society for 

Human Resource Management certification exam presents examinees with 160 items, 96 knowledge items 

and 64 situational judgement items.2  

Thus, across all occupations, credentialing exams of this type would reach an astronomical number of 

judgements (approximately 1 000 x 160 = 160 000), if they were used to assess all possible AI capabilities. 

Each of these approximately 160 000 items are likely to be specific to the occupation in question, affording 

little generalisability to other occupations.  

One alternative would be indirect generalisability via careful sampling of occupations. In this case, the 

relevance of results to other occupations could be inferred. However, if the goal is to make inferences 

about an entire economy, claims would be stronger through a direct form of generalisability evidence.  

Higher-level work descriptors, such as those on O*NET, could be a direct mechanism for generalising 

judgements about capabilities across occupations. Such an approach would not negate the use of specific 

credentialing assessment items. Instead, a methodology with various levels of information and judgements 

could gauge what can be gleaned from different levels of analysis. Moreover, using this methodology, 

specific assessment items can be linked to higher level descriptors as is often done in various forms of 

content validation. 

Proposed approach 

Given the trade-offs noted above, a four-step approach is proposed to evaluate the capabilities of AI and 

robotics with regard to the requirements of the world of work.  

Step 1: Identify an occupational information system that includes work-related 

descriptors or elements representing a range of levels of occupational specificity 

Identify an occupational information system. This needs to specify the work and worker requirements for 

a wide range of occupations. It should also specify the descriptors at different levels of occupational 

specificity, ranging from the specific to the general. O*NET could be a useful “content model” as it is made 

up of several different taxonomies regarding occupational characteristics and worker requirements.  

O*NET has two characteristics that make it particularly relevant. First, it describes occupations in terms of 

the knowledge, skills and abilities required of workers in those occupations. Second, it describes how the 

work is performed in terms of both occupationally specific tasks and work activities at three different levels 

of specificity (Detailed, Intermediate and Generalised Work Activities). O*NET also has links to Europe’s 

European Skills, Competences, Qualifications and Occupations (ESCO).3 

Step 2: Identify a sample of occupations representing a range of job families 

(e.g. manufacturing, health care) 

Identify a sample of occupations to include in the SME judgement workshops (described in Step 3). As 

noted previously, the number of occupationally specific judgements required for a single occupation can 

be quite large. This is especially true if the rated stimuli are individual test items on an occupational 

credentialing exam (which are often in the range of 150 items or more). Therefore, the number of 

occupations that can be feasibly included in the research is limited.  
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The proposed approach selects occupations as exemplars of broader job families, allowing most of the 

workforce to be represented, at least to some extent. For example, the near 1 000 occupations in the 

O*NET database are classified into 23 job families, as well as 16 broader career clusters. Therefore, one 

occupation could represent each job family (or career cluster) to help cover the range of occupations in 

today’s workforce. It would select occupations with existing (and available) credentialing exams. They 

would then be included in the expert judgement tasks as part of Step 3. 

Even working with only 16 or 23 occupations (depending on whether they have been sampled from career 

clusters or job families) would require a sizeable number of judgements on the credentialing exam items 

(i.e. 16 x 160 = 2 560). However, this is certainly more manageable than attempting to collect such 

judgements for all occupations in the workforce. Of course, if necessary, this number could be further 

reduced by grouping the job families or career clusters into a smaller number.  

Step 3: Convene subject matter experts to judge the capabilities of AI with respect 

to different sets of descriptors ranging in degree of occupational specificity 

The third step concentrates most of the effort. It collects judgements from SMEs regarding the capabilities 

of AI with respect to the various sets of descriptors in the research. There are two subcomponents to this 

step: determining which sets of descriptors and other stimuli (e.g. credentialing exam items) to collect 

judgements about; and collecting the judgements. 

Determining descriptors and stimuli 

The collection of judgements should represent a range of levels of occupational specificity to evaluate the 

trade-off between fidelity and generalisability. To that end, inferences supported by descriptors at different 

levels of occupational specificity should be compared to identify the level(s) that best manage the trade-off 

(i.e. providing the greatest fidelity, while still enabling generalisability of judgements across the greatest 

numbers of occupations).  

Using O*NET, for example, SMEs could judge AI capabilities with respect to occupational-specific tasks, 

as well as at the progressively less occupationally-specific work activities (Detailed, Intermediate and 

Generalised). There are over 20 000 occupationally specific tasks in the O*NET system. However, only 

those associated with the occupations identified for the sample (as identified in Step 2) would be included 

in the proposed data collection. In comparison, there are approximately 2 000 Detailed Work Activities, 

300 Intermediate Work Activities and 23 Generalised Work Activities, all of which would be included in the 

proposed research. 

In addition to collecting judgements for items on occupational-specific credentialing exams, it would be 

possible to collect judgements with regard to O*NET’s cross-occupational Abilities, Skills and Knowledge 

descriptors. The job requirement scales for each of these descriptors are defined in terms of tangible work 

behaviours (see Appendix A).  

Altogether, 52 abilities, 35 skills and 33 knowledge areas can be included in the data collection. Finally, 

the research should consider inclusion of descriptors representing ADLs discussed earlier. Although not 

included in O*NET, taxonomies and descriptors for ADLs exist in other sources (Edemekong et al., 2019[3]).  

Collecting judgements 

Multidisciplinary teams of SMEs should collaborate in judgements concerning AI capabilities with respect 

to the selected descriptors. These teams should comprise computer scientists with expertise in AI and 

robotics, industrial-organisational psychologists with expertise in job analysis and human performance, 

and job incumbents employed in occupations identified in Step 2. Each group would bring different, and 

important, perspectives regarding the judgements being gathered. 
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Judgement tasks could vary depending on the descriptors being considered by the SMEs. For example, 

judgements regarding the capabilities of AI systems to respond correctly to items on the 

occupational-specific credentialing exams might use an approach similar to that used to assess computer 

capabilities to respond correctly to items on the Survey of Adult Skills (PIAAC) (Elliott, 2017[4]).  

Alternative procedures might be used for judging the capabilities of AI with regard to the work-related tasks 

and activity descriptors or the abilities, skills and knowledge areas in the O*NET Content Model. For 

instance, SMEs could identify the maximum point on each O*NET scale to represent the level of activities 

at which an AI system could be expected to perform, given a specified amount of resources required for 

development.  

These judgements would be similar to those collected in standard-setting studies using the Bookmark 

method (Karantonis and Sireci, 2006[5]). In that case, SMEs are asked to identify the most difficult item on 

an assessment that a minimally qualified examinee would be likely to answer correctly.  

These judgements would not be tied to specific occupations. Therefore, they would not necessarily need 

to be collected for each individual occupation included in the sample. That said, job incumbents from a 

variety of occupations should be included in the teams. They would provide the judgements for these 

cross-occupational descriptors. They could also collect judgements regarding these descriptors from 

different groups of SMEs (each focusing on different occupations) to evaluate the extent to which they 

generalise across occupations.  

Regarding the occupationally specific tasks associated with occupations in the sample, SMEs could 

estimate the level of effort required to develop an AI system to replace (and/or potentially assist) human 

workers in performing a given task, activity or work behaviour.  

The various approaches to eliciting these judgements (using some combination of cognitive laboratories 

and pilot testing) should be evaluated before embarking on any full-scale effort to collect data. 

Step 4: Compare results associated with the different sets of descriptors (or 

combinations thereof) 

The final step would be to analyse the data collected from the SMEs to achieve two goals.  

Determine occupations primed to be replaced or aided by AI 

First, the specific occupations included in the sample would be evaluated. This would examine the extent 

to which all or portions of each occupation are primed to be replaced and/or aided by AI technology. 

Results would not likely suggest that AI could completely replace workers in any of the occupations in the 

research. However, they might point to particular types of tasks and activities that may no longer require 

human workers. More likely perhaps, they could identify the skills and abilities needed by human workers, 

given the assistance that AI might provide.  

Comparing results across the admittedly limited sample of occupations may lead to some valuable 

inferences regarding the prevalence of these potential changes. Identifying specific “job components” that 

could be done by AI would allow a search for these job components across a database like O*NET. This, 

in turn, could possibly generalise the results to new occupations. This is similar to how “job components” 

are used in synthetic approaches to validation [e.g. (Johnson and Carter, 2010[6])]. 

Evaluate judgements of AI capabilities 

Second, and perhaps more importantly, a data analysis would evaluate the extent to which the different 

sets of judgements make similar conclusions about AI capabilities.  

On the one hand, results associated with the more general descriptors could lead to similar conclusions 

as the more specific descriptions. In other words, descriptors such as skills; detailed and intermediate work 
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activities could have the same conclusions as occupational-specific tasks and items on 

occupational-specific credentialing exams. This would suggest that more general judgements could be 

applied to the other occupations.  

On the other hand, results may indicate that inferences associated with descriptors representing different 

levels of occupational specificity are not sufficiently similar to one another. This would suggest the 

continued need to collect judgements with regard to occupationally specific descriptors (job-specific tasks; 

items on credentialing exams) for those occupations of interest not included in Step 3. 

The psychometric quality of SME judgements is an additional consideration. The four steps do not include 

a separate validation of the SME judgements regarding the capabilities of AI to perform various tasks and 

activities.  

However, the data collection could be used to estimate the extent to which different SMEs (or different 

groups of SMEs) provide similar judgements about different sets of descriptors. For example, judgements 

regarding the more occupationally specific descriptors may demonstrate greater levels of inter-rater 

agreement than do the more general descriptors.  

Alternatively, the level of agreement among the ratings for the more general descriptors may be relatively 

high among SMEs in the context of a given occupation (or family of occupations). Yet these judgements 

may differ for the same descriptors collected in the context of different occupations. The design for data 

collection strategies needs to consider these possibilities. 

Consistency of judgements is a necessary aspect of psychometric quality but not enough to establish 

validity. To truly establish validity, these judgements must be compared with how AI systems carry out the 

activities that are the subject of the judgement task. Moreover, this should take place in the context of the 

specific occupations for which the judgements are being made.  

This process could potentially be expensive for occupations new to AI systems. However, it could be 

possible to include several occupations in the sample for which automated systems have begun to 

proliferate. Judgements about these occupations and systems could then be compared to judgements 

about occupations without automation. 
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Annex 10.A. Example rating scales and 
assessment items 

Figure 10.A.1. O*NET GWA rating 

 
 

Source: http://www.onetonline.org/. 

http://www.onetonline.org/
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Figure 10.A.2. O*NET skill rating 

 

Source: www.onetonline.org/. 

http://www.onetonline.org/
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Box 10.A.1. SHRM-CP practice question 

A small start-up software company realises the technology skill sets of newly hired programmers are 

more advanced than the existing programmers' skillsets. Recognising the constant business need for 

these evolving, state-of-the-art skillsets, which is the best workforce development strategy to 

implement? 

 Perform a job redesign for the existing employees that will not require new, updated skills. 

 Design a rigorous in-house training programme to get longer-tenured programmers up to speed 

with the newer programmers. 

 Partner with a local community college to offer programmers the opportunity to update their skill 

sets. 

 Offer new hires shorter-term contracts to allow for a continual hiring of programmers with the 

most up-to-date skills. 

Note: SHRM = The Society for Human Resource Management 

Box 10.A.2. ASE Mechanic engine repair practice question 

Which of the following creates a flapping sound near the front of the engine? 

 timing belt tension too tight 

 drive belt too tight 

 drive belt too loose 

 timing belt tension too loose. 

Notes

1 For an overview of O*NET, please see O*NET online at www.onetonline.org/  

2 www.shrm.org/certification/about/descriptions-of-exams/Pages/default.aspx. The full distribution of types 

of credentialing tests and their tasks in the United States is not known because no comprehensive 

inventory exists. A recent report from Credential Engine (https://credentialengine.org/counting-credentials-

2021/ ) suggests as many as 967 734 unique credentials in the United States. The report defines 

“credentials” in a different way than credentialing assessments; yet it does provide a sense of the variety. 

It highlights “occupational licences” and “occupational certifications”, which numbered about 20 000 in 

2020.a 

3 More information regarding the O*NET Content Model is available on the O*NET website at 

www.dol.gov/agencies/eta/onet. 

 

http://www.onetonline.org/
https://www.shrm.org/certification/about/descriptions-of-exams/Pages/default.aspx
https://credentialengine.org/counting-credentials-2021/
https://credentialengine.org/counting-credentials-2021/
https://www.dol.gov/agencies/eta/onet
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Part III. Artificial 

intelligence capabilities and 

their measures 
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José Hernández-Orallo, Universitat Politècnica de València 

Evaluating the capabilities of artificial intelligence (AI) has enormous 

implications in many areas, especially for the future of work and education. 

The context is also changing rapidly: the capabilities of humans and AI 

co-evolve, with scenarios of replacement, displacement or enhancement. 

Beginning with a review of several taxonomies from human evaluation and 

AI, this chapter presents a 14-ability taxonomy to identify abilities as 

potentially disassociated clusters to characterise AI systems. It explores a 

range of human tests used for decades in recruitment and education, 

contrasting them with the increasing trend towards basing AI evaluation on 

benchmarks. The chapter reviews the challenges of bringing human tests to 

evaluate AI, identifying guidelines to devise reliable tests to compare the 

capabilities of humans and AI.  

11.  Identifying artificial intelligence 

capabilities: What and how to test 
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Introduction 

This chapter analyses how the evaluation of artificial evaluation (AI) systems differs from that of other 

hardware and software systems, and how it diverges from the evaluation of human cognition – from abilities 

to skills. It covers common skill taxonomies used for humans as opposed to those used in subfields in AI. 

However, it proposes a taxonomy based on abilities since skills, knowledge and task performance, if not 

programmed specifically, must ultimately develop from abilities.1  

This chapter discusses a recently introduced taxonomy, including 14 abilities, that could be useful for both 

humans and AI. It examines measurement problems of tests for human evaluation (psychometric, 

educational and professional) and the bevy of AI evaluation platforms. Subsequently, it argues that human 

tests cannot be directly used as measurement instruments for an ability-oriented evaluation of AI.  

Nonetheless, it identifies the elements of tests that should be abandoned and those that could be reused 

for working adaptations or newly created tests. It also outlines pragmatic solutions of mapping human tests 

and AI benchmarks through the ability taxonomy. It ends with recommendations to evaluate AI systems 

more precisely to determine what they can really do. 

Future artificial intelligence roles 

Displacement vs. replacement  

Some narratives envision that AI will “replace” humans2, taking over highly skilled and enjoyable activities 

from engineering to the arts. However, with AI being around for a long time, history suggests that AI will 

first transform work, creating new kinds of occupations and tasks for humans to do on their own and to 

share with machines. For instance, the portfolio of a handful of clients handled by a human has been 

transformed into a more sophisticated framework dealing with massive portfolios of clients. Such 

transformation was made possible by machine learning models and other AI techniques such as planning, 

optimisation, natural language processing and sentiment analysis. These AI components now talk with 

customers, anticipate their behaviour, promote cross-selling and even ensure their overall satisfaction with 

the company.  

Even in cases where the whole task is seemingly automated, a deeper analysis shows that humans usually 

assume subsidiary new subtasks so the system can work. This phenomenon is not new, as when 

repurposed workers had to oil or repair a newly introduced machine. However, this kind of “incomplete 

automation” is easier to hide with cognitive tasks, which humans now do (even unpaid, such as when a 

customer orders with their phone at a “restaurant”).  

Variants of this phenomenon have been referred to as fauxtomation (Jackson, 2019[1]) or simply “human 

computation” (Von Ahn, 2008[2]; Taylor, 2018[3]). Figure 11.1 shows how the narrative of AI increasingly 

taking on more tasks than humans today is incomplete. While some new tasks are created for and only 

done by machines, humans are doing new tasks, too. 
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Figure 11.1. New tasks are done by humans, by AI and by both together 

 

In this transformation, there is displacement rather than just replacement. Human labour has not 

disappeared in areas where AI has had an important impact. Humans do different tasks, and many of them 

are new. Typically, these tasks relate to setting goals and targets, monitoring robots and other AI systems, 

adapting and integrating their decisions, and curating “training” material for AI systems. 

This narrative of displacement vs. replacement will determine the path of AI research. The prevalence of 

responsible and human-centred AI today is introducing a culture based on three factors. First, humans 

must always be in the loop. Second, humans and machines should collaborate and not compete. Third, 

machines should always be subordinate to humans.  

This vision suggests the separation between what AI will be able to do from what it will be allowed to do. 

For instance, one day it will be possible to automate most of a physician’s tasks. However, this may never 

happen because of ethical issues or mainstream social pressure. This is not new or particular to AI; the 

“human touch” is considered a special value in some domains that can already be automated 

(e.g. hand-made delicatessen). However, ethical and political decisions more than technology may 

dominate decisions about what AI can do and what is reserved for humans in the future.  

Human-machine collaboration through externalisation and extension 

Another important factor is the different forms in which humans and machine collaborate, or create new 

behaviour (Rahwan, 2019[4]). In basic “externalisation”, a human delegates a task to a machine, giving it 

the instructions, goals or input. However, humans are also integrating AI capabilities in a more coupled 

way through “AI extenders” (Hernández-Orallo and Vold, 2019[5]). For instance, most humans use 

navigational tools in their phones to go to a new address. While the tool shows the position and optimal 

routes, the human still navigates the city and ultimately decides where to go and how. In this way, the full 

cognitive process of going from position A to B is not externalised but extended.  

In general, machines complement or extend humans, rather than replace them. Humans then adapt to the 

new situation, developing new “digital” skills (e.g. using new AI apps). This means that human skills are 

changing significantly. Young people text extremely fast because they use the predictive hints given by 

their instant messaging app.  

This phenomenon – which goes beyond skills – is changing abilities as well. For instance, factual memory 

capabilities are falling because people can check any fact on the Internet. This is known as the “Google 

effect” (Bohannon, 2011[6]). Provided the technology does not fail, the new situation (and the associated 

atrophy) should be seen as empowering. When coupled with their AI extenders, humans should thus be 

considered more capable overall.  

Accordingly, as humans can do more things using tools, they should be evaluated with those tools. As 

calculators are allowed in many math exams, AI extenders should be allowed for writing, editing, drawing 

or speaking in more proficient and creative ways. Almost no one writes today without spell check or online 

access to Wikipedia. Limiting access to AI tools and extenders in tests would thus measure an unrealistic 

situation. The implications of all this for the following sections are important: 
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 Tasks humans do are changing more rapidly. 

 Human skills, and even some specific abilities, are changing. 

 Human evaluation tests are (or should be) changing. 

In a rapidly changing world fuelled by AI, tasks are going to change faster, and so will skills and knowledge. 

This affects humans but also AI. For AI to become economically advantageous over human labour, it needs 

general abilities rather than specialised skills. In this way, AI systems can learn new skills efficiently and 

autonomously, adapting faster than humans to new tasks and procedures. 

From skill lists to ability taxonomies 

Evaluating artificial intelligence through its abilities rather than task completion 

Evaluating what AI does in terms of tasks would be short-sighted, unlikely to be comprehensive and prone 

to overfitting.3 An AI or robotic system showing performance at a particular task gives poor indications of 

what other things AI can do. For instance, while computer chess reached superhuman level in the late 

1990s (Weber, 1997[7]; Campbell, Hoane and Hsu, 2002[8]), it took AI 20 years to reach human-level 

performance on other “similar” games such as Go (Silver et al., 2016[9]).  

Quite remarkably, both the chess and Go milestones used completely different approaches. Similarly, floor 

robotic cleaners have been in residential homes for quite some time, but no robot can yet clean a table full 

of objects properly. For these and other reasons, an ability-oriented4 evaluation in AI should be preferred 

over a task-oriented evaluation (Hernández-Orallo, 2017[10]; Hernández-Orallo, 2017[11]). 

While still unusual in AI, the standard approach to evaluate humans is by abilities and skills rather than 

through tasks. Specific tasks for a job, such as driving a lorry, are evaluated only occasionally. Moreover, 

this evaluation is usually accompanied with verification of some other skills, knowledge and abilities, while 

many others are taken for granted (e.g. being able to understand an order from the boss).  

Defining abilities and skills 

Before looking at taxonomies of abilities and skills, the terms should be clarified. Abilities and skills are 

sometimes used interchangeably, but skills and knowledge are more properly used for effective 

competences. For example, solving differential equations, programming in Python, playing the guitar or 

working in teams is a skill. Abilities usually refer to potential capacities related, for example, to verbal, 

spatial or metacognitive domains.  

Abilities allow humans to acquire and deploy skills and knowledge (Schuelke and Day, 2012[12]). This 

interpretation goes beyond clustering tasks into skills, and skills into abilities. Rather, it means that abilities 

allow individuals to develop skills and knowledge, which leads to further skills and, ultimately, the capacity 

to do tasks. Also, abilities in humans are stable for a significant part of the adult life. Conversely, skills are 

learnt, improved or even forgotten at different moments in the life of an individual. 

There are many taxonomies for human cognitive abilities, and some differ significantly. The 

Cattell-Horn-Carroll (CHC) taxonomy (Carroll, 1993[13]) characterises humans hierarchically (Figure 11.2). 
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Figure 11.2. Carroll’s three-stratum model 

 

Note: This model is usually known as Cattell-Horn-Carroll taxonomy. The g factor is on the top (third) level, ten broad abilities are at the second 

level, with the bottom (first) level including many more “narrow” abilities. 

The Cattell-Horn-Carroll taxonomy 

Table 11.1 describes the ten factors in stratum II of the CHC taxonomy. Some, like processing speed, are 

not really “abilities”. Rather, they are “factors” identified through techniques such as factor analysis. Their 

interpretation requires examination of their loadings, connecting with underlying tests and the lower 

stratum.  

Nonetheless, these factors capture some areas of cognition and intelligence for which humans involve 

different intrinsic mechanisms. For example, inductive inference is associated with Gf and Gc. Meanwhile, 

deductive inference is associated with Gq or neurological substrate (e.g. Gv and Ga).  

Table 11.1. Broad abilities at stratum II of Cattell-Horn-Carroll taxonomy 

Factor Ability 

Gf Fluid intelligence 

Gc Crystallised intelligence 

Gq Quantitative reasoning  

Gr Reading and writing ability  

Gm Short-term memory  

Gl Long-term storage and retrieval  

Gv Visual processing  

Ga Auditory processing 

Gs Processing speed 

Gt Reaction time/decision speed 

Developmental perspective 

Cognitive development offers a more dynamic take on what an individual can do. Piaget introduced four 

main stages in child development (Piaget, 1936[14]; Piaget, 1964[15]): sensorimotor (0-2 years), 

preoperational (2-7 years), concrete-operational (7-12 years) and formal-operational (12 and more years). 

Many variants and extensions have followed, sometimes referred to as neoPiagetian models (Morra et al., 

2012[16]).  

The developmental perspective studies how skills are built over other skills. From the perspective of 

education, the focus is on skills, as many can be acquired in some degree at any age. Conversely, abilities 

have a greater innate component and consolidate in adolescence. However, ignoring abilities altogether 

leads to poor understanding of why some individuals develop some skills better than others. 
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Taxonomies for job analysis 

The use of skills and knowledge is more common in the analysis of the workplace. Taxonomies for job 

analysis such as O*NET-SOC, ISCO and ESCO. O*NET-SOC5 includes more than 1 000 “occupational 

titles” classified into 23 major groups6, which are mostly sector-oriented (e.g. health, construction, etc.). 

ISCO7 includes more than 1 500 categories of occupations, organised into ten major groups (Table 11.2). 

ESCO8 covers about 3 000 occupations and around 13 500 skills. It is partially hierarchical. Apart from a 

sector-oriented hierarchy, it has a top hierarchy of skills that is similar but different from ISCO, including 

eight categories (Table 11.3). 

Table 11.2. Ten major groups in the ISCO occupation categories 

Code Category 

1 Managers 

2 Professionals 

3 Technicians and associate professionals 

4 Clerical support workers  

5 Service and sales workers  

6 Skilled agricultural, forestry and fishery workers 

7 Craft and related trades workers  

8 Plant and machine operators, and assemblers  

9 Elementary occupations  

0 Armed forces occupations 

Table 11.3. Eight major groups in the ESCO occupational skills 

Code Category 

S1 Communication, collaboration and creativity 

S2 Information skills 

S3 Assisting and caring 

S4 Management skills 

S5 Working with computers 

S6 Handling and moving 

S7 Constructing 

S8 Working with machinery and specialised equipment 

The cognitive ability taxonomies, developmental models and job competence classifications are derived 

from and aimed at humans. When taxonomies are derived from human populations, some elements that 

are essentially different may fall into the same human ability, simply because they are correlated in the 

human species. As well, similar elements may be separated because they are handled by different 

modules or genes in humans.  

In cognitive development, some stages seem more universal than others, but even for some animals the 

stages may differ significantly. Foals and other precocial animals can stand and run in a few hours, for 

example. Similarly, the competences and skills used for labour depend on the society and the economy at 

a particular time and culture. Neither of these human taxonomies is immediately applicable to AI. 

Domains in AI are strongly linked to underlying techniques, which have varied significantly in a few 

decades. AI typically organises its functionalities with terms such as learning, planning, recognition, 

inference, etc. To date, there is no standard taxonomy of AI skills or abilities. Areas and domains are 

typically used for textbooks and conferences or bibliometric research (Machado et al., 2018[17]; Frank, 

Wang and Cebrian, 2019[18]).  
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A taxonomy of cognitive abilities 

Taking all this into account, Hernández-Orallo and Vold (2019[5]) introduce a taxonomy of cognitive abilities, 

merging several categorisations in psychology, animal cognition and AI. To be comprehensive about all 

cognitive abilities, the methodology started with elements from all these disciplines, distilling from different 

sources: 

 Thurstone’s primary mental abilities according to factors from CHC hierarchical model (stratum II, 

Figure 11.2) 

 areas of animal-cognition research according to Wasserman and Zental (2006[19])  

 main areas in AI according to the AI Journal (as per 2017) 

 “competency” areas in AGI according to Adams et al. (2012[20]) 

 I-athlon “events” from Adams, Banavar and Campbell (2016[21]).9  

These different lists were integrated by matching synonyms and related terms, and trying to keep a 

manageable number of broad capabilities. There were tensions between both distinctiveness and 

comprehensiveness against the number of abilities. The main criterion for distinguishing between two 

abilities A and B (and not merging them) was the understanding that a system or component (either natural 

or artificial) could conceivably master one of them while failing at the other. The compromise for 

completeness was easier to find. Some elements (such as processing or decision speed in the CHC) are 

not proper abilities. In addition, some abilities related to multimodality were not explicitly included in the 

final list of 14 (e.g. olfactory processing). The current version only covers “visual” and “auditory” processing, 

being the two most representative sensory modalities.  

The taxonomy is further developed into a rubric in Martínez-Plumed et al. (2020[22]). The 14 cognitive 

abilities are shown in Table 11.4 and a number of principles behind their development are presented in 

Box 11.1. 
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Table 11.4. Cognitive abilities applicable to both humans and AI systems 

Ability Description 

MP: Memory processes 
Storage of information in an appropriate medium to be recovered at will according to some keys, queries or 

mnemonics. This covers long-term memory and episodic memory.  

SI: Sensorimotor interaction 
Perception of things, recognising patterns and manipulating them in physical or virtual environments with parts of the 

body (limbs) or other actuators, through various sensory and actuator modalities, and representations.  

VP: Visual processing 
Processing of visual information, recognising objects and symbols in images and videos, movement and content in 

the image, with robustness to noise and different angles and transformations.  

AP: Auditory processing Processing of auditory information, such as speech and music, in noisy environments and at different frequencies.  

AS: Attention and search 
Focusing attention on the relevant parts of a stream of information in any kind of modality, by ignoring irrelevant 

objects, parts, patterns, etc. Similarly, seeking those elements that meet some criteria in the incoming information.  

PA: Planning, sequential 

decision making and acting 

Anticipating the consequences of actions, understanding causality and calculating the best course of actions given a 

situation.  

CE: Comprehension and 

compositional expression 

Understanding natural language, other kinds of semantic representations in different modalities, extracting or 

summarising their meaning, as well as generating and expressing ideas, stories and positions. 

CO: Communication 
Exchanging information with peers, understanding what the content of the message needs for a given effect, 

following different protocols and channels of informal and formal communication. 

EC: Emotion and self-control 
Understanding the emotions of other agents, how they affect their behaviour and also recognising their own emotions 

and controlling them and other basic impulses depending on the situation. 

NV: Navigation 
Moving objects or oneself between different positions, through appropriate, safe routes and in the presence of other 

objects or agents, and changes in the routes. 

CL: Conceptualisation, 

learning and abstraction 

Generalising from examples, receiving instructions, learning from demonstrations and accumulating knowledge at 

different levels of abstraction. 

QL: Quantitative and logical 

reasoning 

Representation of quantitative or logical information that is intrinsic to the task, and the inference of new information 

from them that solves the task, including probabilities, counterfactuals and other kinds of analytical reasoning. 

MS: Mind modelling and social 

interaction 

Creation of models of other agents to understand their beliefs, desires and intentions, and anticipate the actions and 

interests of other agents.  

MC: Metacognition and 

confidence assessment 

Evaluation of their own capabilities, reliability and limitations, self-assessing the probability of success, the effort and 

risks of own actions. 

Source: Hernández-Orallo and Vold (2019[5]).  
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Box 11.1. Principles behind the cognitive ability taxonomy 

There are some principles behind the taxonomy in Table 11.4: 

 First, the clusters should not be informed by the categories in human or AI taxonomies only. 

Abilities should be identified as different when, with the current knowledge, they are thought to 

conceivably rely on different mechanisms (e.g. deductive and inductive inference).  

 Second, it is convenient to associate taxonomies with rubrics that determine whether a task or 

skill requires the ability. This can be understood as a representational definition and 

understanding for each ability, and not simply as a cryptical latent “factor” or a meaningless 

construct.  

 Third, developing a test that only measures one ability for every kind of subject (natural or 

artificial) is complicated. It is more practical to think of many-to-many quantitative connections 

between abilities and tests, with the advantage of reusing the results of existing tests and 

benchmarks.  

 Finally, skills must always be connected with abilities in the context of development. For 

instance, the progression of an AI system in the acquisition of elemental skills can be a good 

way to ensure the system has the abilities needed to develop the skills. 

Source: Hernández-Orallo and Vold (2019[5]). 

The above taxonomy is not static. However, it serves as a stable source to do mappings between other 

AI/human taxonomies (Martínez-Plumed et al., 2020[22]; Tolan et al., 2021[23]) and especially tests, as 

explored in the following section. 

Tests: Caveats and pathways 

Evaluating humans 

Abilities10 are usually latent variables or constructs, with tests being instruments for measuring them. 

During the 20th century, a plethora of tests was developed for evaluating humans:11 

 Psychometric tests for general abilities 

These notably include those related to IQ tests. Example: Wechsler Adult Intelligence Scale, with tests 

aggregated into four categories: verbal comprehension, perceptual reasoning, working memory and 

processing speed.12  

 Developmental tests  

These cover a series of stages for different purposes (e.g. detecting disabilities). Example: the Bayley 

scales (Bayley, 1993[24]) evaluate children from ages to 3.5 years with items in three categories: mental 

scale, motor scale and behaviour rating scale.  

 Tests for consolidated knowledge or general education skills  

These explore “attainment” or “achievement”. For instance, military psychometric tests (such as Armed 

Services Vocational Aptitude Battery) and college entrance exams (such as ACT and SAT) cover a mixture 

of abilities and skills (English, mathematics, reading, writing and science). The Bennett Mechanical 

Comprehension Test covers more specific abilities and skills. 
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 Personnel selection and certificates 

This combines psychometric tests, interviews and practical demonstrations to certify certain abilities, 

attitudes, knowledge and skills. In many countries, for instance, a driver’s licence test evaluates reaction 

time, visual acuity, knowledge and ability to judge traffic signs and rules. It combines these tests with a 

practical exam with a real car and sometimes a simulator. 

Evaluating machines 

Given the range and diversity of evaluations for humans, what can be used to evaluate machines? AI 

evaluation differs from the evaluation of many other software and hardware systems. For AI, there is 

usually no formal or procedural description of how the system must solve a goal (otherwise, the solutions 

would be programmed). Experimental evaluation then becomes more relevant in AI (from learning to 

planning) than in other areas of computer science.  

Apart from informal and subjective assessments (e.g. the Turing test), AI has rubrics and benchmarks.  

Rubrics are generally based on human assessment about the capability of the system. Unlike open 

evaluations such as the Turing test, rubrics are systematic. For instance, (Brynjolffson and Mitchell, 

2017[25]; Brynjolffson, Mitchell and Rock, 2018[26]) present a series of questions about a task (the rubric), 

giving a score that represents whether machine learning could automate the task. A recent OECD project 

(Elliott, 2017[27]) relies on subject matter experts to assess AI capabilities for three areas in the Programme 

for the International Assessment of Adult Competencies. A more general approach is based on technology 

readiness levels. Here, the rubric distinguishes different levels, from research ideas in the lab to viable 

products (Martínez-Plumed, Gómez and Hernández-Orallo, 2020[28]; Martínez-Plumed, Gómez and 

Hernández-Orallo, 2021[29]). 

Benchmarks are repositories of instances of a task (or collections of tasks) that serve as challenges for AI 

to improve on several metrics of performance. Benchmarks are undoubtedly fuelling the progress of the 

field (Hernández-Orallo et al., 2016[30]) but are still limited as valid measurement instruments. AI systems 

commonly reach superhuman performance on a benchmark but do not display the associated capability; 

the systems usually fail beyond the conditions and distribution of the benchmarks. Accordingly, many 

benchmarks are soon replaced, entering a “challenge-solve-and-replace” (Schlangen, 2019[31]) or a 

“dataset-solve-and-patch” (Zellers et al., 2019[32]) dynamic.13  

Assessing artificial intelligence with tests designed for humans 

Given these validity problems in AI evaluation, and the wide range of valid tests for humans, using tests 

designed for humans might seem a good idea for AI. There are several reasons why this is not advisable: 

1. Tests are devised as measuring instruments for a particular population. Human tests lack 

measurement invariance beyond the human population (even beyond adults).  

2. Humans are embodied agents. Many AI systems do not take the form of an agent, and sometimes 

not even the form of a system. Instead, they appear as cognitive components or modules.  

3. A single human can perform well for many tasks and tests. When AI is said to solve A and B, for 

example, this typically means that one AI system solves A and another AI system solves B. 

4. AI systems and components can be built on purpose for a task. The designers put a lot of specific 

knowledge, bias or curated training data for the particular benchmark.  

5. The behavioural traits of humans and AI overlap. AI may “conquer” more human abilities in the 

future, but AI is introducing many other new abilities (see Figure 11.1). 

6. Humans and AI differ on the resources used (e.g. data, compute, sensors) or ignore/ban 

associated human cognitive labour (e.g. labelling data, delegation to human computation). 
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The six reasons are exemplified by the use of IQ and other human intelligence tests as benchmarks for AI. 

Whenever a type of IQ problem or a battery of intelligence tests is made available for AI researchers, less 

and less time, but increasingly more computational resources are needed for a new AI system to excel at 

the tests (Hernández-Orallo et al., 2016[33]). However, this AI system can do nothing else beyond the 

particular IQ tests. Remarkably, such tests are not about knowledge and specialised skills but rather about 

human core reasoning capabilities and abstract problems. They include letter series, number series, 

Raven’s progressive matrices, odd-one-out problems, vocabulary analogies, geometric analogies, etc. The 

success of AI systems on these intelligence tests has not shown real progress in AI. It cannot be used as 

evidence that AI systems have general intelligence (Hernández-Orallo et al., 2016[30]).  

While intelligence tests are just a kind of cognitive test for humans, other human tests are also problematic 

when applied to AI (Dowe and Hernández-Orallo, 2012[34]; Hernández-Orallo, 2017[11]). For instance, AI 

challenges have used questions from educational exams, including diagrams, geometry and mathematics 

from 4th grade science exams (Clark and Etzioni, 2016[35]). The bad results were reassuring: “no system 

[came] even close to passing a full 4th grade science exam”. Good results from the Aristo Project and 

other (ensembles of) language models just three years later were labelled as “a significant milestone” 

(Clark et al., 2019[36]).  

However, the new AI solutions are not really “general question-answering” systems and cannot compare 

to a human with a similar result. Massive language models certainly solve many questions – more than 

the average human – but a closer look reveals the system is not robust to minor variations of the questions. 

Ultimately, it does not really understand the questions. In other words, the positive test results for AI on 

human tests, when compared to humans, are hugely overestimated because of overfitting.  

More promising avenues 

To avoid the recurrent problem of overfitting, some new benchmarks for AI are taking inspiration from 

human tests but have been profoundly modified or reconstructed. The tests aim to be easy for humans but 

challenging for state-of-the-art AI. However, they should not contain hidden statistical patterns or other 

artefacts that AI systems could exploit to circumvent what the inspirational tests are supposed to measure 

in humans.  

Winograd and Winogrande 

The Winograd Schema Challenge has been one of the most important attempts in this direction. It was 

presented as a collection of text comprehension questions using pronouns that must be disambiguated 

(Levesque, Davis and Morgenstern, 2012[37]). Levesque initially sought to design questions whose answer 

would show a high level of common sense reasoning around the elements appearing in the question. 

However, several AI systems have recently shown excellent performance by exploiting some statistical 

artefacts in the way the questions are generated. These systems use “clever tricks involving word order or 

other features of words or groups of words”. However, they do not really display the capabilities for 

referential disambiguation that the test is assumed to be measuring (Kocijan et al., 2020[38]).  

Winogrande is a much larger version meant to replace Winograd’s schemas. However, new language 

models have quickly reached good performance too, while still being far from general language 

understanding. This happens in all areas of AI, from natural language to machine vision. It is sometimes 

called the Clever Hans phenomenon, as AI finds alternative cues and tricks to solve the task in the same 

way as a celebrated 19th century horse did to amaze spectators (Lapuschkin et al., 2019[39]; Hernández-

Orallo, 2019[40]). Due to the Clever Hans phenomenon, the validity of many tests for AI systems is 

constantly questioned. This, in turn, provokes the “challenge-solve-and-replace” (Schlangen, 2019[31]) 

dynamics mentioned earlier. At its heart it reveals an adversarial game between AI developers (and their 

systems) and the evaluators (Hernández-Orallo, 2020[41]). Such an adversarial philosophy is intrinsic to 

evaluation and should be incorporated in the design of benchmarks and evaluation procedures.  
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New benchmarks from natural language processing 

There are several good examples of these new benchmarks in natural language processing.14 MOSAIC, 

for example, includes the adversarial generation of examples found in SWAG (Zellers et al., 2018[42]) or 

DynaBench.15 An adversarial example is modified slightly such that humans are not significantly affected, 

while AI systems fail catastrophically. Understanding how these examples must be generated for different 

kinds of AI systems can help improve the systems.  

Ultimately, if the only possible examples that make an AI system fail also make humans fail, the AI system 

may really be better than humans. At this point, the question of what the test measures, and all the 

variations of the instances that become part of the measure, can be considered. As AI systems become 

designed for the test, an adversarial mindset is needed more than for the evaluation of humans. Training 

to the test also happens for humans but to a lesser extent. 

Non-human animal tests and sandbox evaluation 

A less anthropocentric stance to the evaluation of AI looks at non-human animals. In the 1990s, for 

instance, the Cognitive Decathlon was built for DARPA's Biologically Inspired Cognitive Architecture 

programme, based on developmental tests (Mueller, 2010[43]). The battery was discontinued around ten 

years ago (Mueller et al., 2007[44]). However, in a related approach, the animal-AI environment builds on 

animal tests rather than human tests (Crosby et al., 2019[45]; Crosby et al., 2020[46]). If the adaptation of 

these tests become more common in the future, the main risk would still be overfitting the AI system to the 

test distribution, instead of really solving the constructs the test was supposed to measure.  

Sandbox evaluation provides a possible solution to overfitting. In these cases, rather than training 

instances, AI developers are provided with a “sandbox environment” to create different curricula for the AI 

system. Only when the system has been “raised” in the environment can evaluators disclose the tasks, 

and test the system, without further training or adaptation. The idea is to encourage the construction of 

systems that can master a domain, rather than mastering tasks from a distribution. The Animal-AI Olympics 

followed this philosophy (Crosby et al., 2019[45]; Crosby et al., 2020[46]). 

Expert judgement 

More immediate options to compare human and AI capabilities are needed until new tests inspired by 

human or animal evaluation or based on more fundamental principles are developed (Hernández-Orallo, 

2017[11]). A pragmatic alternative to tests is the use of human experts to assess AI capabilities through 

rubrics or other kind of questionnaires.  

Indirect mapping between job market and AI benchmarks 

Martínez-Plumed et al. (2020[22]) explore a hybrid solution that performs a mapping between AI 

benchmarks and the 14 cognitive abilities in Table 11.4. Through expert questionnaires and other 

methodologies (e.g. Delphi), a matrix of many-to-many correspondences is established between 

benchmarks and abilities. As the performance for different AI benchmarks is usually incommensurate, 

Martínez-Plumed et al. measure the intensity of research in terms of number of related papers or media 

articles. This measure, in turn, is mapped to intermediate abilities. By doing a similar mapping from abilities 

to other elements, such as occupational tasks, AI benchmarks can be linked with occupations 

(Figure 11.3).  
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Figure 11.3. Bidirectional and indirect mapping between job market (ISCO-3 specifications) and AI 
benchmarks 

 

Source: (Martínez-Plumed et al., 2020[22]). 

Bidirectional and indirect mapping is a promising approach but must be used cautiously for quantifying 

abilities. The “latent” intermediate abilities could, in principle, be mapped to other elements, such as human 

test results. However, the performance results of different benchmarks should not be aggregated; research 

intensities can be calculated for the ability but not the magnitude of the ability. This is because results at 

the leader boards for all benchmarks are about different AI systems. The systems that “solve” ImageNet 

are different from those used for Robocup. 

More importantly, even if the same general AI system is used for many of the benchmarks (e.g. a language 

model), the magnitudes of performance (the scales) are different (Hernández-Orallo and Vold, 2019[5]; 

Hernández-Orallo, 2020[41]). Indeed, 90% success in ImageNet cannot be averaged with 72% correct 

answers in Winogrande or a score of 570 points in Pacman.  

Normalising results against a human population is possible. However, the transformation should be based 

on percentiles over the human population rather than using human average performance. Moreover, this 

does not solve the scaling problem, as the relevance of each test would depend on the variance of the 

human population for that test.  

AI Collaboratory 

Some initiatives are exploring better mappings and aggregations of evaluation results for AI and humans 

to allow for meaningful comparison. One such initiative is the AI Collaboratory (Martínez-Plumed, Gómez 

and Hernández-Orallo, 2020[47]; Martínez-Plumed, Gómez and Hernández-Orallo, 2020[48]; Martínez-

Plumed, Gómez and Hernández-Orallo, 2020[49]). As part of the AI WATCH programme (Martínez-Plumed, 

Gómez and Hernández-Orallo, 2020[47]) of the European Commission, it collects and structures evaluation 

results for AI and humans, and building mappings and hierarchies.  

The AI Collaboratory is structured with a multidimensional schema. It contains information about the facts 

(the measurements) and satellite information about who is measured (the intelligent systems), what is 

measured (the tests) and how it is measured (the procedures). Each dimension is hierarchical. For 

instance, in the “who” dimension, systems can be aggregated into populations, populations into families, 

etc. In the “what” dimension, examples can be aggregated into tests, tests into batteries, etc. A taxonomy 

of abilities, as those seen in Figure 11.2 or Table 11.4, could be easily defined in the “what” dimension. 

Despite all the caveats for comparing human results with AI results, data-driven tools and meta-analyses 

are essential to understand how measurements relate to each other. 
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Recommendations 

With the dominance of the machine learning paradigm, and skills changing more rapidly, AI systems will 

likely become less specialised for particular skills and tasks to be profitable. Consequently, a taxonomy of 

abilities, such as the one shown in Table 11.4, using the principles in Box 11.1, serves as a foundation for 

the evaluation of more adaptable AI systems. There will be exceptions like testing standardised skills or 

tasks, such as driving, but more general, ability-oriented AI will be able to adapt to evolving tasks and skills 

required at home and in the workplace.  

 Develop new testing protocols and share detailed results for data-driven exploration 

It is not enough to think in terms of abilities rather than tasks, or to build new benchmarks that cover an 

ability rather than a task. Instead, new testing protocols in AI are needed that go beyond training-test, 

avoiding learning specialisation or even AI systems built for the test. Also, evaluations should consider all 

the resources and costs involved in the solution (data, compute, human computation, etc.) (Martínez-

Plumed et al., 2018[50]). Evaluation must become more iterative, more adversarial to avoid being gamed 

by AI researchers (willingly or not) (Hernández-Orallo, 2020[41]). Finally, there is a lack of meta-analysis 

and data-driven exploration of AI capabilities.  

 Use an intrinsic scale for new test designs  

Lack of common categories, and especially of commensurate scales, is a critical concern when reusing 

results from different AI benchmarks, and especially when comparing them with human tests results. New 

test designs should use an intrinsic scale, independent of the population to be tested. As an ultimate 

resource, scores could be normalised according to the distribution of human results rather than as a single 

individual or population average. AI often sets this average as a misleading threshold for “human-level 

performance”.  

 Learn from human evaluation 

Use of human tests for evaluating AI directly is not feasible for a number of reasons. However, ignoring 

human evaluation, its tests and its associated techniques would be a mistake. Such approaches offer 

lessons to learn from. They may imply a cognitive overhaul of evaluation in AI. Exploring mappings and 

meaningful aggregations that capitalise on the information from human tests and AI benchmarks is a 

worthwhile initiative. AI and robotics – and human hybridisations yet to come – deserve more than simple 

performance-based, task-oriented evaluation. 
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Notes 

 

1 The terms capability and capacity will be used more broadly, while the terms skill, knowledge and ability 

have more precise uses as follows. A skill is the "overlearned behavioural routine resulting from practice" 

(Seel, 2012[57]), which is represented by “the level of proficiency on specific tasks. It is the learned capability 

of an individual to achieve desired performance outcomes (Fleishman, 1972[52]). Thus, skills can be 

improved via practice and instruction” (Schuelke and Day, 2012[12]). Knowledge is typically used in a similar 

sense as skills but assumes a more theoretical or conceptual nature as opposed to the practical or 

actionable nature of skills. An ability "refers to a general trait, reflecting the relatively enduring capacity to 

learn tasks. Although fairly stable, ability may change over time primarily in childhood and adolescence 

through the contributions of genetic and developmental factors" (Schuelke and Day, 2012[12]). New skills 

are acquired using cognitive abilities and can build on previous skills and knowledge. See also section 3. 

2 The “Substitution, Augmentation, Modification, and Redefinition” (SAMR) model is a popular taxonomy 

covering the ways in which technology may affect tasks (Puentedura, 2006[55]; Hamilton, Rosenberg and 

Akcaoglu, 2016[53]), but the opposition of enhancement vs transformation does not work well for AI, 

especially as enhancement based on AI is usually coupled with significant modification and redefinition of 

tasks.  

3 A model or system overfits when it shows good performance for the examples seen during training (or 

examples from the training distribution) but generalises poorly for examples that are different from those 

seen during training.  

4 This has recently been rephrased as performance versus competence (Firestone, 2020[51]). 

5 www.onetcenter.org/taxonomy.html 

6 www.bls.gov/soc/2018/major_groups.htm 

7 www.ilo.org/public/english/bureau/stat/isco/  

8 https://ec.europa.eu/esco 

 

 

https://www.onetcenter.org/taxonomy.html
https://www.bls.gov/soc/2018/major_groups.htm
https://www.ilo.org/public/english/bureau/stat/isco/
https://ec.europa.eu/esco
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9 Summaries of these sources can be found in several tables and figures in Chapters 3-5 of (Hernández-

Orallo, 2017[11]). 

10 This analysis excludes non-cognitive behavioural features, such as personality traits, from the analysis, 

as their extrapolation to AI systems is even more farfetched. This does not mean that personality in 

machines has not been studied or even tried to be measured. For more information about non-cognitive 

behavioural features in machines, see (Hernández-Orallo, 2017[11]). 

11 For a summary of intelligence tests, developmental tests and attainment tests for humans, see Chapters 

3 and 12 of Hernández-Orallo (2017[11]). 

12 Most of these tests are not freely available. This is partly for commercial reasons and partly because 

having the questions in advance would lead to specialisation: humans would prepare for the test. 

13 This has happened from CIFAR10 (image classification) to CIFAR100 (Krizhevsky, 2009[54]), SQuAD1.1 

(Q&A) to SQuAD2.0, GLUE (language understanding) to SUPERGLUE (Wang et al., 2019[59]), Starcraft 

(real-time strategy) to Starcraft II (Vinyals et al., 2017[58]) and the Atari Learning Environment (ALE) 

(Machado et al., 2018[17]) to the PlayStation Reinforcement Learning Environment (PSXLE) (Purves, 

Cangea and Veličković, 2019[56]).  

14 https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks  

15 https://dynabench.org/  

https://mosaic.allenai.org/projects/mosaic-commonsense-benchmarks
https://dynabench.org/
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Ernest Davis, New York University 

This chapter looks at using human skills taxonomies and tests as measures 

of artificial intelligence (AI). It examines the strong points of computers, such 

as their ability to store enormous memories and access them reliably and 

quickly. It also reflects on weaknesses of AI systems compared to humans 

related to vision and manipulation, and use of natural language. It pays 

special attention to the limited capacity of AI to use common sense reasoning 

and world knowledge. In addition, the chapter looks at the ability of AI to 

detect subtle patterns in data as a double-edged sword. With all this in mind, 

the chapter proposes four consequences for testing, and looks ahead to 

building trustworthy AI systems. 

12.  Using human skills taxonomies 

and tests as measures of artificial 

intelligence 
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Introduction 

It is tempting to use human tests to measure the power of artificial intelligence (AI). The body of educational 

and vocational tests developed evaluating human beings is extensive. These tests have been developed, 

studied and validated meticulously. Moreover, the science of human testing is powerful and deep, 

grounded in both psychology and practical experience.  

However, using human tests to measure AI has many potential pitfalls that can lead to misleading results. 

Human tests have been developed to distinguish between human beings, or to evaluate the fitness of a 

human test taker for a given task. Their designs therefore take for granted that test takers share basic 

features of human intelligence. They are not designed to evaluate intelligences that are radically different, 

such as AIs. 

Moreover, an AI system, or a computer system generally, may play a different role than a human in any 

kind of undertaking. When a new technology is introduced in an application, for example, it does not simply 

do the same thing people did. Often, it transforms the whole process. Hence, measuring the human-level 

abilities of AI may be entirely irrelevant to predicting its usefulness or to what extent it may replace human 

workers. 

The abilities and limitations of humans and computers are dramatically different. This banal truth lies at 

the heart of the problems in applying human tests to AI, and often gets overlooked. This chapter thus 

begins enumerating the obvious advantages of computers and their significance before discussing their 

more subtle limitations at greater length. 

Where computers shine 

The strong points of computers are obvious. They can carry out complicated calculations extremely quickly. 

They have enormous memories that can be accessed reliably and extremely quickly. Conversely, the 

working memory of humans is extremely small and their long-term memory is limited and unreliable. 

Moreover, computers do not suffer from fatigue or distractions, and therefore do not make careless errors. 

Additionally, data or programs can be rapidly and accurately copied from one computer to another. To a 

large extent, data in one computer can be conveyed to another in minutes or seconds at essentially zero 

cost.1  

Even in tasks where computers excel, they may carry their abilities over to similar tasks, or even to 

components of the same task, differently than people do. Computer programs are, inevitably and properly, 

designed to take maximal advantage of the computer's strengths. A program may thus achieve a human 

or superhuman level of skill at some particular task. However, in so doing it may have mastered only one 

aspect of a problem. 

Humans could remain superior at mastering multiple aspects of a problem. For example, a web search 

engine can record and retrieve web pages on a scale unimaginable for a person. Yet humans are still 

enormously superior in judging whether a particular webpage includes the answer to a specific question. 

Games-playing programs are enormously superior to humans in terms of tactics; in terms of strategy, 

humans still sometimes have the advantage.  

Where computers fall short 

In many respects, AI systems fall far short of humans, suffering from weaknesses that are quite unlike 

anything seen in people. 
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Unique weaknesses of artificial intelligence systems 

Vision and manipulation 

Computer vision and manipulation are not comparable to humans or, indeed, many animals. AI systems 

can match or even exceed human abilities in certain narrowly defined tasks. These include recognising 

digits or identifying particular medical situations or well-defined categories. However, they are nowhere 

near human abilities in identifying activities or relation between objects in still photos, and still worse in 

videos. 

Natural language 

The abilities of AI technology at natural language tasks are uneven. Speech transcription is quite reliable 

under certain conditions. These include when the system has been trained on the speaker; when the 

speaker does not have a strong accent; when there is a single speaker; and when the background is quiet. 

However, even under less restrictive conditions, AI transcription is generally good.  

In addition, machine translation between the major European languages, Japanese and Chinese is 

generally fine. Web search is generally successful at finding relevant documents. However, while intelligent 

assistants such as Siri and Alexa can be useful, their quality is uneven (Dahl and Doran, 2020[1]). 

Developing systems that can actually understand an utterance or text remains a distant goal. 

Computers are mostly not embodied 

A human child learns the basics of the physical and social worlds by interacting with them. Research in 

“developmental robotics” has attempted to do likewise. In this approach, researchers allow the robot to 

interact with the real world or with a realistic virtual world (Asada et al., 2009[2]; Shanahan et al., 2020[3]).  

However, the overwhelming majority of AI programs are just passive observers of a large dataset with 

almost no inherent structure. Vision programs are trained on a collection of millions of images labelled by 

category. The labels are the only connection between one image and another. Neither the images nor the 

labels have any connection to a larger context. Language programs are trained on immense text corpora 

entirely ungrounded in the real world. Most robots are built to carry out limited tasks in controlled worlds 

with limited perceptual feedback.  

This gap has obvious implications for robots that have to engage with a complex open world but also for 

the depth of the understanding of natural language. Humans' understanding of natural language is 

fundamentally grounded in their experience of the external world and their interactions with it (Lake and 

Murphy, 2020[4]). It is not clear whether, ultimately, any amount of textual data or advance in learning 

technology can make up for this fundamental difference.2 

Common sense reasoning and world knowledge 

AI programs remain limited in their basic understanding of the world (Davis and Marcus, 2015[5]; Levesque, 

2017[6]). A particularly important stumbling block is a poor understanding of time. Many AI programs exist 

in a timeless present with only a superficial ability to deal with past, future and change. Other domains 

such as spatial reasoning, intuitive physics, folk psychology and folk sociology are even less incorporated 

in AI programs; their absence likewise severely limits the depth of understanding that an AI program can 

achieve. 

Meta-reasoning 

AI programs are generally unaware of their own reasoning processes and characteristics. Only a minority 

of question-answering systems know when to say, “I don't know” or “I need more information”. Many AI 
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systems are configured to give what they somehow judge to be the best answer. However, these systems 

do not consider whether their judgement is reliable, whether they have enough information to answer the 

question in principle or even whether the question is meaningful. 

Generation vs. understanding 

For humans, it is almost always easier to understand something than to create it. For example, it is 

generally much easier to understand a foreign language than to speak or write it and much easier to 

interpret an image than to create it. 

For computer programs, the reverse often holds. It is much easier to construct computer graphics that can 

create complex images of any form (photorealistic, line drawing, schematic, etc.) than a computer vision 

program that can interpret them. (The use of CAPTCHAs to distinguish humans from bots depends on this; 

the CAPTCHA program can easily generate an image with distractors that a human can easily see through 

but that will confuse a bot.)  

The GPT-3 system can generate long articles that, on surface inspection, are plausible imitations of 

journalists, philosophers, essayists, poets and so on. However, on closer inspection, it does not understand 

its own writing. Chapter 9 discusses a skill test that asks the test taker to identify a side view of a disk 

separator. It would be unreasonable to ask a human being to draw the side view instead, but this task 

might well be easier for a computer program. 

This difference is the source of some common misunderstandings and exaggerated views of AI. It is natural 

to suppose that, if AI can draw a picture, surely it can see a picture. Similarly, if it can write a text, surely it 

can understand the text it has written. However, although that conclusion holds for humans, it does not at 

all hold for AIs. 

Extreme specialisation 

Some of the most prominent AI successes are specialised to an extraordinary degree. A beginner Go 

player with a 20x20 board instead of the standard 19x19 will probably play the entire game without noticing. 

A good or champion-level player might be disconcerted when they notice the 20x20 board but will still likely 

play well. However, a champion AI Go player will not play well on a 20x20 board. Indeed, it will be unable 

to even conceive such a board could exist. It is hard-wired to understand the world consists of 361 positions 

that may be white, black or empty and that only 362 moves (the 361 squares and “pass”) are possible. 

With a 20x20 board, they are as much at a loss as a human transported to a 17-dimensional universe. 

Similar limits appear in other areas as well. Any human who can easily translate from English to high-quality 

French can presumably answer questions posed in French. However, a program that can translate from 

English to French cannot answer any questions at all in French. A chess-playing program can choose a 

superlatively fine move but may not be able to do anything else chess-related. For instance, it probably 

cannot say anything about a game it has just played. It can certainly not offer an opinion about the skill of 

its opponent. 

Combining skills 

AI programs cannot always combine skills. A person with two skills can normally carry out tasks that require 

both of them. However, an AI program that can tell whether a picture contains a cat or a dog may not be 

able to say if it contains both a cat and a dog. As of 12 May 2020, Google search can answer the questions, 

“What is the US state with the largest area?” and “What is the population of Alaska?” but not “What is the 

population of the US state with the largest area?” 

Certainly, if one AI program has ability A and another has ability B, it does not follow that another program 

could do tasks requiring both A and B. For example, systems trained for pronoun reference resolution can 
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attain near-perfect behaviour. However, question-answering and translation programs may stumble when 

confronted with the same kinds of problems. 

Grotesque errors 

AI programs often give answers that are not merely wrong but, by human standards, bizarre or grotesque3. 

The GPT-3 system can generate page after page of text that is superficially well-written and appears 

coherent. However, in one experiment Marcus and Davis (2020[7]) gave a prompt to GPT-3 that produced 

a nonsensical continuation: 

The prompt was: 

At the party, I poured myself a glass of lemonade, but it turned out to be too sour, so I added a 

little sugar. I didn’t see a spoon handy, so I stirred it with a cigarette. But that turned out to be a 

bad idea because 

GPT-3 produced the continuation: 

it kept falling on the floor. That’s when he decided to start the Cremation Association of North 

America, which has become a major cremation provider with 145 locations. 

In another experiment, Metz (2020[8]) prompted GPT-3 to write a love story. It managed relatively well until 

the last sentence, which started “We went out for dinner and drinks and dinner and drinks and dinner and 

drinks …” It repeated the phrase “and dinner and drinks” 55 times before running out of steam. In another 

instance, a medical Chabot powered by GPT-3 recommended suicide to an imaginary patient (Rousseau, 

Bauderlaire and Riviera, 27 October, 2020[9]). 

Self-driving cars often do the correct thing. However, in one case a self-driving car mistook a truck for a 

billboard above the road, causing a fatal crash (Evarts, 11 August 2016[10]). The humorous, absurd or 

embarrassing mistakes produced by the "autocorrect" feature of text messaging systems are legion. 

This aspect of computers dates back to the early days of computer technology. In the 1960s and 1970s, 

there were endless horror stories about computer systems that sent bills for millions of dollars or repeatedly 

sent bills for zero dollars. There was nothing to be done because “it's the computer”. No one at the company 

knew how, or was able, to fix the third-party software. That kind of problem has become much less frequent 

over the decades. Computer systems have not become any more aware of the absurdity of these bills. 

However, this kind of software has gradually been debugged. In addition, interfaces and protocols for the 

humans using the software have probably improved.  

The problem now is fundamentally the same, although it takes much more sophisticated forms. For 

example, AI programs based on machine learning are often effectively impossible to debug. They can only 

be retrained. 

Finding subtle patterns in data 

Most AI successes in the last 20 years have been based on applying machine learning techniques to large 

datasets. A large data corpus relevant to a particular task is assembled by some means or other. For 

example, it may be collected from resources such as the web. It could also be generated by human labour 

for this purpose or synthesised by another computer program. Finally, it could be assembled using some 

combination of these approaches. The machine learning technology then finds patterns, generally 

extremely complex, in the dataset and uses them to carry out the task.  

The patterns found in machine learning are generally not ones that humans have found or could find. For 

patterns that humans could find, it is usually more effective to use conventional programming rather than 

machine learning. Indeed, even once the AI has found the patterns, it is usually beyond human abilities to 



218    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

explain why they are effective or even to describe them in any meaningful way. This ability to find complex 

obscure patterns in data underlies AI successes in specialised tasks, such as economic modelling, 

scientific research and sociological studies; and in basic human abilities, such as vision and language. 

However, this reliance on complex patterns is a double-edged sword. Since the patterns cannot be 

explained or understood, empirical tests are the only way to judge their reliability or where they break 

down. If they work reliably on well-chosen test examples, then presumably, or hopefully, they will continue 

to work well in the future.  

This, in turn, leads to a further danger. Generally, for testing, the corpus of examples is divided randomly 

into a “training set’’ for input to the learning component and a “test set” to evaluate the quality of the system. 

Patterns may apply to the corpus as a whole because of the way it was assembled but not to examples 

outside the corpus. In these cases, the learning module will find those patterns in the training set. 

Consequently, the program using the patterns will work properly on all the examples in the test set. 

However, it will fail on new examples that do not conform to these patterns. 

For example, the SNLI dataset contains pairs of English sentences A and B characterised in terms of their 

logical relations: B is a consequence of A, B contradicts A, or B is neutral with respect to A (i.e. B could be 

either true or false). Programs based on machine learning trained on a training set from this dataset 

achieved a significant measure of success when tested on a test set; this was taken as a sign of progress 

towards understanding the logical significance of texts. It was later discovered the relation could be 

identified by looking only at sentence B. The dataset had been constructed by giving crowd workers 

sentence A and asking them to construct a sentence B with the target relation. It turned out that the crowd 

workers had used a few simple strategies in constructing their examples. For instance, they had often 

constructed an entailed sentence by leaving out gender or number information, a neutral sentence by 

adding a motivation that might be true or false, and a contradiction by adding a negation (Table 12.1). The 

program then categorised the relation between the sentences, with fair accuracy, purely on the basis of 

these features in sentence B (Gururangan et al., 2018[11]). 

Table 12.1. Annotation artefacts in a corpus of sentence entailment 

Category Example 

Premise A woman is selling bamboo sticks talking to two men on a loading dock 

Entailment There are at least three people on the loading dock. 

Neutral A woman is selling bamboo sticks to help provide for her family. 

Contradiction A woman is not taking money for any of her sticks. 

Source: Gururangan (2018[11]). 

As another consequence to constructing AI programs in this way, the programs can be vulnerable to 

variations in input that seem entirely inconsequential to humans or even to other computer programs. 

Vision programs can be fooled by small changes invisible to the human eye (Figure 12.1). This kind of 

problem in AI programs has been demonstrated innumerable times; indeed, the construction of 

“adversarial examples” that break AI programs is at this point a significant subfield of AI research. 
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Figure 12.1. Pig or airliner: Changes imperceptible to the human eye can lead to misclassifications 

 

Source: Madry and Schmidt (Image created by Logan Engstrom) (6 July 2018[12]). 

Another experiment with the GPT-3 program accidentally left a blank space at the end of a line (Marcus 

and Davis, 2020[7]). This trivial error was invisible to the human eye and unproblematic for most programs 

that deal with natural language text. However, it caused GPT-3 to flounder on a test that otherwise it would 

have gotten right. Similarly, machine translation systems can be bewildered by a misspelled word that 

would never confuse a human reader. Typically, programs equipped with spelling correction, such as 

Google search, can handle these challenges easily. 

Consequences for testing 

Four consequences of limitations call for caution in using human-oriented tests 

on artificial intelligence 

Due to the four consequences of all these limitations and idiosyncrasies noted below, extreme caution is 

needed in evaluating the significance of the success of an AI program on a human-oriented test. When 

humans do well on a test, one can conclude, with some degree of confidence, that they know the material 

or can carry out the tasks the test was designed to measure. If an AI system does well on the same test, 

that conclusion is altogether unreliable.  

Humans and artificial intelligence systems have different notions of difficulty  

What is easy for a human is often difficult for a computer, and vice versa. It may be much easier for an AI 

program to search the entire web for an answer than to find the answer in a text provided with the test. As 

mentioned, it is often easier for a computer to draw a picture than to recognise a picture. Yes/no questions 

are particularly difficult for AI programs (Clark et al., 2019[13]).  

The questions in standardised human tests are carefully calibrated in terms of difficulty, but this calibration 

does not apply to AI programs taking the same test. AI programs that succeed on standardised science 

tests (Clark et al., 2019[14]) may be at a loss when asked a simple question about the physical world that 

is not the kind that appears on tests (Davis, 2016[15]). For example, a program may be able to answer the 

question, “How are the particles in a block of iron affected when the block is melted?” from the eighth grade 

NY State Regents exam, but not the question, “Is it possible to fold a watermelon?” 
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AI systems are sensitive to “inconsequential” changes  

AI programs may be extraordinarily sensitive to changes in question format that, to a human, would be 

inconsequential or even invisible. This kind of sensitivity becomes likely if the dataset used to train or 

“fine-tune” the program is in some way related to the source of the test questions. 

Human abilities cannot be taken for granted in AIs 

Important human abilities are taken for granted and so not tested but these same abilities cannot be taken 

for granted in AIs. No test, for instance, rewards a test taker for answering “I don't know”. At most, the 

scoring system is set up so there is, on average, no value in guessing randomly.  

In real-world settings, it is often important that a person, or an AI program, realises the limits of its 

knowledge. Either it must try to find out what it needs to know or proceed with suitable caution. Only a 

small fraction of AI programs even attempt this approach (Davis, 2020[16]). Likewise, basic common sense 

knowledge is almost never explicitly tested in human-oriented tests because it can be assumed in people. 

Grotesque errors of artificial intelligence can lead to disaster 

Finally, the tendency of AI programs to fall into grotesque errors raises concerns that generally do not arise 

with humans. If these are fairly rare but catastrophic, then, like so many computer bugs, they may avoid 

detection during controlled testing. However, they can emerge disastrously when the system is deployed 

in the world at large. 

Towards trustworthy artificial intelligence systems  

Even if an AI system suffers from the kind of limitations described above, it still may be useful in a practical 

setting. An AI program may be specialised, sensitive to small changes and adversarial examples, lack 

common sense and make grotesque errors. Nonetheless, it might still be placed in a work environment 

where it can remain within its area of specialisation. It could only be given inputs it can handle and not 

required to use common sense. Finally, its grotesque errors could be either avoided or caught.  

Humans should be able to adapt to the idiosyncrasies of AI. Collectively, people have some 60 years of 

experience of dealing with computer programs. They are used to word processing or spreadsheets doing 

things that would be bizarre and unacceptable in a human secretary or accountant. 

It is critical, however, to understand the scope of AI programs and their limitations. Human-oriented tests 

are a poor way of determining the scope and limitations of AI programs. An AI program should not be 

considered as “an unusual human being”. Consequently, it should not be evaluated using the same 

yardsticks applied to human job applicants. Rather, it should be seen as a potentially powerful but poorly 

understood piece of software engineering.  

Above all, the "attribution error" should be avoided. When a human succeeds at a task, it understands 

what has been achieved. This is not the case for computers. Methods, insights and cautions for avoiding 

these errors developed through studying the cognitive psychology of animals are relevant here (see also 

Chapter 17) (Shanahan et al., 2020[3]). 

Ideally, programs used in critical tasks should come with the kinds of product reliability information that 

accompanies dangerous physical tools or medications. This would permit users to say with confidence 

that, under normal circumstances, when used properly, the programs are reliable. At the same time, this 

would alert users to risk if programs were used in unusual circumstances or in some strange way (Marcus 

and Davis, 2019[17]).  
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Historically, computer technology (with the exceptions of hardware and cybersecurity), and AI in particular, 

has not provided these kinds of guarantees. The addition of new features has been typically prioritised 

over ensuring that existing features worked reliably. However, with more reliance on computers for critical 

activities, the technology increasingly needs to be trustworthy. 

In this regard, systems like the GPT series are a step in the wrong direction for a variety of reasons 

(Marcus, 2020[18]). They have no specified purpose. They carry out an ill-defined category of tasks, often 

impressively, sometimes absurdly, with no demarcation or predictability. Finally, they are sold to the AI 

community and to the world at large as a tonic medicine “good for what ails you”. 

The AI research community has become increasingly aware of these issues, particularly in the last two 

years. The development of evaluation strategies for AI technology and the careful analysis of its capacities 

is a major and urgent area of research (Dodgen et al., 2019[19]; Heinzerling, 21 July 2019[20]; Pineau, 

2020[21]). The problems of determining what an AI system can do and how it can most productively be used 

in practical settings are major challenges. 

Predicting the impact of artificial intelligence 

A computer system does not have to emulate or achieve the abilities of a human worker to revolutionise 

the workplace (Shneiderman, 2020[22]). Word processing programs, for example, have largely displaced 

the role of typists. Yet the personal computer revolution did not require computers to learn skills like feeding 

paper or changing a ribbon. At the same time, typists have skills that surpass word processing technology. 

A typist, for example, can give a frank opinion on the quality of a letter.  

Like a word processor, AI will remove some frustrations and introduce new ones. This dynamic has 

implications for testing. The tests that are used to compare human typists − mostly speed and errors per 

page − are irrelevant for word processing technology. In fact, there is no useful way to measure the quality 

of a word processing software other than user satisfaction (which is nebulous) and profitability (which 

depends on many factors other than inherent quality).  

In any given field, an enormous impact cannot be tied to any specific ability, let alone any human ability, 

let alone an ability that is addressed in human tests. 

Recommendations  

It is difficult to design tests for AI that are meaningful and reliable. AI technology is evolving at breath-taking 

speed. Moreover, AI developers are generally more concerned with creating products and capacities than 

with evaluating them.  

AI technology has become more sophisticated and ubiquitous. Given limited and inadequate 

understanding of AI, it is both increasingly urgent and difficult to evaluating AI and predict its impact. With 

this in mind, some guidelines for the design of tests are presented: 

 Keep in mind the differences between AI and humans  

The most reliable tests will measure how well an AI carries out a well-defined task in a particular workplace. 

For instance, how well can the program detect conditions of a specified type in medical data or images of 

some kind? Even in such a limited setting, tests should reflect the limitations of AI and the differences 

between AI and humans. The tests should determine robustness of AI in relation to flawed data 

(e.g. misspellings in a text or imaging anomalies) and to potential situations (e.g. a patient with some other, 

unusual condition). If these have not been tested, then the human interpreting the results needs to keep 

these concerns in mind as potential sources of error. 
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 Stay flexible 

AIs used directly by the public at large – that are embedded in a commercial product or put on a website 

– require special attention. Tests should try to guard against all the possible ways that things can go wrong 

with users who are often careless, impatient and occasionally malicious. One must also expect that users 

will find ways to make things go wrong that the tests did not anticipate. Designers should thus stay flexible 

so they can respond adequately to these issues.  

 Look for strengths and weaknesses rather than a specific score 

Designing tests to evaluate the capabilities of state-of-the-art AI against those of humans on a broadly 

defined, open-ended task is much more challenging than on a simple task. In general, it is more useful and 

more meaningful to probe the strengths and weaknesses of the system rather than assigning a score 

between 0 and 100.  

 Test problems that seem easy; problems posed in a variety of forms and that require a variety of 

kinds of answers; and problems collected or generated from a variety of sources.  

 Include questions that pinpoint each of the system’s individual capacities and problems that test its 

ability to use two of its capacities in combination.  

 Test data on another source (if the source of the training data is known).  

 Collect the problems from some natural source if possible rather than generating problems to serve 

as a test set.  

 Test the system against adversarial examples and against anomalous examples. Success on any 

narrowly defined task should not be considered an adequate measure of the system’s ability at a 

much broader set of tasks.  
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Notes

1 This, perhaps, has been as important and as disruptive in both positive and negative respects, as any of 

the other features of computers. Legal, social, commercial and even conceptual frameworks for intellectual 

property are still grappling with its consequences. 

2 The nature of that experience in humans can vary widely without making much difference to the language. 

The language use of the deaf-blind, such as Helen Keller, who are limited to tactile interactions with the 

world is not significantly different from the hearing and sighted, although there are measurable differences 

in the learning process (Chomsky, 1986[23]). 

3 This mot juste is due to Mark Steedman, who used it at the online meeting of the AI and the Future of 

Skills project held on 5-6 October 2020.  
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Richard Granger, Dartmouth College  

This chapter describes several instances of artificial intelligence (AI), artificial 

neural network and machine learning systems that are judged to be highly 

successful. It also highlights the shortcomings of these systems to explain 

their limitations. Through examples such as so-called self-driving cars, image 

recognition, handwriting analysis and digital virtual assistants like Siri, the 

chapter explores the ways in which AI is both like and unlike human 

intelligence. It clarifies ways in which AI will and will not be useful in various 

workplaces. It also examines capabilities of humans that are likely to outpace 

AI for some time, and therefore may remain critical factors in employment 

practice. 

13.  The encroachment of artificial 

intelligence: Timing and prospects  
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Introduction 

Artificial intelligence (AI) systems are steadily growing as tools to accomplish specified tasks, increasingly 

at the expense of jobs that would otherwise be carried out by human workers. How can people stay relevant 

and employed?  

This chapter focuses on shortfalls of AI, explaining limitations likely to persist for many years. It clarifies 

ways in which AI will and will not be useful in various workplaces. It also examines capabilities of humans 

that are likely to outpace AI for some time, and therefore may remain critical factors in employment practice.  

To that end, it focuses on ways in which AI – and related advances in machine learning and artificial neural 

networks (ANN) – is like, and quite unlike, human intelligence. How are the architectures – the innards – 

of ANNs like, and unlike, actual networks of neurons, i.e. brain circuits? What behavioural or computational 

abilities arise from ANNs, and how are they like and unlike human behavioural and computational abilities?  

Similar and different underlying architectures 

Artificial and natural neural networks 

How are artificial “neural networks” similar to, and different from, actual brain circuitry? AI systems have 

shown an impressive ability to play difficult games, perform language translation, find patterns in complex 

data and many other seemingly human-level behaviours. These systems are often designated as “brain-

like”, or “brain-inspired”, i.e. based on or derived from design principles of human brains.  

Given the impressive accomplishments of these systems, it is perhaps understandable, even flattering, to 

connect them to human brain designs. Where do such claims come from? What characteristics of brains 

do these artificial systems actually exhibit?  

Brains differ from standard (non-AI) computers in myriad ways. Among other things, brains learn and retain 

information over decades, whereas computers do not. Further, computers are predominantly serial 

whereas brains exhibit large-scale parallelism.  

Surprisingly few characteristics of brains that might have become standard ANN properties have been 

adopted. These include long-term learning and parallelism, as well as the neural property of only producing 

simple computations such as addition and multiplication. In this way, the engines of the brain (neurons) 

contrast with computers that have extensive mathematical abilities.  

Today, ANNs comprise much (though not all) of what is often more broadly termed machine learning and 

AI. They are composed of simple computing units, acting in parallel and learning from data. This indeed 

makes ANNs far more “brain-like” than standard computers.  

However, these points of similarity between artificial networks versus actual brains represent a surprisingly 

small fraction of brain characteristics. These neural and brain-circuit properties (e.g. location and temporal 

differences between excitatory and inhibitory cells) can seem insignificant. Yet the capabilities of ANNs 

versus real brains are vastly different. It is not yet known what cognitive abilities arise from what features 

of our brains. Many AI and ANN researchers have shown that incorporation of additional actual brain 

properties may substantially, even drastically, alter and enhance the capabilities of ANNs.  

Many AI researchers are studying how to overcome the shortfalls of AI systems compared to human 

abilities. Although AIs outperform many human abilities, these strongly centre on circumscribed tasks such 

as game-playing and online product recommendations. Interestingly, these closely correspond to the type 

of task for which computers have always outperformed humans: large-scale numeric calculation and data 

analysis.  



   227 

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

AIs excel at tasks that can be reduced to pre-specified outcomes such as either winning or losing a game 

of chess or Go. It remains unclear whether more open-ended intelligent behaviours will be susceptible to 

similar approaches. Correspondingly, AIs still are markedly inferior to humans in reasoning, lifelong 

learning, common sense and much more.  

Brain algorithms are intrinsically parallel; other algorithms typically are not 

Unlike many algorithms, brain algorithms are intrinsically parallel. Computational steps can only be carried 

out in parallel if later steps in a process do not depend on previous steps. This avoidance of “serial 

dependency” is at the core of parallelism.  

In a large computational set of operations, any given step in the process (say, step 146) may depend on 

prior steps (e.g. steps 26, 91 and 108) to have produced their partial outputs. The essence of “serial” 

computation is the dependency of later operations on earlier operations. All standard computers are 

intrinsically serial.  

Can these serial dependencies somehow be turned into independent parallel operations? This is a 

present-day, much-researched problem that remains unsolved. Despite many specialised approaches, 

there is no general method for taking the dependencies in serial operations and somehow “parallelising” 

them.  

A first step in understanding brains is to understand their already-parallel methods – their parallel 

algorithms – rather than assuming that computational serial methods can be rendered parallel.  

Many hypothetical models of brain systems have been characterised in terms of their parallel and serial 

components. A prominent example includes “unsupervised” categorisation methods, which are 

predominantly intrinsically parallel – not “parallelised” from serial steps; these have been proposed as 

partial models of some cortical operations. Another such example is “reinforcement learning” (RL) systems, 

which include highly parallel operations. These have been widely proposed as partial models of the basal 

ganglia structures in brains.  

Some additional related computational operations are also intrinsically parallel. For instance, most of what 

a search engine does is parallel: I type in “antiviral” to Google. It can parcel out the task to millions of 

independent computers to search through separate, independent, parts of the Internet.  

After all those independent jobs return their findings, a non-parallel job must put them all together and then 

order them from first to last. However, most of the task is intrinsically parallel: each separate location in 

the Internet can be looked at separately during the search. Since none of them depends on others, all 

these separate searches can be done simultaneously and independently with enough separate computers 

to assign in parallel to this task.  

Parallel computers are becoming increasingly important and prevalent. Such computer hardware (such as 

supercomputers, clusters, GPUs) contain substantial numbers of computing units (think neurons). These 

can carry out their operations independently of each other, and therefore can operate simultaneously. 

Many parallel methods (such as search) are typically implemented onto parallel hardware to speed up their 

operation.  

Remarkably, most ANN operations, especially the still-prevalent “supervised” systems such as 

“backpropagation” (and “multi-layer perceptrons”, more generally), are not entirely parallel. Consequently, 

they still require expensive hardware to run.  

Interestingly, vast swaths of land around major hydroelectric dam sites are owned by the few major tech 

firms. Most of these firms specialise in AI, including Google (Alphabet), Apple, Amazon, Facebook, Netflix, 

Microsoft and IBM.  
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Why this strange connection between computer tech companies and hydroelectric dams? Their “server 

farms”, i.e. stations of large numbers of computer clusters, run so hot that their power and cooling costs 

require plentiful power sources. In other words, AI is not cheap or prevalent as yet: much of it still requires 

extreme resource usage just to run at all (Jones, 2018[1]; Pearce, 2018[2]).  

Similar and different behaviours and “cognitive” capabilities  

How is someone’s intelligence or aptitude assessed for a task? Typically, specific tests designed to identify 

traits and abilities have been found to correlate with humans who previously performed well in the task or 

job of interest.  

Tests of this kind omit enormous sets of actual worker characteristics desired by an employer. This is 

because the worker is assumed to be human with standard human capabilities. These capabilities are 

taken for granted, and not explicitly tested.  

In other words, humans are ostensibly tested for their necessary skills. However, many crucial skills are 

simply assumed since all humans possess them. One such set of skills is the ability to not commit 

catastrophic and unexpected errors. The four examples below – i) self-driving cars, ii) image recognition, 

iii) handwriting analysis and iv) digital virtual assistants – explore these concerns. 

“Self-driving” cars 

The term “self-driving” car is a misnomer. The numeric multi-tier “levels” scale, outlined below, roughly 

describes increasingly difficult abilities rather than levels of autonomy (NHTSA, 2018[3]; SAE, 2018[4]): 

0. No automation: i.e. normal cars; all driving responsibilities resting with human drivers.  

1. Driver assistance: human drivers are assumed to be responsible for all tasks, and may be assisted 

by a system that partially performs steering, or acceleration/deceleration. 

2. Partial automation: similar to “1”, humans are assumed to be responsible for all tasks, and may be 

assisted by a system that partially performs steering and acceleration/deceleration.  

3. Conditional automation: the artificial system takes over most aspects of driving, including steering 

and acceleration/deceleration. Yet the human driver is expected to “respond appropriately” to a 

request to take over. In other words, ongoing vigilance is still required on the part of the human 

driver.  

4. High automation: the artificial system takes over most aspects of driving. If the human driver does 

not respond appropriately to a request to take over, the system can pull over to stop the vehicle. 

5. Full automation: the artificial system performs any and all driving tasks of a human driver, with no 

intervention required from the human.  

No current products go beyond “Level 3”. In other words, they all depend on the human driver to take over 

whenever called to do so by the AI system. Higher-level products have often been predicted, but many 

experts explain they remain a long way off.  

When “Level 3” cars have accidents, the accidents themselves are not the primary issue. (Humans, too, 

have accidents.) Rather, it is the novelty of Level 3 accidents that is striking. The accidents involve things 

that, again, no one even thought to test for because they are so far outside the realm of human experience. 

In one case, for instance, a Level 3 car drove at high speed into the side of a truck. To the AI system, the 

truck somehow looked like the sky (Tian et al., 2018[5]; Boudette, 2019[6]; TKS Lab, 2019[7]). 

There are multitudes of such potential unexpected and catastrophic errors lurking in AIs. These errors are 

not tested for in advance, and current tests consistently fail to anticipate them. Humans would not, for 

instance, accidentally insert an iPhone into a coffee machine or ignite their office chair.  
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Image recognition  

Equally compelling examples of catastrophic errors occur in image recognition. The consequences are 

typically (though not always) less dramatic than Level 3 car accidents. However, the errors are every bit 

as illuminating. Other things besides images that fool humans can fool AI image experts. Figure 13.1 shows 

a set of “adversarial” images (Szegedy et al., 2014[8]; Kurakin, Goodfellow and Bengio, 2016[9]) that are 

judged, by these expert AI systems, to be the object labelled below them. For example, one pixilated 

multicolour image was identified by the AI as a cheetah. Another such pixilated image was identified as an 

armadillo. To humans, these images do not remotely resemble animals or objects.  

Figure 13.1. Adversarial images showcase judgement errors of AI systems 

 

Source: (Nguyen, Yosinski and Clune, 2015[10]). 

The designers of these systems did not think to test for such errors, which illustrates the range of the 

problem. It appears not to be practicable to anticipate all such errors; the range of misreads is so broad 

and unexpected that it cannot readily be predicted.  

Why do these strangely inhuman errors arise at all? If AI systems performed somewhat like humans do, 

they might fall short in certain ways, much as some humans exhibit capabilities that other humans may 

lack. However, AI systems are not carrying out the kinds of operations that humans do.  

Although AI systems are touted as “human-like” and “brain-like”, there is overwhelming evidence by AI 

experts indicating this is not so. For example, the widely used “supervised” learning systems of most ANNs 

have sometimes been suggested as relating to operations of the human neocortex. However, brain 

projections do not contain “error correction” signals of the kind required by supervised systems.1  

A retrospective case: Handwriting recognition  

Building on two examples of the non-human nature of AIs (operating cars and recognising images), this 

section considers the “retrospective” example of handwriting recognition. It illustrates the perspective of 

time. When errors occur, how long does it take the field to recover from them?  



230    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

Early focus on handwriting in the 1990s 

In the 1990s, handwritten text recognition presented a major challenge to AI. Major conferences were held, 

focusing solely on handwriting recognition. In the United States, entire funding programmes of the Defense 

Advanced Research Projects Agency supported the work, and entire divisions of the National Institute of 

Standards and Technology developed datasets for it.  

By the late 1990s, the field believed it was succeeding (LeCun, Bottou and Haffner, 1998[11]; Von Ahn et al., 

2003[12]). Publications routinely highlighted their “correct hit rate” achievements, with suspiciously precise-

seeming values such as 91.4% correct. These assessments assumed that the phrase “handwriting 

recognition” was self-explanatory.  

Development of CATCHAs in the 2000s 

However, in the early 2000s, new data appeared in the form of “Completely Automated Public Turing test 

to tell Computers and Humans Apart” (CAPTCHAs) (Von Ahn et al., 2003[12]). Websites began using these 

forms of distorted letters (now ubiquitous) to determine whether a purported user was a human or an AI. 

Humans could see the letters and numbers in CAPTCHAs effortlessly. 

However, handwriting-recognition AI systems performed abysmally on CAPTCHAs. A few papers 

described promising recognition successes on limited databases but failed to generalise to other datasets. 

The supposedly highly successful field of handwriting recognition went almost entirely dry for more than 

ten years. Dozens of claims were made that CAPTCHAs had been cracked; these were repeatedly refuted.  

Finally, 14 years later, a publication showed an approach that could reliably address many popular 

CAPTCHA systems (Bursztein et al., 2014[13]). It took additional years for other such reports to emerge; 

some were still considered to be sufficiently noteworthy that they appeared in prestigious journals (George 

et al., 2017[14]).  

In sum, a problem introduced in 2000, into a supposedly successful field, essentially crushed that field until 

the mid to late 2010s. All of this took multiple lifetimes in terms of typical technology cycles.  

The need for broader assessment of systems 

Today, the stakes are similar. The predominant focus of researchers on the statistics of huge data, such 

as games and shopping recommendations, artfully alters the metric for success. They are not addressing 

open-ended problems, i.e. the problems that humans typically face. Rather, these approaches aim at 

achieving known metrics such as game wins.  

These closed-ended tasks are being won by massive memorisation and processing of millions of instances 

(Serre, 2019[15]). The claims of game-playing systems, for instance, refer to software trained on the 

equivalent of the entire lifetimes of imagined hundreds of thousands of human players. By contrast, 

humans perform highly complex tasks of recognition, retrieval, decision and inference, after learning on 

comparatively miniscule quantities of data, many orders of magnitude less than the artificial systems 

require.  

Without the specifications of actual human behaviour, it can be all too easy to imagine researchers are 

formally addressing a task such as handwriting recognition, or chess or Go.  

The lesson is not being learnt. Tasks are carefully steered away from far-reaching human abilities, focusing 

instead on data memorisation mixed with slight generalisation. By this nostrum, a stream of attractive 

successes are toted up, largely disregarding failures and shortfalls (Serre, 2019[15]). 

Many in the field are mindful of the situation. Researchers are striving for applicable metrics that could 

assess systems more broadly, seeking “feasible and reasonable” tests to which a system could be 
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subjected. A range of views on this approach is worth further pursuit (Legg and Hutter, 2007[16]; Dowe and 

Hernandez-Orallo, 2012[17]; Hernandez-Orallo, Dowe and Hernandez-Lloreda, 2014[18]). 

“Digital virtual assistants”  

This section turns to a set of examples perhaps somewhat closer to direct experience: the performance of 

Siri (and corresponding conversational AIs, such as Alexa, etc.).  

Siri and its cousins, now many years old, are still revolutionary and impressive accomplishments. Their 

recognition of spoken English and several other languages is still among the more skilful achievements of 

commercial AIs. Yet Siri makes jarring errors that even a young child would not make. Why is this so? Why 

do Siri’s errors not match those that people might produce?  

Indeed, how does one know when Siri has made an error at all? One way to address this is to envision a 

rigorous system for recognising and cataloguing such errors. After all, if humans cannot catch the errors, 

how could they possibly design systems that produce fewer of them?  

Importantly, it is not possible, even in principle, to construct any rigorous system for recognising Siri’s 

errors. This is because the measure of “when something is an error” is solely empirical: a human must 

judge that the response (somehow) does not make sense. By Siri’s internal logic, of course, the response 

was somehow the correct output computed from the input she received.  

Empirically, then, a human evaluator is required to judge whether or when Siri errs. This is radically different 

from the corresponding circumstances of other systems used in offices. If a corporation purchases a 

photocopying machine or an assembly line system, they come with specifications: careful, relatively 

precise descriptions of what the system will do. Deviations from these specs are errors. Even software, 

including complex software, comes with specifications. There are explicit instructions for its use, and 

careful characterisations of its corresponding prescribed behaviours.  

Siri comes with no such specifications. In fact, its creators cannot, with any precision at all, produce such 

specifications. Errors, then, are not deviations from (non-existent) specifications. What counts as an error? 

Only what humans notice, after the fact.  

This is the crucial difference between all AI systems and their hybrids, compared to all other contemplated 

office or workplace systems. With few or no specifications, errors cannot be reliably predicted in advance 

(Granger, 2020[19]). 

Conclusions 

AI system problems are real, and sometimes nefarious  

It is a time of substantial upheaval in the fields of AI, machine learning and neural networks. The normally 

well-regarded journal Nature recently published a report co-authored by researchers at Google, describing 

testing of an AI system for medical screening of breast cancer mammograms (McKinney et al., 2020[20]). It 

then published a critique by a group of AI experts, who argued “the absence of sufficiently documented 

methods and computer code underlying the study effectively undermines its scientific value” (Haibe-Kains 

et al., 2020[21]).  

The original authors then issued a brief counter-reply, asserting they would not release all of the code or 

data used to obtain the results. They argued that “much of the remaining code … [is] of scant scientific 

value and limited utility to researchers outside our organisation.” They further stated that releasing the 

system could risk it being treated as “medical device software” and “could lead to its misuse” (McKinney 

et al., 2020[22]).  
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These claims seem transparently spurious for two reasons. First, the requested code is indeed of direct 

interest to the researchers attempting to evaluate and replicate the medical claims. Second, the code could 

be issued solely to AI researchers and clearly labelled as experimental and expressly not for medical use.  

Corporations are similarly reluctant to release data around the pursuit of autonomous driving, medical 

diagnostics, and many other systems with potentially widespread and dangerous impacts. This continues 

to make it impossible in most cases for researchers to evaluate the claims of such systems. When the 

methods are hidden, they cannot in any way be seriously evaluated. In such cases, they simply remain 

unsubstantiated claims, and should be treated as such.  

Even supposedly non-profit research organisations have refused to make their research code and 

materials available for evaluation by scientific researchers. The perhaps inaptly named “Open AI” switched 

from being a non-profit to a “capped profit”. This turns out to mean a for-profit corporation that says it sets 

a 100x limit on investors’ returns. For comparison, early investors in Google have received roughly a 20x 

return.  

OpenAI publicised GPT-2 and later GPT-3 that can write impressive-seeming text stories. These initially 

were presented as literally “understanding human language”. However, the code producing these 

purported wonders was secret. OpenAI, despite its name, would not release the code (Gershgorn, 

2020[23]). 

Even well-respected academic researchers could not access the code to test the company’s claims. 

Eventually, some researchers did (not via OpenAI itself), and published findings that drastically call into 

question the code’s “understanding” of language. A sample failed story, for example, left most readers 

befuddled at what was being said2 (Marcus and Davis, 2020[24]; Marcus and Davis, 2020[25]). Extended 

discussions of other failures of common sense in present-day AI are well presented in Marcus and Davis 

(2019[26]). 

A statement may be syntactically correct and seemingly coherent, and yet not make any sense. Yet, like 

Siri, this is not an example of a system failing in the typical sense. These systems have opaque designs, 

such that their failures cannot be rigorously predicted. Even after the fact, the failures cannot be cogently 

systematised.  

How can we be more informed consumers and testers of proposed AI systems? 

What can be done to ensure that humans continue to participate and thrive in work environments targeted 

by AI systems? Despite enormous publicity and fanfare, AIs do not appear ready to take over jobs that 

require human language usage and common sense. AIs applying for such jobs will continue to be 

blindsided by many real-world situations, like trucks on the highway. They are even more vulnerable to 

directed attacks such as adversarial inputs.  

Recognise shortcomings of AI systems 

It remains unclear whether specific examples of the kind described here could be generalised in a way to 

thoroughly identify likely AI errors. A systematic effort to collect known errors can assist in individual 

assessments of proposed AI systems (by checking for known errors). However, it is not known whether 

these will lead to systems that are so improved that such errors no longer occur.  

Some companies are working to develop products aimed directly at overcoming these AI shortcomings. A 

“hybrid” approach, for example, incorporates higher-level symbol-manipulation operations with lower level 

ANN systems for statistical handling of big data (Marcus and Davis, 2019[26]). This approach includes 

symbol-manipulation systems, such as “expert systems” from past successful AI efforts. As such, they 

allow specific “common sense” rules, such as “if this, then that”, which systems can use to evaluate 

possible actions.  
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Hybrid systems may not be the answer, but new approaches of some kind must be brought to bear. At the 

very least, AI “experts” could increasingly be trained to assess proposed systems for known errors. They 

could also acknowledge the lack of generalisation that is a reliable hallmark of extant systems.  

Train AI experts and customers to look for known errors 

Customers of hybrid systems could perhaps usefully be trained to query experts with these examples of 

widespread AI shortcomings in mind. If potential AI customers are presented with sample errors such as 

these, they may become increasingly well-informed users. As a result, they may become qualified to ask 

AI providers and experts about the precise limits of a candidate system under specific conditions. With the 

intended tasks of the system specified, experts can then be asked to consider an expanded set of tasks. 

The aim would be to clarify which generalisations of the AI system can and cannot be counted on.  

These conclusions indicate how difficult it may be to define any remotely “complete” set of tasks that a 

buyer, or an AI expert, could use to identify all potentially relevant AI errors. It is far from obvious how to 

pin down even a small representative set of such tests.  

The four categories of examples described in this manuscript suggest initial starting points for these 

common areas of supposed expertise (self-driving cars; image recognition; handwriting; digital virtual 

assistants). These and many other available instances of AI hard limitations should be made available to 

entities looking to acquire and use AI systems.  

It will likely be beneficial for the pre-planned domain of the intended AI system to draw on these starting 

points to formulate examples. For instance, in each example, a few themes appear to emerge. Limitations 

to AI systems are described in terms that appear technical and detailed but in practice are vague with 

respect to what a user can expect (as in self-driving cars, handwriting, image recognition). Operations not 

explicitly tested are not highlighted for their possible divergence from reasonable behaviour (all categories 

display this shortcoming).  

Use concrete vignettes to avoid incorrect inferences 

In addition, AI systems are presented such that an intended user may infer abilities that a human would 

exhibit in a job, but that the AI system is not at all guaranteed to do. For example, the differences between 

“Level 2” and “Level 3” in self-driving cars are described by long, and highly detailed and technical 

descriptions. However, these can readily mislead readers into making inferences not promised in the 

specification.  

The leap between Level 2 and Level 3 is supposedly separated by a system in which “the human monitors 

the driving environment” (Level 2) vs. “the automated system monitors the driving environment” (Level 3). 

Yet, despite the addition of multiple sensors in the latter system, the human is nonetheless still required to 

continuously monitor all conditions, and be prepared to take control at a moment’s notice.  

How might users detect such potential misreads in advance? One approach is to take the specification of 

the task, and identify specific, concrete vignettes in which a difficulty might arise. These difficulties could 

be either for the human in a job, or for the AI system supposedly performing that job. Ask specific questions 

about what the human might be expected to do, if, say, a shipment does not arrive on schedule. AI system 

descriptions do not typically volunteer such examples.  

In each case, the more scenarios that are specifically inquired about, the more likely that system errors 

may be identified. This approach may appear too cumbersome or piecemeal, but it is exactly this 

characteristic that may make it useful.  

The approach may seem piecemeal because it appears to lack an undergirding principle connecting 

different proposed vignettes. Indeed, AI systems do not yet have anything resembling complete principles 
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for behaviours in complex settings. This is why a car may crash at full speed into a wall, or an image that 

looks like white noise may be labelled as an armadillo, with high (but erroneous) confidence.  

A human would handle edge effects with “common sense”, but the AI system may prove erratic. Indeed, it 

may be erratic in any untested situation. Testers would do well to think of tasks where a human might 

wince or express concern, but finally react sensibly. In these situations, AI may well fail the test.  

AI systems yet to be  

An oft-told adage is that present-day AI approaches are like climbing a tree, or even flying a helicopter, 

with the aim of reaching the moon. They can cite measurable ongoing progress: they do indeed keep 

climbing higher, closer to their goal. Yet it will require utterly distinct understandings and methods to go 

beyond the current achievements.  

In the long run, there is no principled reason why artificial systems cannot duplicate, and exceed, human 

abilities. Indeed, current human abilities already arise from physical machines – our brains; they simply 

are made of meat rather than metal. In describing the original purpose of AI, John McCarthy said, “Every 

aspect of learning or any other feature of intelligence can be so precisely described that a machine can be 

made to simulate it” [McCarthy et al., 1955 in (McCarthy et al., 2006[27])].  

The field of AI is not currently “precisely describing” the features of intelligence. Quite the opposite: such 

features are still highly elusive. This definition of AI does not emphasise analysing large datasets or 

commercial products per se. Rather, it focuses on the scientific objective of understanding the mind, and 

the brain that produces the mind. This may appear to be a too-theoretical pursuit, but it is the most 

pragmatic path to follow: to outperform humans, one must first equal them.  

AIs will eventually outperform humans but are nowhere close to doing so. AIs currently outperform humans 

in much the way that computers have always outperformed humans: in large-scale numeric calculation 

and data analysis. Correspondingly, AIs still wildly underperform humans in reasoning, lifelong learning, 

common sense and much more. 

As the “precise descriptions” of these human abilities are achieved, the inception of true intelligences will 

also come closer. Crucial information will come from neuroscience, psychology, computer science, 

mathematics and other related fields. Just as flying machines were based on principles of aerodynamics 

used by flying animals, intelligent machines will arise from understanding the principles of intelligence. 

Great advances have been made towards this aim, and more will come. In the meanwhile, human workers 

significantly outpace AIs in their judgements and practicality.  

When AIs do come to verge on human common sense, the questions of their industrial utility will be even 

more urgent. Jobholders have been repeatedly infringed on in the past, in times of economic and societal 

reorganisation. All such previous upheavals have entailed humans taking the jobs of other humans, but 

the resulting instabilities were nonetheless real. As AIs advance beyond their current limitations, continued 

threats to stable human employment will recur. Much work is yet to be done to address the future 

livelihoods of humans in an increasingly artificially intelligent world. 
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Notes

1 Several recent efforts have tried to demonstrate an abstract mathematical relationship between some 

operations that brains may actually do and the back-propagated error correction of ANNs. Such convoluted 

arguments may serve in part as reminders of the radical differences between ANNs and brains. They 

emphasise the comparative lack of research on how the desired computational ends may be instead 

achieved via different algorithms that do not rely on this form of error correction (Rodriguez, Whitson and 

Granger, 2004[28]; Chandrashekar and Granger, 2012[31]; Marblestone, Wayne and Kording, 2016[29]; 

Lillicrap et al., 2020[30]). 

2 One sample failed story produced the following text: “At the party, I poured myself a glass of lemonade, 

but it turned out to be too sour, so I added a little sugar. I didn’t see a spoon handy, so I stirred it with a 

cigarette. But that turned out to be a bad idea because it kept falling on the floor. That’s when he decided 

to start the Cremation Association of North America, which has become a major cremation provider with 

145 locations.” This example is also discussed in Chapter 12. 
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Anthony G. Cohn, School of Computing, University of Leeds 

This chapter discusses some approaches and methods used by the artificial 

intelligence (AI) community to measure and evaluate AI systems. It looks at 

the evolution of competitions, giving special attention to the Turing Test and 

the Winograd Schema Challenge. It also looks at the fascination of 

researchers for testing AI through games such as chess and Go. Several 

tests for measuring intelligence proposed for AI systems are examined, as 

well as the role of benchmark datasets in evaluating AI systems. The chapter 

ends with a discussion of the benefits and limitations of four approaches: 

custom dataset, benchmarks, competition and qualitative evaluation. 

14.  On evaluating artificial 

intelligence systems: Competitions and 

benchmarks 
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Introduction 

This chapter discusses approaches and methods used by the artificial intelligence (AI) community to 

measure and evaluate AI systems. Ever since researchers started building AI systems, they have wanted 

to evaluate them. Some have sought to measure these systems against human benchmarks (such as 

playing human experts at chess or other games). Others have measured them against other AI systems. 

Some have done both. 

Finding good benchmarks for evaluating systems, and conducting tests, is harder than it might seem. This 

is especially true because good methods apparently exist to evaluate human intelligence via standard tests 

and examinations.  

Two major challenges for AI systems revolve around their “brittleness” and narrow scope (see also Chapter 

2). AI systems that perform well have generally either been hand-engineered for particular problems, or 

trained on data relating to a particular task in a particular domain. This brittleness makes it hard to get 

good generalisation. Worse, AI systems are generally narrow in scope. They are able to tackle a limited 

set of problems and have limited knowledge of the world in general. Therefore, they will usually not even 

know when a problem lies beyond their competence.  

Part of that challenge relates to the absence of common sense knowledge. One of the earliest challenges 

issued to the community was the need for AI systems to have “common sense” (McCarthy, 1959[1]). 

However, this remains one of the hardest aspects of human intelligence to build into an AI system.  

That said, there are numerous examples of AI systems performing at, or even beyond human level in 

narrow, specialised domains and tasks. AlphaFold, for example, recently tackled protein structure 

prediction. It has been claimed that the latest version has solved a 50-year-old grand challenge problem 

in biology (Jumper et al., 2021[2]). 

Tests for measuring intelligence 

This section discusses tests for measuring intelligence proposed for AI systems. It then examines some of 

the competitions created to compare AI systems before looking at some benchmark datasets.  

The Turing Test and other inducement prizes 

There have been many tests proposed to evaluate AI systems. The Turing Test is probably the most 

famous (Turing, 1950[3]; Shieber, 2016[4]).1 There have been various Turing Test competitions, including 

for the annual Loebner Prize.2 The sometimes entertaining results have helped promulgate ideas about AI 

to the general public. However, the entrants have arguably not demonstrated any real important progress 

in AI.  

Turing himself never proposed the test as a serious way of measuring AI systems or of measuring progress 

(Shieber, 2016[4]). The idea has been called “misguided and inappropriate” (Shieber, 1994[5]; Hayes and 

Ford, 1995[6]). Instead, Shieber (2016[4]) argues for new “inducement prize” contests – “award programs 

established to induce people to solve a problem of importance by directly rewarding the solver.”  

Inducement prizes have been around for centuries. Perhaps the most famous historical example is the 

Longitude Prize offered by the UK government in 1714. More recently, the IBM Watson AI XPRIZE3 

“challenges teams to demonstrate how humans can work with AI to tackle global challenges”. The winner, 

scheduled to be announced in June 2021, was to win USD 5 million. 
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Five principles for inducement prizes 

Shieber (2016[4]) suggests prizes should adhere to five principles (Table 14.1). Annual “bake-offs” favoured 

by some funding agencies between rival teams funded in a research programme tend to reduce diversity 

and do not reward ambitious risky approaches. As such, they have driven incremental progress towards 

specific targets. However, Shieber (2016[4]) argues that neither the “bake-offs” nor Turing Test prizes such 

as the Loebner Prize meet all five proposed principles.  

Table 14.1. Five principles for inducement prizes 

Principle Rationale/description 

Occasionality of 

occurrence 

This ensures that awards are only given when warranted rather than 

automatically through an annual prize.  

Flexibility of award 
This aims to apply the spirit, rather than the letter, of the rules to determine a 

winner. 

Transparency of result 
The public should be able to inspect the results for both transparency and 

replicability. 

Absoluteness of criteria 
The award should satisfy absolute rather than relative criteria. In other words, it 

is not enough to be the best entrant in a competition to win an award. 

Reasonableness of goal 
This sets a constraint on the nature of the target(s); they should be beyond the 

current state of the art, but not impossibly so. 

When the test involves a quantitative metric, it should have “headroom” (Shieber, 2016[4]). In other words, 

the level set should be a real indicator of a system that performs at human level. A speech recognition 

system, for example, may perform within a few percentage points of human-level performance. However, 

such a system may still be unable to understand speech in arbitrary contexts.  

The question of “headroom” is also relevant to systems devised to address the Winograd Schema 

Challenge (WSC). The WSC aimed to ensure that statistics derived from mining large corpora could not 

be used to build successful systems rather than ensuring that the systems really understood the questions. 

At least for the current test set, statistics have been far more successful than anticipated (Kocijan et al., 

2020[7]).  

The Turing Test fails the reasonableness test since, in its full form, it is clearly too challenging for the 

current state of the art (Shieber, 2016[4]). He concludes a suitable form of a general AI inducement prize 

meeting all his principles is not possible in the short term. 

The role of competitions in measuring artificial intelligence systems 

This section discusses the main competitions that have come to play an increasingly important role in the 

AI community (Cohn, Dechter and and Lakemeyer, 2011[8]). Competitions of various kinds exist in nearly 

every subfield of AI. They range from theorem proving and SAT solvers… to trading agents, computational 

models of argumentation (Gaggl et al., 2018[9]), poker and other games… to object detection and 

recognition, among many others.4  

Robot competitions are some of the few competitions that cover multiple aspects of AI and aim to evaluate 

integrated systems. Creating a competition that focuses on one specific aspect might seem to be a more 

achievable way of measuring progress in AI. However, in many cases, the sub-problem tackled is often 

called “AI complete” (Mallery, 1988[10]). In other words, the sub-problem is at least as hard as the AI 

problem in general. A solution to the “sub-problem”, then, could be used to solve any AI challenge. 
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Box 14.1. The Winograd Schema Challenge 

Levesque (2011[11]) first proposed an alternative to the Turing Test, which he called the Winograd 

Schema Challenge. A follow-up paper (Levesque, Davis and Morgenstern, 2012[12]) elaborates on the 

idea. The name derives from a pair of sentences given by Terry Winograd, a well-known early AI 

researcher: 

1. The city councilmen refused the demonstrators a permit because they advocated violence. 

2. The city councilmen refused the demonstrators a permit because they feared violence. 

The two sentences only differ in one word, but the noun phrase referred to by the pronoun “they” 

changes. Winograd chose this sentence as a test for machine translation systems since, when 

translated to a gendered language such as French, “they” would be rendered as “elles” in the first 

sentence and “ils” in the second.  

A key aspect of choice in such a pair of sentences is the requirement for general knowledge, or common 

sense knowledge, to identify the correct referent for the pronoun. It should not be possible to use 

selectional restrictions to solve the problem. In the sentence pair, “The men ate the burgers because 

they were [hungry/delicious]”, for example, the AI only needs to know that men can eat things but 

burgers can’t, and only food (not people) can be delicious. Similarly, using statistics of occurrence 

should not help determine the referent. For example, in the pair of sentences, “The motorcycle overtook 

the push-bike because it was going so fast/slow”, the appropriate referent can be found through Google 

search statistics. 

Competitions serve several purposes  

Drive progress 

Competitions drive progress in a community. The very announcement of a competition usually stimulates 

many of those working in the particular field to enter. Researchers enter both to evaluate their methods 

and techniques but also to gain kudos and potential career enhancement.  

Measure the state of the art relatively objectively 

Competitions provide a way of measuring the state of the art in a relatively objective way. The test is set 

externally rather than by the system’s authors of what is now within the scope of the best systems and 

methods worldwide.  

Build on failures 

The failures of the systems in one competition generally drive improvements. This allows achieving a better 

performance in the following incarnation, thus setting short-term goals for improvements.  

Build community 

Competitions help the community come together and share expertise. While the events themselves are 

usually intensively competitive, there is usually a requirement for entrants to make their code available 

after the event. Workshops are organised to share what went well and what did not.  

Criteria for successful competitions 

A successful competition must set tasks that are neither too easy nor too hard but rather at the “cutting 

edge” so the best systems can at least partially succeed. As a field progresses, and successive instances 

of a competition are held in subsequent years, the tasks are typically made harder and more challenging. 
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This typically adds further realism so the challenges are closer to a real task that might be useful for 

humankind; the datasets might be larger; the robot environment less contrived, or stricter time limits 

applied.  

In some cases, the initial competition was just too hard for the current state of the art. For example, a 

competition around the WSC at IJCAI-16 (Davis, Morgenstern and Ortiz, 2017[13]) contained two tasks. No 

system performed well enough in the first task (a simple pronoun resolution) to advance to the second 

round of solving a WSC.  

Subsequently, neural language models such as BERT have achieved surprisingly good performance (at 

least to the challenge setters) (Devlin et al., 2019[14]). The best of these models achieved around 90% 

accuracy on the WSC273 dataset. Kocijan et al. (2020[7]) conclude that “new tests, more probing than the 

Winograd Schema Challenge, but still easy to administer and evaluate” are required. 

Will progress via competitions that become incrementally harder every year eventually lead to human-level 

general intelligence and performance? Arguably, this is the way that humans learn, via the graded 

examinations in schools. However, whether this is the best approach to achieving AI is an open question. 

Disadvantages of competitions 

Competitions have undoubtedly led to much progress in AI, but they also have disadvantages. A new 

entrant to the field can sometimes generate new and innovative approaches. However, competitions more 

often drive incremental improvements to systems and methods.  

The need for elaboration tolerance 

Competitions can also blinker the community into solving problems that are easily assessable via a 

competition rather than pursuing fundamental and long-term research. Good competition design can 

address this issue. Ideally, the systems that researchers enter into competitions should have what has 

been called “elaboration tolerance” (McCarthy, 1959[1]).  

A system has elaboration tolerance if it does not require substantive modification if the challenge itself was 

not substantively modified. More specifically, if a new version of the challenge is based on the original but 

differs in certain ways, the representation a system uses to solve the challenge only needs to be adapted 

or modified proportionately to the degree of the changes to the challenge.  

Elaboration tolerance is a requisite of potential solutions to the challenge problems listed on the 

“Commonsense Reasoning” page.5 Sloman (n.d.[15]) has suggested that elaboration tolerance is related to 

the ability of a system to “scale out” (rather than “scale up”).  

Whereas McCarthy’s notion is purely about the representation a system uses, Sloman is concerned about 

the whole system. Sloman asks whether the system can be “combined with new mechanisms to perform 

a variety of tasks”.  

Hypothetically, a vision system could be used to label images in arbitrary sized corpora but cannot be used 

in a myriad of other contexts. These contexts might include producing descriptions of scenes or helping a 

robot in its activities as being able to scale up but not out. Both of these ideas are related to what has been 

called “brittleness” – the notion that a system can solve a particular class of problems well but fails on 

related but perhaps only subtly different problems. 

Early artificial intelligence research with the games of chess and Go 

AI has had a long fascination with game playing (Box 14.2). Indeed, some of the earliest AI researchers 

worked on building systems to play games, such as the simple tic-tac-toe/noughts and crosses, and 

checkers/draughts. Chess was a long-time challenge for AI, but in 1997 IBM’s Deep Blue beat the reigning 
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world champion, Gary Kasparov. A key part of the success was the sheer brute computational force of 

Deep Blue.6 

Box 14.2. Why has AI had such a fascination with game playing? 

Since the earliest days of AI, for many reasons, researchers have been trying to develop programs to 

play games at a human level. Playing games well is often taken as a sign of intelligence, in particular 

more “intellectual” games such as chess. Developing an AI game player can thus be taken as a mark 

of progress towards machine intelligence.  

Many skills required to play games well are also required in real life. These include the ability to plan a 

sequence of actions to achieve some goal. It also includes how to reason under uncertainty (what 

moves the other player will make or a selection of cards in a game of poker). There is also the use of 

probability to optimise decision making and machine learning to improve the system’s performance, 

among other aspects.  

Games have the advantage that framework can be easily implemented (i.e. the basic rules of the game 

rather than the best strategy), and can be simulated in a virtual world. A machine can learn by playing 

against itself (e.g. the AlphaZero system learning Go).  

Of course, many aspects of real life such as language and vision are not present in game playing, at 

least as normally tackled in the AI game-playing literature. Real life is also much less structured than 

game playing, which usually has strict rules about turn taking and what moves are legal. Games are 

usually a “closed world” – everything about the game (except how to play well) can usually be 

completely described in a short tutorial, including all the possible objects and moves. 

The game of Go, which is considerably more complex than chess, was considered to be a long way from 

being played well by computers. However, in 2016, a program named AlphaGo from DeepMind, beat the 

9-dan player, Lee Sedol, 4-1 in a five game match. The match was organised as a formal competition, with 

a prize of US$1M for the winner. AlphaGo involved much human-coded knowledge, but a subsequent 

version, AlphaZero, was able to learn with only the rules of the game, just by playing itself many times.  

Togelius (2016[16]) has gathered advice on running competitions for the AI game-playing community. Much 

of this advice is pragmatic. For example, any software developed to support the competition should be 

platform-agnostic. Other advice mirrors Shieber’s principles, particularly that everything should be open-

source.  

Video games and virtual worlds 

Togelius (2016[17]) has also argued that video games make an excellent test bed and benchmark for AI (as 

well as providing technology for new kinds of video games). He acknowledges that robots, operating in the 

real world, are perhaps the most obvious test bed for AI. However, he also notes several disadvantages 

of this approach. These include expense, speed (i.e. experiments typically take non-trivial amounts of time 

to perform, making learning difficult) and physical complexity.  

Thus, games in their virtual worlds seem attractive, and in particular video games rather than board games. 

Moreover, designing AI systems to solve particular games does not necessarily imply anything about their 

ability to solve games in general. Therefore, Togelius records this as a motivation for designing the General 

Video Game Playing Competition (GVGAI) (Box 14.3). In this competition, entrant programs have to play 

ten new games known only to the competition organisers. To support the GVGAI, the General Video Game 

AI Framework has been developed to specify new games (Perez-Liebana et al., 2019[18]).  
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Specifying a standard framework for problems is a recurrent theme across competitions. For example, all 

the many problems in the Thousands of Problems for Theorem Provers (TPTP) benchmark (see below) 

are specified in the same way. Meanwhile, the Planning Domain Definition Language7 has been used in 

the automated planning community and competitions for many years now. Over the years, it has had 

several extensions to increase its expressivity.  

Many games that have been tackled are about perfect information: the only unknown is what actions the 

other player(s) might take. But other games mirror real life better in that only partial information is available 

and actions may be random. For example, the American Contract Bridge League has organised an annual 

competition since 1996. It has successively stronger players but still not at human champion level. Great 

progress has been made in poker in recent years, culminating in the Libratus system for which Sandholm 

and Brown (2018[19]) were also awarded the prestigious Minsky Medal.8 Subsequently, Brown and 

Sandholm (2019[20]) designed a system called “Pluribus” that beat multiple human players simultaneously. 

In response to the worldwide popularity of the game Angry Birds, an annual competition, AIBIRDS, has 

been held since 2012 (Renz et al., 2019[21]). While still played in an artificial environment, the game has 

many attractions from the point of view of measuring AI. First, there is incomplete knowledge of the physical 

parameters of the game. Second, there is an infinite set of actions available to an agent at any time. Third, 

it combines planning, image interpretation, reasoning, hypothesis formation and learning.  

Interestingly, Renz et al. (2019[21]) point out that, “learning-based approaches have been largely 

unsuccessful. Despite all the successes of deep learning in the past few years, no deep-learning based 

agent has yet entered the semi-final round of [the] competition.” Each year, humans also compete against 

the machines, and have dominated so far.  

Box 14.3. General Video AI Framework 

The core of the framework is a Video Game Description Language (VGDL). This provides a way of 

describing 2D video games concisely in a few dozen lines of plain text and can model both single and 

multi-player games. The originator listed desirable features of such a language. It should be 

clear, human-readable and unambiguous. Its vocabulary should be highly expressive from the beginning, 
yet still extensible to novel types of games. Finally, its representation structure should be easy to parse and 
facilitate automatically generated games, in such a way that default settings and sanity checks enable most 
random game description to be actually playable (Schaul, 2013[22]). 

Games descriptions have two main parts. Level descriptions specify the 2D layout of the screen using 

different symbols. The game description proper specifies what the symbols in the level description mean 

in terms of the VGDL ontology (e.g. monsters or goals). Other parts of the game description define a 

possibly hierarchical set of objects with reference to an ontology, the set of interactions that happen 

when objects collide (e.g. swords kill monsters) and a set of termination criteria that define how/when 

the game ends. 

The role of benchmarks in evaluating artificial intelligence systems 

Benchmarks have long played an important role in AI. A benchmark is a dataset which is proposed as, or 

has become, a dataset by which different solution techniques are evaluated.9 Benchmarks provide a way 

of comparing different solution methods on a single dataset or set of datasets. Sometimes they have 

emerged from research, initially used by a single group before becoming more widely used. Sometimes 

they have been explicitly created to stimulate research or evaluate competing methods.  
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In competitions, such as those discussed in the previous section, a test dataset is usually required. It then 

serves as a benchmark for the competition itself and often for subsequent research. However, it must be 

made openly available. Sometimes the dataset is reserved to be reused in subsequent competitions as it 

can be hard to create) as in the WSC. Often, there is an explicit call for benchmarks (e.g. in the International 

Competition on Computational Models of Argumentation (Gaggl et al., 2018[9]). 

Some of the major benchmarks are listed here.10 The TPTP (Box 14.4) has been an ongoing library of 

benchmark problems. Many are no longer seriously challenging, but it is continuously being extended with 

new problems (Sutcliffe, 2017[23]). In natural language understanding, General Language Understanding 

Evaluation (GLUE) (gluebench.com) is a “collection of NLU tasks including question answering, sentiment 

analysis and textual entailment, and an associated online platform for model evaluation, comparison and 

analysis.” One task is a text inference variant of the WSC dataset. Performance of systems trained jointly 

on all the tasks in GLUE perform better than those trained on each task separately (Wang et al., 2019[24]). 

Box 14.4. The TPTP Automated Theorem Proving Library 

The TPTP library contains literally thousands of problems for evaluating and testing automated theorem 

provers (ATPs). AI has addressed the challenge of building ATPs since its earliest days [e.g. the 

geometry theorem proving system in Gelernter (Gelernter, 1959[25])]. The current library ranges from 

simple test problems for people to use to test their programs to open problems; some test problems 

used to be challenging for ATPs but are now trivial. The 53 domains range from Mathematics (relation, 

Boolean, Kleene algebras, set theory, topology, etc.) to Biology, Medicine, Social Sciences Philosophy, 

Puzzles and various aspects of Computer Science and AI (knowledge representation, planning, 

common sense reasoning, etc.). There is a standard representation for all problems in the library, 

making it easy for an ATP to read in a problem. 

The benchmarks have all been more or less hand-curated/generated, but this can be expensive and 

difficult. Moreover, annotations on benchmarks are not always correct. Northcutt et al. (2021[26]), for 

example, estimated a 3.4% error rate across ten datasets surveyed. They thus recommend that special 

test sets should be carefully constructed to be error-free.  

There is also work in the automatic generation of benchmarks and in particular, test sets. For example, a 

second competition is associated with AIBIRDS: the level generation competition (Stephenson et al., 

2019[27]). Generating new levels or competitions is challenging, even for humans. This second level 

competition aims to stimulate and evaluate automated level generators. They note, “Submitted generators 

were required to deal with many physical reasoning constraints caused by the realistic nature of the game’s 

environment, in addition to ensuring that the created levels were fun, challenging, and solvable.”  

In their discussion of the 2017 competition, Stephenson et al. (2019[27]) raise several interesting questions 

about the evaluation criteria for judging entries. At present, humans judge entries on a) “how fun and 

enjoyable the level is to play”; b) “how creative the level design is”; and c) “how well balanced the level of 

difficulty is”. The definition of “fun” was left to the judges to avoid biasing them, and was used to determine 

the overall winner; b) and c) determine secondary prize-winners. The definition of similarity was also at the 

discretion of the judges.  

No consideration has been given to automated judging, suggesting this task is not amenable to AI 

techniques. There has been some research on determining how to evaluate “fun” or creativity [e.g. (Boden, 

1996[28]; Sweetser and Wyeth, 2005[29])], but this problem is still unsolved. The need for judges here 

contrasts with other competitions. Some are designed to avoid the need for human judges, such as the 

WSC (Levesque, Davis and Morgenstern, 2012[12]). 
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Conclusion 

Doing research to win competitions risks being too driven by the goals of the competition. Entrants may 

seek to make enough incremental progress to do well in the next iteration rather than being truly innovative 

and devoting time to solve the fundamental problems remaining for machines to reach human-level AI.  

Nonetheless, competitions have been valuable. Similarly, the availability of the many benchmark datasets 

allow for comparisons between different approaches. Table 14.2 summarises the main ways in which AI 

systems can be evaluated, along with the main advantages and disadvantages. 

AI has always been most successful in narrow, usually technical domains, isolated from common sense 

and world knowledge. Finding good ways to measure common sense, and to build it into AI systems 

remains one of the greatest challenges for AI.  

While many tests evaluate single aspects of intelligence, a challenge is to develop a comprehensive test 

for intelligence that is not susceptible to “game playing” by entrants. Typically, as soon as criteria are 

published which a system will be evaluated against, developers and researchers may try to optimise their 

systems for these specific criteria, rather than trying to create a more general system.  

McCarthy’s notion of elaboration tolerance is relevant in the search for a more general system. It tries to 

test whether a system has solved a specific problem, or instead has enough knowledge and 

reasoning/computational ability to solver a broad class of problems. Multiple conflicting evaluation criteria 

would be one strategy to address this issue: it would be impossible to optimise against all criteria 

simultaneously. Of course, having hold-out, unseen tests also helps.  

This is part of a more general issue that AI systems do not know what they don’t know. A typical AI system 

to, say, diagnose liver pathologies from data, only “knows” about (some) pathologies and aspects of the 

training data. It has no idea about more general knowledge of the world, even perhaps relatively related 

areas such as pathologies in a different part of the body. Even a young child has some appreciation of the 

limitations of its knowledge, and can confidently say “I don’t know” in answer to some input. 

Over the history of AI, many technologies have been held out as the solution for machine intelligence – 

from rule-based systems and early neural nets to Bayesian Networks and Deep Neural Nets. Many have 

demonstrated successes. However, they have all, so far, been shown to have problems. Not one offers a 

single solution to enable general machine intelligence.  

Machine intelligence may well require an amalgam of different techniques and approaches. Recent 

initiatives towards “neuro-symbolic” systems, for example, combine neural net technologies with symbolic 

reasoning. Each has its advantages. Some have high-level reasoning and ability to explain reasoning for 

symbolic systems. Others can learn from large amounts of data for neural systems. The challenge is how 

to build integrated systems that successfully combine multiple technologies. 
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Table 14.2. A comparison of different approaches to evaluating AI systems 

Evaluation method Advantages Disadvantages 

Custom dataset 

Can be designed specifically to test hypotheses. 
Potential for it to become a benchmark in the 

future. 

Datasets can be hard to produce/acquire. No 

comparator results available. 

Benchmark 
Previous comparator results available. No effort 

required to produce it. 

May not display all the advantages of the new 
method. Suitable benchmarks not always available. 
Tends to encourage research towards improving 

benchmark performance rather than AI in general. 

Competition 

Evaluation datasets/problem formulation 
specifically designed for problem. Encourages 
multiple entrants. Often there is a workshop 
associated where competitors discuss their results 

and the consequences for future progress. 

Effort required to organise. Can be challenging to 
pitch competition at suitable level with respect to 
state of the art – it must be enough of a challenge 
but not too much. May require sponsorship to run 

or to encourage entrants. 

Qualitative evaluation (i.e. 
human inspection of 

system) 

Can be tailored to specific dataset and problem. 
Not rigorous but useful for understanding strengths 

and weaknesses of an approach. 

Requires human effort and can suffer from 

selection bias. 

   

Note: The different rows are often used in combination: for example, a competition might involve a custom dataset, as well as benchmarks and 

perhaps a qualitative evaluation. 
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Notes

1 Turing called the test the “imitation game” (now the title of a film about Turing’s life). He proposed it as a 

test of whether a machine could display intelligent behaviour indistinguishable to a human observer 

confronted with both the machine and another human; the observer could only communicate with the 

machine and the other human by typed natural language. 

2 The Loebner Prize, instituted in November 1991, is normally held annually. Competitors enter chatbots 

and human judges (since 2019 members of the public) judge which is the most human-like. It was instituted 

by Hugh Loebner and offers a prize of USD 100 000 for “the first program that judges cannot distinguish 

from a real human in a Turing test that includes deciphering and understanding text, visual and auditory 

input. Once this is achieved, the annual competition will end.” 

 
4 These are often associated with AI conferences, but sometimes independently organised. Kaggle hosts 

many competitions: www.kaggle.com/competitions, many with prizes. The platform www.aicrowd.com/ 

also hosts challenges to enable “data science experts and enthusiasts to collaboratively solve real-world 

problems”. Another platform hosting competitions is https://competitions.codalab.org/. All URLs accessed 

24 March 2021. 

5 As an example of elaboration tolerance, consider one of the problems on Commonsense Reasoning 

(n.d.[33]): “A gardener who has valuable plants with long delicate stems protects them against the wind by 

staking them; that is, by plunging a stake into the ground near them and attaching the plants to the stake 

with string”. Variants of the problem suggested included: “What would happen: If the stake is only placed 

upright on the ground, not stuck into the ground? If the string were attached only to the plant, not to the 

stake? To the stake, but not to the plant? If the plant is growing out of rock? Or in water? If, instead of 

string, you use a rubber band? Or a wire twist-tie? Or a light chain? Or a metal ring? Or a cobweb? If 

instead of tying the ends of the string, you twist them together? Or glue them?...” 

6 Some have speculated that a bug in the code contributed to Deep Blue’s success. In this view, the bug 

provoked a random move for the computer. Kasparov apparently attributed this move to a “deeper strategy” 

and subsequently played too cautiously (Anderson, 11 May 2017[32]).  

7 Fox and Long (2002[31]) write: “The adoption of a common formalism for describing planning domains 

fosters far greater reuse of research and allows more direct comparison of systems and approaches, and 

therefore supports faster progress in the field. A common formalism is a compromise between expressive 

power (in which development is strongly driven by potential applications) and the progress of basic 

research (which encourages development from well-understood foundations). The role of a common 

formalism as a communication medium for exchange demands that it is provided with a clear semantics.” 

8 The team behind AlphaGo won the inaugural Minsky Medal. The Marvin Minsky Medal is awarded by 

IJCAI for “Outstanding Achievements in AI”. 

9 Hall (Hall, 3 April 2019[30]) proposes characteristics of a good machine learning benchmarks such as 

being openly available, well documented, labelled and with an accompanying demonstration. 

10 There are many others including those included in repositories such as www.kaggle.com/ 

https://paperswithcode.com/datasets.  

 

https://www.kaggle.com/competitions
https://www.aicrowd.com/
https://competitions.codalab.org/
https://www.kaggle.com/
https://paperswithcode.com/datasets
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Guillaume Avrin, artificial intelligence 

As artificial intelligence (AI) becomes more mature, it is increasingly used in 

the world of work alongside human beings. This raises the question of the 

real value provided by AI, its limits and its complementarity with the skills of 

biological intelligence. Based on evaluations of AI systems by the Laboratoire 

national de métrologie et d’essais in France, this chapter proposes a high-

level taxonomy of AI capabilities and generalises it to other AI tasks to draw 

a parallel with human capabilities. It also presents proven practices for 

evaluating AI systems, which could serve as a basis for developing a 

methodology for comparing AI and human intelligence. Finally, it 

recommends further actions to progress in identifying the strengths and 

weaknesses of AI vs. human intelligence. To that end, it considers the 

functions and mechanisms underlying capabilities, taking into account the 

specificities of non-convex AI behaviour in the definition of evaluation tools. 

15.  Assessing artificial intelligence 

capabilities 
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Introduction 

Based on evaluations of AI systems by the Laboratoire national de métrologie et d’essais (LNE) in France, 

this chapter proposes a high-level taxonomy of AI capabilities. It then generalises this taxonomy to other 

AI tasks to draw a parallel with human capabilities. It also presents proven practices for evaluating AI 

systems, which could serve as a basis for developing a methodology for comparing AI and human 

intelligence. Finally, it recommends further actions to identify the strengths and weaknesses of AI vs. 

human intelligence. To that end, it considers the functions and mechanisms underlying capabilities, taking 

into account the specificities of non-convex AI behaviour in the definition of evaluation tools. 

The chapter uses the terms “evaluation” and “evaluation campaign”. An evaluation is a single test that aims 

to measure the characteristics (performance, explainability, etc.) of an intelligent system. Conversely, an 

evaluation campaign represents the process of evaluating products either vertically (by observing a range 

of products at a given time) and/or horizontally (by observing the evolution of the product over time). 

Disciplinary field of artificial intelligence evaluation 

This section provides a framework for LNE's “evaluation” activities in the AI field, while presenting the good 

practices acquired since this activity was set up in 2008. 

The good practices at the heart of LNE evaluation campaigns are mainly the result of the search for a 

compromise between realism and reproducibility of experiments. It has led to the identification of features 

to be presented in campaigns below. Some of these features relate to the general organisation of the 

evaluation campaign, while others are more specialised on the evaluation process. 

 Scientific 

Evaluation campaigns preserve the demonstration aspect typically associated with them. However, they 

are based on the scientific criteria of assessment objectivity, performance measurement repeatability and 

experiment reproducibility. They also respect the requirements imposed by metrological rigour. 

 Benchmark-based 

The intelligent systems are evaluated through benchmarks. This means they perform well-specified tests 

in realistic environments or on databases. In addition, their performance is assessed by applying 

quantitative metrics. 

 Modular 

It is often not satisfactory to evaluate only the robot as a whole. Thus, the elements constituting the robot's 

architecture are broken down into functionalities (e.g. obstacle detection). These are then combined to 

perform more complex tasks (e.g. semantic navigation). The evaluation thus consists in Functionality 

Benchmarks (FBMs) and Task Benchmarks (TBMs). FBMs evaluate specific capabilities with a limited 

utility when used alone, while TBMs evaluate more complex activities (see below). 

 Periodical 

Evaluation campaigns should be organised as recurring events offering a similar evaluation framework 

each time (similar testbeds, similar testing datasets, same evaluation tools, etc.). This framework enables 

monitoring of the technological progress of the community of developers as a whole. 

 Structured 

Evaluation campaigns are structured to optimise effort and maximise impact. As such, they provide the 

scientific community with a stable set of benchmarking experiments. This, in turn, enables objective 

comparison of research results and can act as the seed for the definition of standards. 

 Synergic 
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Evaluation campaigns should build on the well-established framework originally created by RoCKIn1 and 

Quaero2 projects and subsequently validated, perfected and extended by RockEU23, SciRoc4, ROSE5 and 

METRICS6 projects. 

 Open 

Evaluation tools and annotated datasets should be publicly available. This will enable research and 

industry to develop and fine-tune their own algorithms, systems and products. Existing and prospective 

actors gain access both to difficult-to-obtain data with associated ground truth and to validated evaluation 

tools. Importantly, these by-products benefit the evaluator and promote the long-term sustainability of its 

evaluation campaigns. Users of the open data and tools will naturally be inclined to participate in the 

campaigns, thus creating a virtuous circle enabling their success. 

Functionality benchmarks and task benchmarks 

Evaluation campaigns include two groups of benchmarks (Amigoni et al., 2015[1]; Avrin, Barbosa and 

Delaborde, 2020[2]). 

Functionality benchmarks (FBMs) 

A functionality is conventionally identified as a self-contained unit of capability, which is too low level to be 

useful on its own to reach a goal (e.g. self-localisation, crucial to most applications but aimless on its own). 

A single component or a set of components can provide a functionality, and usually involves both hardware 

and software.  

An FBM is a benchmark that investigates the performance of a robot component when executing a given 

functionality. A functionality is as independent as possible of the other functionalities of the system. In this 

way, functionality can be controlled as the sole dependent variable in the evaluation. 

Task benchmarks (TBMs) 

A task is an activity of a robot system that, when performed, accomplishes a goal considered useful on its 

own. A task always requires multiple functionalities to be performed. Finding and fetching an object, for 

example, involves functionalities such as self-localisation, mapping, navigation, obstacle avoidance, 

perception, object classification/identification and grasping. A TBM is a benchmark that investigates the 

performance of a robot system when executing a given task. TBMs are designed by focusing on the goal 

of the task, without constraining the means by which such goal is reached. 

Evaluating the overall performance of a robot system while performing a task is interesting for assessing 

the global behaviour of the application. However, it does not allow evaluation of the contribution of each 

component. Nor does it put in evidence which components are limiting system performance. 

On the other side, the good performance of each element in a set of components does not necessarily 

mean that a robot built with such components will perform well. System-level integration has, in fact, a 

deep influence on this, which component-level benchmarking does not investigate.  

For these reasons, combining a TBM with FBMs focused on the key functionalities required by the task 

provides a deeper analysis of a robot system and better supports scientific and technical progress. The 

objective is to address the evaluation needs of end-users, integrators and equipment manufacturers. 

Fairness of evaluation campaigns 

This section looks at how to ensure an optimally fair treatment of the campaign’s participants. The notion 

of fairness is addressed in light of metrological considerations. 
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Simultaneity 

The evaluator shall ensure a simultaneity of the evaluation, as required by the following considerations: 

 The difficulty to model the influence of environmental factors on the system’s performance: 

any outdoor experiment will never be completely repeatable. Clouds change in the sky; waves and 

tides modify visibility underwater, etc. This lack of repeatability, in addition to its influence on the 

metrological rigour of the evaluation, has an impact on the fairness of the evaluation between 

participating systems. It is not conceivable that one participant will have to operate in pouring rain, 

while another will suffer from maximum sunshine. In this regard, the evaluator shall define 

thresholds and limits in several parameters that are considered to influence performance of the 

devices. Outside of this acceptability range, the evaluator shall define remedial strategies to have 

intelligent systems compete in reasonably similar conditions. 

 The “a priori ignorance” imperative: evaluated systems have a learning capability and 

consequently, should not have a priori knowledge of the testing environment (testbeds and testing 

datasets) used for the evaluation in order to avoid measurement bias and overfitting. This remark 

remains valid for systems that do not have learning skills since developers can influence the design 

of their systems if they have a priori information about testbeds and data. 

 The “a posteriori publication” imperative: to ensure reproducibility of the evaluation 

experiments, testing environments used must be publicly described (and accessible if they are 

datasets) when the measurements and results are published. 

This notion of “simultaneity” can sometimes be spread across the one or two days of the evaluation 

campaigns. The tolerance level about what may be considered “simultaneous” must, of course, be 

discussed on a case-by-case basis. 

Impartiality 

The evaluation must be carried out by a “trusted third party”. This evaluator must have metrology expertise 

applied to the evaluated systems in order to develop an evaluation protocol common to all participants. In 

addition, it must guarantee there are no conflicts of interest between the campaigns’ evaluator and 

participants. 

Precise evaluation plan 

Each evaluation must rely on an evaluation plan, a document that details the features of the following: 

 one or more evaluation tasks that focus on a device or software performing a specification 

 characteristics that need to be measured or estimated (performance, quality, safety, explainability, 

etc.) 

 metrics (i.e. a formula that allows production of scores, such as accuracy, precision, recall, 

F-measure) 

 test data or test environments (datasets or testbeds) 

 evaluation tools (software for data collection, visualisation, comparison). 

Evaluation task 

The first step in organising an evaluation campaign is to specify and prioritise a set of evaluation tasks 

(FBMs and TBMs). They are deduced from the identification of scientific and technological barriers. The 

principal (campaign funder), who expresses the “business” need, defines the tasks rather than the 

evaluator (LNE and its potential partners). On the other hand, when a potential use case is identified, the 

evaluator must carry out the following checks: 
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 List solutions corresponding to the use case, with an estimate (when the information is accessible) 

of the performance limitations associated with their characteristics or conditions of use (costs, 

knowledge to be implemented for deployment, operation in highly constrained environments or for 

an extremely specific field, etc.). 

 List the types of data required for the development and operation of such solutions, and their 

availability (considering regulatory or ethical limitations, the cost of collection, etc.). 

During this stage, the evaluator checks the feasibility of the campaign using the following criteria: 

 possibility of objectifying the evaluation criteria 

 difficulty of collecting and transmitting test data to the participants of the challenge (confidentiality 

of data inherent to use cases, availability of data, etc.), or making test environments available 

 comparability of solutions for the use case (systems that can potentially take in extremely varied 

types of data may lead to significant adaptation of evaluation protocols, or even incomparability). 

Evaluation method 

The evaluation paradigm generally consists in comparing reference and hypothesis data. Reference data 

are the ground truth annotated by human experts or provided by measuring instruments in the test facility. 

Conversely, hypothesis data are the behaviour or output produced automatically by the intelligent system. 

This comparison allows the estimation of the performance, the reliability and other characteristics such as 

efficiency of robots. The evaluation can concern the entire system (during TBM) or the main technological 

components taken independently (during FBM), as shown in Figure 15.1. 

Figure 15.1. Evaluation method 

 

Some evaluation campaigns last several years and include several evaluations. The repeated evaluations 

allow the principal to assess the effectiveness of the funding granted for the organisation of the evaluation 

campaign. For example, this could estimate the performance of potential technological solutions that 

address its use case. For developers, repeated evaluations allow them to update the technological 

components of the intelligent system according to the quantitative results obtained. 
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The dry-run evaluation guarantees the smooth implementation of the campaign. It allows the evaluator to 

ensure its evaluation plan is both realistic with respect to the capabilities of the systems, and fair among 

the different technologies used by participants. Thus, the dry run can experiment with several test 

environments and metrics to define the best evaluation protocol that will be fixed during the official 

evaluation campaigns. Several official evaluation campaigns follow the dry run. These aim at objectively 

measuring the progress of participating robots in real field conditions. To this end, the evaluation plan is 

meant to be adapted throughout the campaign to accompany the evolutions of the participants’ 

technological solutions. The steps of an evaluation campaign are presented in Figure 15.2. 

Figure 15.2. Steps of a campaign involving several evaluations 

 

Comparison metrics 

The capability measurements must be quantitative and provided by a formula (“metric”) that indicates the 

distance between the reference and the hypothesis, or measures capacity directly. The distance between 

the reference and the hypothesis could be measured by the distance between a real or ideal trajectory in 

a navigation task, the number of false positives and false negatives in an image recognition task, the binary 

success of a task, etc. A direct measurement could be time to completion, distance covered, etc. 

Test data or test environments (datasets or testbeds) 

Evaluations can be based on physical (in real or laboratory conditions on testbeds) and/or virtual testing 

environments (simulators and testing datasets). Pros and cons of the two types of environments are 

presented below. 
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Table 15.1. Strengths and weaknesses of test environments 

 Physical testbeds Simulators Datasets 

Exhaustiveness of tested scenarios * *** ** 

Realism of tested scenarios *** * ** 

Generation of new data *** ** * 

Dynamic and closed-loop testing *** ** * 

Experimentations reproducibility and 

measure repeatability * *** *** 

Cost of each test * *** ** 

Data obsolescence *** ** * 

Note: The number of asterisks indicates the rank of the test environment type: *** corresponds to the best solution and * to the worst. 

Taxonomy of evaluations carried out by Laboratoire national de métrologie et 

d’essais 

Clustering Laboratoire national de métrologie et d’essais’s artificial intelligence 

evaluations 

LNE has carried out more than 950 evaluations of AI systems since 2008. These include areas such as 

language processing (translation, transcription, speaker recognition, etc.), image processing (person 

recognition, object recognition, etc.) and robotics (autonomous vehicles, service robots, agricultural robots, 

intelligent medical devices, industrial robots, etc.). Examples of evaluations in the context of research and 

development projects are presented in Table 15.2. 

The evaluation tasks have been grouped into the capabilities of recognition, understanding, mission 

management and generation. These are an extension of the “sense-think-act” paradigm and an adaptation 

of the AI cycle “Perception – Learning – Knowledge representation – Reasoning – Planning – Execution” 

(Beetz et al., 2007). 

These capabilities are also consistent with the NIST 4D/RCS reference architecture for autonomous 

vehicles (Albus, 2002[3]); with the “SPACE” breakdown into functions (Sense, Perceive, Attend, Apprehend, 

Comprehend, Effect action) that underpin intelligent behaviour (Hughes and Hughes, 2019[4]) and finally, 

with most cognitive architectures (Kotseruba and Tsotsos, 2016[5]; Ye, Wang and Wang, 2018[6]). These 

can be illustrated by the dialogue systems, for which such a division is common (see Figure 15.3) (Leuski 

and Traum, 2008[7]). 
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Figure 15.3. Division of dialogue systems capabilities 

 

Comparative evaluation of different architectures 

LNE also assesses another capability of AI, which cuts across the different capabilities listed above: the 

system's capability to learn and update its parameters throughout its lifecycle. 

The differences between the cognitive architectures cited above do not result so much from divergent 

points of view on potential capabilities. Rather, they reflect two other factors. First, they were developed in 

different contexts (different perimeters and objectives of the associated research projects). Second, they 

have different hypotheses regarding the neural processes underlying these functionalities (symbolic, 

connectionist or hybrid architectures, centralised or decentralised processing, etc.). Summaries of the main 

cognitive architectures7 and the main capabilities8 covered by these architectures are available in the 

literature. 

The comparative evaluation of these different architectures is a vast subject of research. The evaluation 

criteria considered include the generality of the architecture. This measures the types of tasks and 

environments that can be handled by systems developed according to this architecture. This 

measurement, in turn, is assessed in terms of versatility and taskability.  

Versatility is defined as the number of ways in which the system designed according to the architecture 

can solve the same task, using different capabilities. Meanwhile, taskability is the number of different tasks 

that can be performed by the system receiving external commands. This generality feature of an 

architecture is directly related to the general intelligence of the resulting systems (Langley, Laird and 

Rogers, 2009[8]) and therefore directly relevant to this study.  

There is a wide variety of terms within these cognitive architectures to describe their capabilities. The first 

column of Table 15.2 proposes a first equivalence between these terms. 

These cognitive architectures are consistent with each other. They are not only interested in reproducing 

the external behaviour of biological intelligences but also in modelling the internal properties of their 

cognitive systems. They propose a blueprint for cognitive agents depicting the arrangement of functional 

units. This facilitates implementation of their principles in mechatronic systems [see 

“architecture-as-methodology” in Jiménez et al. (2021[9])]. 

These cognitive architectures also provide a formalism for presenting human capabilities (and dealing with 

the intrinsic complexity of cognitive systems) that can be reproduced in artificial systems.9 In this way, they 

represent a bio-inspired and integrated taxonomy of human and artificial capabilities and they facilitate the 

comparison of these capabilities when they are implemented in humans and in machines. 

Exclusivity and exhaustiveness 

As these cognitive architectures are used to assemble technological components of intelligent mechatronic 

systems, each capability can be associated to an exclusive component or group of components. Mutual 

exclusivity between these capabilities is thus guaranteed. For obvious cost reasons, engineers using a 

cognitive architecture to design their intelligent systems would have no interest in building in functional 
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redundancy between the different components (which must be distinguished from the redundancy intended 

to meet the safety requirements of critical systems).  

This modular architecture therefore makes it possible to isolate the technological components that 

underpin the different capabilities (i.e. the functional units) and to carry out input-output evaluations on 

each component to evaluate each capability independently. 

Various studies have investigated the exhaustiveness of the capabilities covered by these architectures. 

However, there does not yet seem to be a consensus regarding the most comprehensive architectures. 

Some prefer CLARION and AIS (Kotseruba and Tsotsos, 2016[5]), while others prefer OpenCogPrime (Ye, 

Wang and Wang, 2018[6]). Exhaustiveness can be measured by the "generality", i.e. the number of tasks 

and environments in which a system built according to this architecture can be used. 
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Table 15.2. LNE's evaluation tasks and metrics 

Automatic information processing systems 

Task Capability Metrics Project 

Speaker verification for criminalistics application  Recognition 

Equal error rate (EER), 
Detection cost function 

(DCF), Detection error trade-
off (DET), Probabilistic linear 
discriminant analysis, etc. 

(Ajili et al., 2016[10])  

FABIOLE (2013-16) 

VOXCRIM (2017-21) 

Automatic speech recognition Recognition 

Word error rate (WER), 

Automatic transcription 

evaluation for named entities 
(ATENE), Word Information 
Loss (WIL), Relative 

information loss (RIL), IN, 

Near 

(Ben Jannet et al., 2015[11]) 

VERA (2013-15) 

Speaker diarisation Recognition  
Diarisation Error Rate (DER) 

(Prokopalo et al., 2020[12]) 

ALLIES (2017-20) 

Speaker diarisation across time 
Recognition  

Learning 

Average DER across audio 
file, weighted by duration of 

the file 

Lifelong learning diarisation 
Recognition  

Learning 

The DER is computed on the 
final version of the hypothesis 

for each document penalised 
by the cost of interacting with 

the user in the loop 

Translation, translation across time, lifelong 

translation 

Recognition Understanding 

Generation 

Learning 

Bilingual evaluation 
understudy (BLEU) 
adaptations similar to those 
of the speaker diarisation 

tasks 

Recognition of patients' vital signs (breathing, heart 

rate, etc.). 
Recognition 

Estimated global error rate 
(EGER), Precision, Recall, F-

measure 
AIR (2020-22) 

Transcription from TV feeds 
Recognition  

Generation 

Word error rate (WER),  

(Galibert et al., 2014[13]) 
ETAPE (2010-12) 

Named entity recognition (detection, classification, 

decomposition) 
Recognition 

Entity Tree Error Rate 
(ETER), Slot error rate 
(SER), Error per response 
(ERR), EDT value, Local 

entity detection and 

recognition (LEDR) 

(Ben Jannet et al., 2014[14]) 

QUAERO (2008-14) 

Question-answering systems 

Recognition Understanding 

Mission management 

Generation 

QA distance measure,  

(Bernard et al., 2010[15]) 

People recognition in multimodal conditions Recognition EGER (Kahn et al., 2012) REPERE (2012-14) 

Translation of newspapers articles and broadcast 
news transcriptions that come from various radio and 

television programmes 

Recognition Understanding 

Generation 

Translation Error Rate (TER), 
BLEU, Human-mediated 

translation 

edit rate (HTER) 

TRAD (2012-14) 

Area segmentation Recognition 
ZoneMap, Pset, DetEval, 
Jaccard, (Brunessaux et al., 

2014[16]) 

MAURDOR (2012-14) Identification of the writing type (handwritten, printed, 

unspecified) 
Recognition Accuracy 

Language identification Recognition Accuracy 

Text-to-text transcription and optical character Recognition WER, Character error rate 
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recognition (CER) 

Extraction of logical structure (logical connections 

between semantic areas) 

 

Recognition 

Understanding 

Precision, Recall, F-measure 
(Oparin, Kahn and Galibert, 

2014[17]) 

Synthesis of video and text information 

Recognition Understanding 

Mission management 

Generation 

WER, SER, Precision, 

Recall, F-measure 
IMM (2013-16) 

Automatic speech recognition performance 

prediction 
Recognition Understanding 

Mean Absolute Error (MAE) 

and Kendall 

(Elloumi et al., 2018[18]) 

Autre – 2018 

Satellite image classification Recognition EGER, ZoneMap, Jaccard Confidential (2019-20) 

Recognition of aircraft movement patterns from radar 

data 
Recognition 

EGER, Precision, Recall, F-

measure 
Confidential (2019-20) 

Transcription by smartphone intelligent personal 

assistant 
Recognition WER, Accuracy 

Confidential (2019) 

QA by smartphone intelligent personal assistant 

Recognition Understanding 

Mission management 

Generation 

Accuracy 

Robotic systems 

Task Capability Metrics Project 

Crops and weeds recognition Recognition 

EGER, Precision, Rappel, F-
measure (Avrin et al., 
2019[19]); (Avrin et al., 

2020[20]) Challenge ROSE (2018-

21) Mechanical/electrical weeding action Generation Accuracy 

Full agricultural weeding robot evaluation 

Recognition Understanding 

Mission management 

Generation 

Accuracy 

Advanced driver assistance (ADAS) 

Recognition Understanding 

Mission management 

Generation 

Time to collision, time 
exposed to time to collision, 
time to brake, time to steer, 

time to react 

SVA/3SA (2015-22) 

Climbing up 10 cm high stairs without handrail, 
climbing up 15 cm high stairs with handrail, walking 
over stepping stones, walking on a beam, walking on 
a flat ground, walking on a slope, walking over 

obstacles 

Recognition Understanding 

Mission management 

Generation 

Walked distance, success 
rate, max tracking error, 
duration of the experiment, 

etc. 

(Stasse et al., 2018[21]) 

Robocom++ (2017-20) 

Human detection for logistics robots Recognition 
EGER, Precision, Recall, F-

measure 
Blaxtair Safe (2019-20) 

Estimate the stopping distance (conventional or 

emergency) under load and maximum speed 
Generation Linear distance measurement ECAI (2019-20) 

As shown in Table 15.2 the same task may involve one or more capabilities depending on the context. For 

example, an information retrieval task may rely only on the mission manager if the information is stored in 

memory. It may require recognition and understanding if it involves searching for information in text. A 

medical diagnosis may be based solely on a capability for recognition, or may also involve a phase of 

reasoning. A medical prescription will involve the “mission manager” component. 

Generalisation to other artificial intelligence tasks 

The capabilities presented in the previous section are defined in more detail in Table 15.3 and generalised 

to other typical AI tasks. Table 15.4 illustrates the presence of these capabilities in AI systems. Table 15.5 

provides an example of how to implement the evaluation process to assess these capabilities for a specific 

AI system.  
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Table 15.3. AI capabilities generalisation 

AI capabilities (and equivalent words) Examples of AI tasks Example of AI output 

Recognition: perception/acquisition of sensory 

information (vision, hearing, etc.) 

 

Speech recognition, optical character 
recognition, tokenisation, named entity 
recognition, lemmatisation, parsing, pose 
estimation, face verification, scene 

segmentation, person reidentification, image 

classification, etc. 

“object: glass”, “position: falling” and 
“object: human arm”, “position: 

stretched” 

Understanding: contextualisation, interpretation, 
comprehension, conceptualisation, assimilation 

(relating to system state, storage, etc.) 

  

Knowledge representation, 2D/3D mapping, 

information extraction, image captioning, etc. 

“the human tries to catch the falling 

glass” 

Mission manager: decision making, cogitation, 
cerebration, reasoning, inferring, arbitration 

(judgement), etc. 

Prediction, planning, optimisation, selection 

between different options, self-check, etc. 

Identification of the best trajectory to 
catch the glass safely before it 

touches the ground 

Generation: action  

 

Navigation, speech synthesis, locomotion, 
manipulation (grasping, etc.), content generation 

(image, etc.), etc. 

Generation of the movement of the 
robotic arm and the gripping effector 

to catch the glass 

Learning: adaptation, knowledge storing 

 

Parameters update (supervised, unsupervised, 
reinforcement learning, etc.), operation 

algorithm change.  

If "broken glass": failure, update the 
trajectory generation parameters, 

otherwise do nothing. 

Table 15.4. Examples of AI capabilities for different tasks 

Recognition Understanding Mission management Generation 

Autonomous car 

Traffic-sign recognition, obstacle 

recognition, etc. 

Velocity synthesis, image plan 
mapping, relationship 

identification, etc. 

Motion planning, risk 

assessment, etc. 

Vehicle control, braking, 

steering, driver alert, etc. 

Text summarisation 

Sentence segmentation, word 

segmentation, feature extraction 

Feature frequency, similarity 
computation, sentences 

comparison and scoring 

Sentences selection and 

assembly 
Summary generation 

Recommendation systems 

Analysis of rating Analysis of behaviour, 
contextualisation based on 

location, time, user profile, etc. 

Comparison to other user 

preferences 
Recommendation of objects. 

Table 15.5. Example of the evaluation steps for autonomous weeding robots (from ROSE and 
METRICS projects) 

Step Detail 

Formalisation of the need  What is the objective: autonomous weeding of the intra-row of agricultural plots. 

 Which crops should be considered in priority: corn and beans. 

 What are the weeds to be considered in priority: lamb’s quarter, matricaria, ryegrass and wild mustard. 

Feasibility analysis  Mapping of weed control robots on the market. 

 Identification of the main capabilities useful for the task (weed detection, weeding decision making, 

weeding action). 

 Estimation of the costs associated with the evaluation of these different capabilities: cheap weed 

images to produce, expensive test farm to set up, etc. 

Formalisation of the 

evaluation tasks 

 Recognition: segmentation of weeds and crops on images. 

 Generation: navigation, weeding action. 

 Etc. 

Formalisation of the 
evaluation criteria and 

metrics 

 Segmentation metrics: estimated global error rate (EGER), Jaccard index, Zonemap, etc. 

 Generation metrics: biomass estimation, counting of weeds removed. 

 Etc. 
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Relevance of the proposed capability taxonomy  

Relevance to artificial intelligence 

This section reviews the mutually exclusive and collectively exhaustive capabilities (MECE character) of 

the different taxonomies to assess their relevance. 

Exclusivity 

The taxonomy proposed in the previous section is inspired (although simplified) by cognitive architectures. 

These are designed to assemble different functional units (each representing its own capability) to form an 

information processing pipeline. As each unit has its own function, these cognitive architectures are 

designed to ensure the mutually exclusive nature of the capabilities. In this way, they avoid any redundancy 

that would be detrimental in terms of the manufacturing cost of the AI system. However, with the rise of 

end-to-end learning (Shibata, 2017[22]), the boundary between these different functions is blurring as design 

moves from this traditional “pipeline”. 

Exhaustiveness 

The proposed taxonomy seems to cover the capabilities of the main cognitive architectures, although with 

a high level of abstraction (Kotseruba and Tsotsos, 2016[5]; Ye, Wang and Wang, 2018[6]; Hughes and 

Hughes, 2019[4]). High-level capabilities could be further broken down into tasks, while retaining their 

MECE nature. Table 15.6 provides an example of the decomposition of a high-level capability, which is 

modality- and application-independent, into modality-dependent tasks and application-dependent 

sub-tasks. This division can be continued until specific tasks are reached (such as the manufacturing tasks 

proposed in Huckaby and Christensen (2012[23]): place, transport, retract, slide, insert, pick up, align, etc.). 

Table 15.6. Example of breaking down the recognition capability into sub-tasks 

Capability 

(modality- and application-independent) 
Modality-dependant task 

Modality- and application-dependant sub-

task 

Recognition 

Image recognition 

Optical character recognition 

Face recognition 

Pose estimation 

Etc. 

Language recognition 

Tokenisation 

Lemmatisation 

Named entity recognition 

Etc. 

Etc. Etc. 

The breakdown of capabilities proposed for the taxonomy is also relevant given that substantial progress 

on a task in one capability advances AI performance on other associated tasks (see Table 15.2 for 

examples of tasks for each capability). This is, in particular, the consequence of the democratisation of the 

use of pre-trained algorithms and inductive transfer (Moon, Kim and Wang, 2014[24]).  

This observation is even more striking for a particular modality related to a given capability [e.g. visual 

recognition (Razavian et al., 2014[25])or speech recognition (Howard and Ruder, 2018[26]; Peters et al., 

2018[27]; Devlin et al., 2019[28])].  

This is the case in part because the tasks for a given capability usually involve the same types of 

algorithms. For example, recognition tasks typically use classification, clustering or mapping algorithms. 

Conversely, mission management tasks will use more optimisation or regression algorithms. These 



264    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

correspondences between types of tasks to be automated and types of algorithms used for automation are 

discussed further below. 

These dependencies between progress on tasks associated with the same capability are much more 

evident between high-level tasks and their sub-tasks. In particular, some work highlights the critical 

implications that progress in certain sub-tasks can have for AI as a whole (Cremer and Whittlestone, 

2020[29]). 

Relevance to humans 

If the proposed taxonomy seems relevant to AI, another question arises: will it allow an effective 

comparison between human and AI capabilities? The answer requires two considerations. 

First, this taxonomy is related to cognitive architectures. As such, they already provide an integrated view 

of human and artificial capabilities, with particular caution regarding jingle-jangle fallacies mentioned in 

Primi et al. (2016[30]). Indeed, such a taxonomy should be independent of the underlying methods and 

equipment used Shneier et al. (2015[31]). 

Second, the idea of decomposing high-level capabilities into a pipeline of lower-level capabilities also 

seems relevant for the analysis of human capabilities. Tolan et al. (2020[32]) highlight this type of 

dependence between high-level capabilities and lower-level skills. This pipeline decomposition is also 

consistent with the levels of autonomy proposed in Huang et al. (2007[33]) to characterise the assistance 

of the machine to the human and vice versa. 

The decomposition choices, of which a first example is provided in Table 15.6, are in turn complex to 

perform. A consensus seems to be found in the idea of starting the taxonomy with high-level capabilities 

that are non-specialised (Hernández-Orallo, 2017[34]). Neubert et al. (2015[35]) called these capabilities with 

a higher level of abstraction “Core domain skills”, “Transversal skills” and “Basic cognitive skills”, while 

O*NET10 refers to them as “cross-occupational activities”. Chapter 7 explores these skills in more detail. 

The question of correspondence with the taxonomies of human capabilities also arises (Hernández-Orallo, 

2017[34]; Hernández-Orallo, 2017[36]; Tolan et al., 2020[32]). An association is proposed in Table 15.7. 
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Table 15.7. Correspondence between AI and human capabilities 

Human abilities  Capabilities 

Memory processes 
Mission management 

Learning 

Sensorimotor interaction 

Recognition 

Understanding 

Mission management 

Generation 

Visual processing Recognition 

Auditory processing Recognition 

Attention and search Recognition 

Planning and sequential decision making and acting 
Mission management 

Generation 

Comprehension and compositional expression 

Understanding 

Mission management 

Generation 

Communication 
Mission management 

Generation 

Emotion and self-control 
Mission management 

Generation 

Navigation Mission management 

Conceptualisation, learning and abstraction 
Understanding 

Learning 

Quantitative and logical reasoning Mission manager 

Mind modelling and social interaction 

Understanding 

Mission manager 

Generation 

Metacognition and confidence assessment Mission manager 

Source: Hernández-Orallo, (2017[36]). 

The human capabilities shown in Table 15.7 are mainly inspired by psychometrics, comparative 

psychology and cognitive science. They correspond to combinations of different capabilities proposed for 

AI, although the proposed taxonomy has a high level of abstraction. As a consequence, transcribing these 

human capabilities into an AI system would require different functional units. These capabilities would be 

called "composite". In AI, composite capabilities are complex to evaluate. The modular organisation of 

capabilities within cognitive architectures instead allows each technological component to be evaluated 

independently, through input-output evaluations, as discussed in Section 3.  

Relevance of evaluation methods to compare human and artificial capabilities 

Relevance of artificial intelligence tests 

This chapter presents an approach used by LNE to evaluate AI systems based on the implementation of 

benchmarks (i.e. standard tests). The test-based approach is also commonly used to assess human 

capabilities. School exams and neuropsychological evaluations (perceptual, motor, attentional tasks, etc.) 

rely on tests. Moreover, the a priori ignorance, a posteriori publication and impartiality requirements are 

equally important for such human dedicated tests. Even the adaptive/adversarial testing approaches used 

for AI have their equivalent for human testing. Adaptive testing is found in GRE, as well as in oral tests 

such as the one used by German dual vocational education and training (see Chapter 9). 
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Since the test-based approach is already used to evaluate both biological and artificial capabilities, it would 

be interesting to compare these competences. In most of the LNE data-based evaluations, humans 

perform the reference annotations against which the outputs of the intelligent system under evaluation are 

compared (see sub-section “Precise evaluation plan”). In practice, several humans annotate each piece of 

data in the test database11 to carry out inter- and intra-annotations agreement analyses (Mathet et al., 

2012[37]) and to verify the ground truth associated with the test data. Therefore, most evaluations of AI 

systems include, from the beginning, a comparison with humans.  

Tests designed for AI are also interesting because they are modular (cf. sub-section “Disciplinary field of 

AI evaluation”). As well, the evaluation tasks (task benchmarks and functionality benchmarks) follow the 

division of human capabilities into functional units proposed by cognitive architectures (cf. sub-section 

“Clustering LNE’s AI evaluations”). Thus, they are optimal to compare human and artificial capabilities. 

For these reasons, tests specifically designed for AI systems could occupy a prominent place in the 

OECD’s Artificial Intelligence and the Future of Skills project. 

Relevance of human tests 

Many tests designed for humans seem unsuitable for AI.  

First, tests are generally conducted with environments whose size (questionnaire, duration of driving 

licence exams, etc.) is not adapted to the specifics of AI behaviour. Indeed, AI behaviour is largely 

non-convex and non-linear. It is not possible to evaluate its performance at a few points and deduce by 

interpolation and extrapolation its performance on the whole operating domain. Thus, testing environments 

are set up to maximise the exhaustiveness of the test scenarios covered (e.g. virtual testing). On the 

contrary, humans have much less chaotic behaviour. This is why a driving exam of less than 60 minutes, 

or a written test with about 20 questions, is sufficient to test a human’s performance.  

Second, they sometimes focus on tasks (e.g. IQ tests) that can be easily overfitted by AI. Conversely, the 

risk of human overfitting of tasks designed to evaluate AIs seems much lower. 

Third, LNE has never evaluated some human capabilities presented in Table 15.7 in AI. Perhaps the task 

was not immediately relevant to the machine kingdom (e.g. it has no “self-control”). Or perhaps it was not 

evaluated as part of a specifically dedicated task, even it was a sub-component of a more complex task 

being evaluated (e.g. memory processes, quantitative and logical reasoning). As another possibility, no 

client may have ever asked LNE to assess this capability (e.g. “Emotion”, "Mind modelling and social 

interaction").  

This third finding is informative for the OECD study because it may indicate one of two things: 

 AI is too immature to perform this task. Therefore, there is no system on the market that can 

perform it and useless to organise an evaluation campaign for it. 

 Economic stakeholders have not yet deemed the assessment of this capacity as useful.  

The latter does not necessarily mean the automation of this capability has no market value. Indeed, most 

often only the “critical” systems incorporating AI (which present a risk to goods and/or people) are assessed 

by trusted third parties such as the LNE, in line with European regulations.12 

Finally, human tests are designed to assess abilities, some of which have a name that may be questionable 

for AI. A somewhat simplistic understanding of the “memory” capability in Table 15.7, for example, could 

suggest this task is not relevant for AI, since AI never forgets. On the contrary, if this task concerns the 

ability to store, recognise and re-use knowledge in general, then it seems a critical step not yet reached in 

AI development (Cremer and Whittlestone, 2020[29]).  

Similarly, many tasks automated by AI, such as optimising movements on a farm plot to weed a maximum 

of weeds in a minimum of time call for “quantitative and logical reasoning” skills (Avrin et al., 2020[20]; Avrin 
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et al., 2019[19]). However, it is not clear whether this task is more consistent with this capability than with 

“planning and sequential decision making and acting” or even “navigation”. 

Relevance of test methods specific to the intelligences being tested 

With respect to the non-convexity of AI behaviour and the convexity of human behaviour, and given the 

risks of overfitting, evaluation tools must generally be defined according to the intelligence to be evaluated. 

Two elements generally define the testing tools (measuring instrument, test dataset, etc.) to be used in an 

evaluation. First, there are the expected functionalities (image recognition, scene understanding, etc.) of 

the evaluated intelligent system. Second, there are the technological solutions underpinning these 

functionalities, be they algorithms (CNN, SVM, etc.) or biological neural networks. 

Another taxonomy relating to the type of technical solution (algorithms, biological neural architectures, etc.) 

used to achieve the functionality could therefore be established. This “mechanisms taxonomy” would be 

used to define the test protocol used (sampling and number of tests/questions, etc.) to evaluate the skills 

listed in the “capabilities taxonomy” and offered by the intelligent system under study.  

This does not mean that some systematic correspondences between the “capabilities taxonomy” and the 

“mechanisms taxonomy” cannot be found. For example, recognition tasks are often automated by deep 

learning algorithms. In addition, comprehension tasks often rely on knowledge graphs and mission 

management tasks on reasoners. 

This conclusion, moreover, is quite logical with regard to certain specificities of AI and human intelligence: 

 Other elements than capabilities can influence human performance, such as traits, interests and 

values (De Fruyt, Wille and John, 2015[38]). The socio-emotional characteristics of human 

performance must be considered when designing the test. This is not the case for AI. 

 AI can be duplicated and simulations run in parallel to test a large number of test scenarios; it is 

not possible to do the same for humans. 

Relevance of task assessments 

Although the assessment of AI and human intelligence capabilities are the focus of the study, task-based 

assessments may still be useful given the two points below: 

 There is no single combination of capabilities to perform a given task. Each type of agent will 

try to rely on its best capabilities: AI systems will rely on their remembering and retrieving skills, 

their unbounded working memory, their speed of calculation, their perfect attention span; humans 

will rely on their unrivalled manipulation skills, common sense reasoning, frugal learning skills, etc. 

 The end-to-end learning approach of AI can render obsolete/impossible the evaluation of 

certain capabilities (e.g. it is not possible to evaluate the performance of an end-to-end dialogue 

system in named entity recognition). 

Relevant commonalities between all test methods 

The test-based evaluation approach is common to both AI and human intelligence. It seems to be a crucial 

avenue to compare them. The Animal-AI testbed is, for example, dedicated to the evaluation of non-specific 

capabilities in both animals and AIs. How could standard test modules, such as ASTM E2919-14 for “Pose 

measurement”, be designed for AI in many different applications in manufacturing, construction, medicine 

and aerospace, to evaluate human performance?  

In addition, the test-based approach has other attributes that can inspire the expert judgement-based 

method of this study: 
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 The assessments should be modular (in agreement with the taxonomical approach of the OECD 

project), as already discussed above. 

 The impartiality of evaluations should be ensured: an expert could underestimate or overestimate 

the capabilities of AI systems due to a conflict of interest.  

Recommendations 

This chapter capitalises on LNE's experience in evaluating AI systems to address two main questions:  

 Which taxonomy should be used to compare AI and human intelligence capabilities? 

 What evaluation tools and methods should be used to compare these capabilities? 

It proposed a first taxonomy, simple but relevant to both biological and artificial intelligences. It then made 

recommendations regarding assessments to compare these intelligences. To make progress in answering 

the two questions above, and to pursue the impulse launched by the OECD in a particularly constructive, 

methodical, concerted and transparent spirit, the following actions would be useful: 

 Classify human and AI capabilities in terms of functions and mechanisms  

Intelligent systems (human or machine) perform very different functions (e.g. face recognition and bipedal 

walking, medical diagnosis and navigation of an unmanned aerial vehicle) using information processing 

mechanisms that rely on the same elementary principles. Conversely, within the same category of 

functions, different mechanisms can be used (rational or intuitive channels for humans, neural networks or 

expert systems for AI). For AI, grouping by evaluation metrics, types of automated tasks (classification, 

segmentation, etc.) and types of algorithms used (CNN, SVM, etc.) are examples of interesting avenues. 

 Organise evaluation tools around this double classification (function and mechanism) 

The general architecture and the hardware devices of the test benches to be set up (input/output channels, 

feedback, real time, etc.) are closely related to the mission of the system to be evaluated. Conversely, 

protocols to be followed (sampling and annotation of the operating domain, number of tests, etc.) will be 

determined mainly by the cognitive or computer mechanisms involved. In a maths competition, for 

example, a grading scale and a reader are mobilised; in a singing or figure skating competition, a jury is 

set up; in a sitting trial, both a professional legal judge and a popular jury are involved.  

 Formalise the influence of the non-convexity and intra-task variability of behaviour on the 

evaluation tools to be implemented 

AI generally has a non-convex behaviour with significant intra-task performance variability, while humans 

have a convex and stable behaviour. The behaviour convexity has a direct impact on the evaluation 

methods. It constitutes a gap between AI and human testing approaches that makes any assimilation 

difficult at this stage, in either direction. The evaluator of an intelligent machine has no choice but to go 

through the operating domain in all its corners. It must be tested at each of its operating points with a 

sampling step that is immediately related to the extremely unstable, non-linear character of its reactions.  

The evaluator of a human being will be much less precise. The evaluator will be satisfied with probing the 

acquisition of a know-how by putting the person in “typical” situations that solicit the various components 

of the competence (e.g. the driving licence exam vs. the long test campaigns of the autonomous vehicle). 

The evaluator thus hypothesises that the person has regulation capabilities and mental resources more 

general and common to the ordinary human being that will make him/her able to face any intermediate 

situation.  

The machine does not have them yet. This is probably because of its specialisation and its relative 

simplicity. However, it is also undoubtedly because of the technologies and processes used, which are 

not, or not sufficiently, superimposable on the natural cognitive mechanisms, composite and articulated, 

inherited from evolution.  
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These major differentials – the instability of intelligent systems – are of course to be nuanced precisely 

according to these technologies and applications. This is the main criterion on which to base improvements 

of the proposed taxonomy for comparison and cross-fertilisation between the two disciplines. 

 Deepen the discussion concerning the inter-task and intra-capability repercussions of the 

progress made in AI, to identify the root of AI capabilities and, by analogy, that of the human 

being  

 Develop a broadly shared set of resources, methodologies and evaluation metrics that will 

enable these analyses to be conducted and AI/human progress to be tracked 

The strengths and weaknesses of human intelligence compared to AI by a technical and comparative 

rapprochement in terms of taxonomic and methodological unity of appreciation should be identified as 

soon as possible. This should accompany the progress in AI and cognitive sciences and, in particular, pilot 

what contributes to identify their "greatest common divisors".  

AI seems to be the source of changes that are extremely favourable to the destiny of humanity, such as a 

radical emancipation from work. Therefore, this evolution should be supported by seeking to control the 

risks rather than pushing it back or slowing it down. Otherwise, humans will end up enduring AI without 

having prepared for it sufficiently. 
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Yvette Graham, Trinity College Dublin 

This chapter details evaluation techniques in Natural Language Processing, 

a challenging sub-discipline of artificial intelligence (AI). It highlights proven 

methods to provide both fair and replicable results for evaluation of system 

performance, as well as methods of longitudinal evaluation and comparison 

with human performance. It recaps pitfalls to avoid in applying techniques to 

new areas. In addition to direct measurement and comparison of system and 

human performance for individual tasks, the chapter reflects on the degree 

of shared human-machine task, scalability and potential for malicious 

application. Finally, it discusses the applicability of human intelligence tests 

to AI systems and summarises considerations for devising a general 

framework for assessing AI and robotics. 

16.  Assessing Natural Language 

Processing 
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Introduction 

Artificial intelligence (AI) and robotics aim to automate tasks that would otherwise require human 

intelligence and/or physical ability to complete. The Future Skills Expert Meeting aimed to devise and 

compile skills and tests suitable for assessing AI and robotics. The best place to look for appropriate tests 

is within each sub-discipline itself. Within each sub-discipline, tests for experimental procedures provide 

evidence that a proposed method or approach for improving system performance works or is worthwhile.  

This chapter looks at how Natural Language Processing, for example, has developed such tests. Analysis 

of emerging methods shows that valid and reliable measurements have already been developed for some 

areas. This include methods of comparison with human performance, as well as longitudinal evaluation of 

systems. It also includes several examples where evaluation has resulted in inaccurate conclusions to 

demonstrate the challenge of getting it right.  

Taking inspiration from successful methods of Natural Language Processing evaluation, the chapter 

identifies considerations for constructing a general-purpose framework for measuring system performance 

in AI and robotics. Such a framework would allow measurement of improvements to systems over time 

and comparison of system and human performance. 

Furthermore, it identifies the three most important factors beyond individual system performance for 

predicting or measuring the impact of a given AI technology on society and the future workforce. First, a 

framework should quantify the human effort saved by an AI system by automating an individual task. This 

would consider if the approach were unsupervised or supervised (and any human effort involved in labelling 

data). Second, it should quantify the human effort saved by a given AI system when applied at scale. This 

would consider the feasibility of substantially growing the deployment of a given technology. Third, it should 

quantify the human effort in monitoring and retraining the technology. In addition, it should identify the 

potential impact of the technology on society: do most people think it is safe and desirable?  

In all of the above, the framework should provide the context in which the results of a given test or 

measurement apply. The degree to which results apply outside the testing context cannot be assumed. AI 

technologies, when applied to a new domain, will inevitably require varying retraining and produce distinct 

results. 

Finally, the chapter considers the importance of the AI system’s ability to operate independent of humans. 

Rarely will an AI system fully replace human workers. Rather, AI technologies are much more likely to 

substantially enhance the way in which humans complete tasks. In some cases, they will vastly increase 

both the efficiency and scale by which task completion will be possible.  

To that end, the chapter outlines a potential method of measuring this dimension of AI system performance, 

as opposed to pitting human against machine in tests. This attempts to measure the amount of human 

effort saved in a hybrid human-machine setting. 

Existing methods 

The vast majority of AI research aims to automate the completion of individual tasks and tests. Methods 

are subsequently designed to evaluate the system with respect to specific individual tasks. In Natural 

Language Processing, for example, the research area is generally divided into the following sub-areas with 

individual tasks evaluated with appropriate methodology for that task:1 

 Dialogue and interactive systems: development of systems capable of engaging with humans 

through natural language. 
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 Discourse and pragmatics: the study of language in its context of use, with pragmatics focusing on 

the effects of context on meaning, and discourse analysis focusing on written and spoken language 

and social context. 

 Natural language generation: automated creation of natural language text or speech from natural 

language and/or abstract representations. 

 Information extraction: automated retrieval of information from text or speech. 

 Information retrieval: obtaining information or resources relevant to user information need. 

 Text mining: automatic derivation of high-quality information from text or speech data. 

 Language grounding to vision and robotics: techniques for linking language to objects, actions, 

sounds, images and so on. 

 Cognitive modelling: computer science that deals with simulating human problem solving and 

mental processing in a computerised model. 

 Psycholinguistics: the study of the mental aspects of language and speech. 

 Machine translation: automated translation of text or speech from one natural language to another. 

 Phonology: the study of the patterns of sounds in a language and across languages. 

 Morphology and word segmentation: the study of words, how words are formed and the relationship 

of words to other words in a single language. 

 Question answering: automatic retrieval or generation of answers to questions posed in natural 

language text or speech. 

 Semantics: Lexical, Sentence level and Textual Inference: study of the meaning of natural 

language text or speech and what can be logically inferred from it. 

 Sentiment analysis, stylistic analysis and argument mining: automatic classification of the 

sentiment, style or argument encoded in natural language text or speech. 

 Speech and multimodality: automatic processing of spoken and multimodal (image, video, etc.) 

data. 

 Summarisation: automatic extraction of information from natural language text or speech rendered 

as more concise text or speech. 

 Syntax: analysis of the underlying grammatical structure of natural language text or speech 

(tagging, chunking and parsing). 

Machine translation leads the way 

In Natural Language Processing, machine translation has led the way in terms of rigorous evaluation 

methodology. Its evaluation methods that aim to provide a realistic reflection of system performance were 

first established and later adapted to other Natural Language Processing areas.2 In machine translation, 

benchmark-shared tasks in which multiple research teams compete with each other are evaluated. A win 

at this task identifies the team as a world leader in this research area (Barrault et al., 2020[1]).  

Teams are provided with a set of test documents, freshly sourced on line and unseen by participants in 

the task to translate automatically with systems. In blind tests, large numbers of human assessors provide 

quality judgements of translations produced by each system. Finally, human evaluation quality ratings are 

combined into a meaningful statistic/overall score for a given system. The best performing system(s) is 

identified, considering statistical significance when small differences occur between results for systems.3  
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Figure 16.1. A German test sentence translated by machines and humans 

 

Source: Graham et al. (2020[2]). 

Tests to evaluate machine translation systems are designed to provide a realistic and fair ranking of 

systems.  

First, to help provide realistic results, test data used in translation are freshly sourced and unseen by 

systems. This is akin to a realistic use case where the input text to be translated will certainly neither be 

known nor predictable to systems. Figure 16.1 provides example test data freshly sourced from an online 

news article and used in a past machine translation competition.  

Second, human assessment is employed as opposed to an automatic metric of some description. 

Automatic metrics, even popular ones such as BLEU (Papineni et al., 2002[3]), are known to disagree with 

human assessment of translations to varying degrees and in different ways. Therefore, human assessment 

of translation quality has been established within machine translation as the most valid form of ground truth 

in tests (Callison-Burch, Osborne and Koehn, 2006[4]).  

Third, and also of high importance for valid measurement, is the employment of suitable statistics that can 

accurately reflect the performance of systems. For example, a meaningful intuitive statistics for which 

established methods of statistical significance testing exist are superior to ad hoc measures. Examples 

include the mean or median for central tendency or Pearson correlation for association. 

As a final consideration, since human evaluation of systems at scale takes substantial time and resources, 

many tests employ crowdsourced human assessments of system performance. This makes the validity of 

measurements highly dependent on strict quality checks. These test the reliability of human assessors for 

whom little to no verifiable information is known. 

Direct assessment vs. crowdsourcing 

The measure of choice for machine translation was coined by Conference on Machine Translation (Barrault 

et al., 2020[1]) as “direct assessment” (Graham and Liu, 2016[5]). It employs human assessors at scale with 

strict quality checks. Ratings of translation quality are collected on a 0-100 rating scale.  

These ratings result in score distributions for systems for which accurate statistical tests can be applied. 

Such tests can avoid conclusions of differences in average ratings that are likely to occur simply by chance. 

Replication of experiments showed an almost perfect correlation with past results (Graham, Awad and 

Smeaton, 2018[6]). 

Direct assessment has been used in machine translation for longitudinal evaluations that showed an 

average 10% improvement in system performance for machine translation of European languages over 

five years (Graham et al., 2014[7]). Furthermore, direct assessment made possible for the first time 

accurate comparison of human and machine translation system performance at the Conference on 

Machine Translation’s news translation task (Barrault et al., 2019[8]).  

Results of tests showed that machine translation systems can outperform a human translator when 

sufficient training data are available. More recent results provide evidence that even professional human 
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translators can vary substantially in performance in tests. Consequently, a win over an individual human 

translator in a competition does not imply that a given system outperforms human translation or human 

translators in general (Barrault et al., 2020[1]). 

Furthermore, direct assessment has been applied to additional AI tasks, such as video captioning (Awad 

et al., 2019[9]) and multilingual surface realisation (Mille et al., 2019[10]). Both of these Natural Language 

Generation research areas previously suffered from lack of reliable evaluation methodologies and low 

agreement in human assessment. 

Avoiding evaluation pitfalls 

Valid and reliable measures of system performance have not always been available within Natural 

Language Processing. This section provides examples of inaccurate or even misleading evaluation 

measures that were a necessary part of the process of producing more reliable measures. Several pitfalls, 

noted below, can be avoided when adapting evaluation techniques to new areas of AI: 

 inappropriate application of statistical significance testing4 

 application of statistics that allow machine learning algorithms to game the measure employed to 

evaluate systems5 

 reporting results on selective subsets of data that show system/metric in most favourable light6 

 lack of rigour in test settings that allow unfair advantage of systems due to unrealistic test data.7 

Human-system hybrids and performance tests 

In many AI applications, technologies will aid humans rather than replace them. As a result, pitting the 

performance of each against the other, only in isolation and working as entirely independent agents, could 

oversimplify reality. It would misjudge how technologies will be used in practice. Therefore, in addition to 

pitting human against machine in blind tests, performance of human/machine hybrids should ideally be 

measured where one or more human workers is aided by as opposed to being replaced by a given AI 

technology. 

Relative participation of humans and machines 

A hybrid test setting is more complex since it introduces the additional dimension of the relative 

participation of human and machine within completion of a given task. Participation can potentially range 

anywhere from almost entirely automated (with minimal human input) to almost entirely manual (with 

minimal AI).  

Such a dimension brings the evaluation into a more realistic and therefore better setting where results can 

have a stronger impact. This added complication does raise questions. How should the degree of 

hybridisation be measured? Where would emerging AI and robotics technologies be placed along such a 

scale? 

Creating a realistic, valid and reliable scale 

A measure should make the resulting scale realistic, valid and reliable. The scale should provide a 

real-world reflection of how AI technologies rank against each other in terms of human participation. Valid 

measurements would accurately reflect the degree of hybridisation. The scale would also be highly reliable 

so that subsequent measurements would produce the same conclusions. 
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In terms of hybridisation, one method would be to measure the amount of human effort saved by a given 

AI technology. This could be estimated, for example, by giving sets of human workers tasks to complete 

with and without the aid of the AI technology. Tests could include measurements of, for example, average 

times saved for completion of a single task with the AI system. This could result in a time-saving scale for 

single-task completion for AI technologies (from no or little savings to vast savings).  

Measuring the social value of AI technology 

Measurement must also consider the scale at which society needs such tasks and the level of scaling of 

tasks possible. A task completed by AI could produce vast time savings but society or the workforce may 

not value this extra time. Indeed, a task that saves less time but is needed by many people or businesses 

or people worldwide will have more impact. Similarly, a technology with vast time-saving potential but is 

not scalable will also not have a high impact on employment or the workplace; measurements should try 

to reflect this. 

An additional dimension is the potential social benefit of the AI technology. For example, a robot that can 

safely detect and deactivate bombs, aid a human perform life-saving surgery or prevent manipulation of 

the democratic process would rank highly on a scale of societal importance. 

Measuring potential risks 

Finally, an additional scale should ideally measure the risks of malicious applications of a given AI 

technology. Emerging Natural Language Processing technologies, for example, can generate fake news 

articles thought to be indistinguishable from human-authored news articles (Zellers et al., 2019[11]).  

Such technologies might be widely deployable, scalable and operate almost independently of human input. 

However, identification of their malicious potential will increase the likelihood of developing preventative 

measures within society. This could aid against abuses such as manipulation of democratic processes. 

Numerous other examples of malicious AI exist such as deep fakes, drones and use of AI in the military. 

In summary, tests can be devised to measure the human effort saved by assisting human workers with a 

given AI technology. There are four main considerations: 

 time saved by hybridisation corresponding to a straightforward measurement of reduction in task 

completion time for a given task with and without the aid of the specific AI technology 

 scalability, the need within society or the workforce for deployment of the technology at scale and 

whether scaling is possible 

 importance of the task to individuals within society or society as a whole 

 potential malicious impact of the AI technology and if this will require significant resources to deter 

or reduce risks on society or individuals within society. 

Recommendations 

As several of the earlier chapters have noted, computer scientists will argue that intelligence tests designed 

for humans are not suitable for measuring the performance of systems. This is primarily because human 

intelligence tests make assumptions about the basic abilities and skills of the test candidate; these are 

generally true of humans but not of AI. The main shortcomings with respect to natural language 

understanding are: 

 Human intelligence tests require basic human abilities that AI systems do not have. For example, 

understanding questions in natural language and relating the meaning to real-world objects, and 

understanding how real-world objects might fit together, be manipulated and so on.  



   279 

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

 Most areas of AI research do not attempt to obtain a general understanding of natural language. 

For example, they do not attempt to make the system complete tasks as a human would. Rather, 

they select a specific human intelligence task and work towards producing a system that can 

complete that single task.  

 The vast majority of successful AI systems are evaluated in terms of completion of such tasks in 

isolation of other tasks. Humans are able to integrate separate basic skills, such as natural 

language understanding and object recognition. However, little AI research attempts to integrate 

multiple distinct task completion skills. For this reason, as well as other basic assumptions of 

human intelligence test results, these skills would be inappropriate for testing AI systems. 

 An AI system trained to perform well on a specific human intelligence test is not a proof of 

intelligence in the way it would be of a human candidate. Even a minor change to the test format 

would likely lead to system failure due to its lack of general natural language understanding. 

Additionally, an AI system might perform well even on multiple human intelligence tests. However, 

without a function beyond these tests, it would be a system with few practical applications. 

Highly sophisticated AI systems may one day possess basic human abilities such as general natural 

language understanding, general knowledge and understanding of the real world. They may learn to 

integrate such skills when faced with a new task. In this scenario, human intelligence tests would then be 

relevant.  

However, measurement of system performance would need to mitigate against “gaming” the test. Just as 

humans can memorise answers to questions, a system can simply tune to the tests instead of 

demonstrating skill integration and general natural language understanding.  

Although human intelligence tests are not appropriate for testing AI systems, other tests for humans could 

apply. Possibilities include vocational and educational tests, or indeed neuropsychological and 

developmental psychological tests that focus on the low-level skills possessed by most humans but not AI.  

However, such tests are also likely to be misleading when directly applied to AI systems. Similar to human 

intelligence tests, such tests were devised with human candidates in mind. As a result, testing procedures 

include many assumptions about intelligence based on human intelligence alone. These assumptions, 

such as memory limitations and skills transfer, simply do not apply to AI. 

Whether human or AI-specific tests are adapted or new tests are developed to evaluate AI systems, these 

should consider the following guidelines: 

 Avoid direct adoption of tests designed to test humans 

Assumptions about human candidates do not hold for AI systems. 

 Examine testing scenarios employed in each area 

These scenarios should include evaluation procedures in research papers, particularly for those employed 

in benchmark tasks. 

 Use human ratings of performance for evaluation 

This approach must ensure human assessors are blind to whether a system or other human is performing 

the task as opposed to metrics. 

 Employ realistic, unseen test data  

Freshly sourced data will help AI systems avoid tuning to the test data. 

 Include multiple humans in tests  

Humans should receive the same input data and/or environment as systems to represent human variance 

in performance, as well as to compare systems realistically.  

 Measure reliability of test results  
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Reliability can be measured by repeating experiments with different human assessors or by measuring 

agreement of human assessors using inter-annotator and intra-annotator agreement measures, such as 

Kappa coefficient. 

 Repeat tests at regular intervals with new data and track improvements over time 

 Report meaningful statistics and account for variance and statistical significance 

 Measure performance of aid for a human rather than replacement  

Include a hybridisation scale that considers the performance of a given AI technology when aiding as 

opposed to entirely replacing a human. 

 Quantify the human effort involved to create key training data 

Include quantification of the human effort involved in creating training data for supervised AI technologies, 

monitoring and retraining systems. 

 Include scalability 

Technologies that can be deployed at scale are likely to have a higher impact on society. 

 Include both the potential and risk for society 

Include both the potential for positive impact and negative impact (e.g. malicious application of the AI 

technology). 
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Notes

1 List adapted from http://https://2020.emnlp.org and intended only as a high-level summary of topics of 

interest in NLP as opposed to an exhaustive list. There is often overlap between different areas but no 

hierarchical relationship between tasks. 

2 A main venue for development of rigorous evaluation techniques was the Conference on Machine 

Translation (WMT) (Koehn and Monz, 2006[12]). 

3 It is not unusual for more than one system to be tied for first position in the competition. 

4 Competing statistical significance tests applied in machine translation evaluation were widely believed to 

provide substantially distinct conclusions. These were based on results of an oft-cited publication that 

claimed approximate randomisation to be superior to bootstrap resampling. Analysis in repeat experiments 

showed apparent differences in test results were simply due to an unwittingly bad comparison of one-sided 

and two-sided test results in experiments (Graham, Mathu and Baldwin, 2014[13]). Other analysis claimed 

that direct assessment introduced substantial bias in evaluation results. Yet this method had been 

employed since 2017 at the Conference for Machine Translation to produce official results. On further 

inspection and analysis of experiment data, claims of bias were revealed as unfounded due to the 

application of inappropriate analysis techniques (Ma et al., 2017[14]). 

5 An active area of Natural Language Processing is quality estimation. This involves application of machine 

learning algorithms to predict the quality of system-generated language, commonly applied to machine 

translation output. Within this area in benchmark tasks, systems were tested using measures such as 

mean absolute error. These yielded results in favour of systems that produced overly conservative quality 

estimates. Analysis of results showed an unfair advantage for systems that accurately predicted the mode 

of the test set score distribution and produced a conservative quality estimate located close to this mode. 

Subsequently, a more suitable measure was recommended that avoided the bias of previous results using 

a unit free measure, the Pearson correlation (Graham, 2015[15]). In evaluation of machine translation 

metrics, inappropriate statistical significance tests were applied to evaluation of metrics. This resulted in 

high proportions of over-estimates of statistically significant differences in performance, prior to 

identification and correction of this problem (Graham and Liu, 2016[5]). 

6 Inappropriate measures of Natural Language Processing were also widely applied in automatic 

summarisation. In this sub-discipline, an automatic metric was produced and widely adopted based on an 

apparent higher correlation with human assessment than BLEU. However, closer inspection of experiment 

data showed results were only presented for metric scores calculated on a subset of the relevant data. 

Consequently, they did not hold true for the full set of human annotations (Graham, 2015[16]). 

7 In machine translation research, an early Chinese to English machine translation system achieved 

performance on-par with a human translator. These results were identified as inaccurate for several 

reasons. First, there was a lack of context provided to human assessors in the evaluation. Second, it 

included reverse-created test data. Third, there was a lack of statistical power analysis to ensure sufficient 

sample size when concluding ties. Correction of such experiments is described in detail in Graham, 

Haddow and Koehn (2020[17]). They show that, contrary to initial claims, the human translator did not 

outperform the system when evaluated in the most appropriate way. 

 

http://https/2020.emnlp.org
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This chapter looks at the basic “common sense” skills needed by artificial 

intelligence (AI) to perform in the workplace. It begins by focusing on the 

challenge for AI of navigating in complex and unpredictable environments. It 

explores the common sense skills underpinning these apparently 

sophisticated skills, including spatial memory, object representation and 

causal reasoning. The chapter continues with an exploration of social 

challenges of the workplace, including the need to predict or infer meaning 

from ambiguous behaviour and the “common sense” skills underpinning 

these. Finally, it looks at the challenges, opportunities and next steps related 

to testing AI with tasks from psychology.  

  

17.  Common sense skills: Artificial 

intelligence and the workplace 
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Introduction: Workplace perspectives on artificial intelligence  

Artificial intelligence (AI) systems can be trained to exceed human performance on certain tasks such as 

playing games, recognising images, controlling large cooling systems or painting cars. However, these 

systems cannot act outside of the task for which they have been trained. Moreover, they often fail under 

even minor deviations from their expected inputs (Shevlin et al., 2019[1]; Shanahan et al., 2020[2]).  

From a workplace perspective, this means that AI and robotics can only be used for highly specific, 

well-defined tasks or where the environment can be strictly controlled. If AIs are to move beyond these 

narrow tasks, a number of skills are required. 

In contrast, humans and other animals are generalists, able to perform a wide variety of both complex and 

seemingly simple tasks. Humans have a great capacity for specialisation. However, they are also highly 

capable of retraining and adapting to novel situations without losing previous knowledge. At the chess 

world championship, the grand masters are expected to be able to make a coffee, find the bathroom and 

operate the lights in their hotel rooms, all while remaining chess experts.  

The maturation of these common sense abilities often marks the biggest developmental leaps in children: 

a step-change in behavioural flexibility and independence occurs, for example, at around 12 months, with 

the ability to search for an object (be that food, toy or parent) that has moved out of sight (Piaget, 1977[3]).  

Non-human animals are also adept at common sense reasoning (Tomasello and Call, 1997[4]). A cat that 

sees a mouse enter a tunnel can flexibly deploy a range of behaviours – waiting at the tunnel mouth, 

running to the other end of the tunnel, digging or reaching in a paw. These are all based on the 

understanding that while the mouse can no longer be seen, it still exists and is potentially accessible. Both 

of these examples involve the cognitive capacity known as “object permanence”: an assumed skill in 

human adults, an area of study in child and animal psychology, and yet to be achieved in AI.  

The need for common sense skills 

AI and robotics can, of course, develop far beyond current capabilities without developing common sense 

reasoning. However, the presence or absence of common sense will fundamentally change the types of 

positions AI can take in the workplace of the future. Without common sense, AI will arguably remain a 

highly specialised tool limited in application (Shanahan et al., 2020[2]). It will either require specifically 

designed workspaces, potentially costly human supervision or be bounded by inflexibility and overfitting.  

Without common sense, attempts to broaden AI usage will result in applications for which it is 

fundamentally ill-suited, leading to potentially disastrous outcomes. In the United Kingdom, recent 

problems surrounding the algorithm used to assign A-level results to students illustrate the issue. 

Overfitting and other problems led to bias in the predicted grades assigned to students by the algorithm. 

Kelly (2021[5]) calls this probably the greatest policy failure in modern times for the examination system in 

England. 

If AI can develop some common sense skills, it might be able to expand into a new category of roles within 

the workplace. 

In some cases, these common sense skills will be needed for an artificial agent to perform any kind of role. 

This is likely the case for roles that require diverse and context-sensitive interactions with the physical and 

social environment, such as social care. Care-taking, in the form of both child and elder care, involves 

physical activities (feeding and cleaning) and social ones (play and friendship). Both are highly reliant on 

flexibility and common sense reasoning (Lin, Abney and Jenkins, 2017[6]).  

In other cases, common sense skills would be required for the benefit of automation to outweigh the cost 

and effort required for supervision and restructuring the environment. Traditional autonomous-vehicle 
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designs, for example, have led to accidents in cases where a vehicle encounters a situation not included 

in its training data (Shafaei et al., 2018[7]).  

To avoid such accidents, autonomous vehicles require continuous human supervision while on the road. 

Companies like iSee, however, are moving away from such designs to “autonomy powered by humanistic 

common sense”. It aims to build cars that can flexibly respond to new situations without human supervision 

(www.isee.ai/about-us). 

Both the knowledge and appropriate tools are currently lacking to assess the capacity of AI to take on 

some or all of these common sense skills. At present, tests of AI capacity are neither sufficiently cognitively 

defined nor sufficiently general to answer this question. The next two sections review spatial and social 

cognition respectively, exploring the implications of these two key categories of common sense for the 

future of work. The final section then proposes a way to assess AI progress towards solving these 

challenges. 

Spatial navigation and treatment of objects  

Spatial navigation and the appropriate treatment of objects is a challenge for robotics. Robots are either 

limited in application or rely on environments that have been specifically adapted to ensure highly 

consistent inputs. Any input that deviates from expectation may result in damage or disruption. Amazon, 

for example, designs its warehouses to allow the Kiva robots to transport entire racks on predefined paths, 

while picking and packaging products still requires human common sense and dexterity (Wurman, 

D’Andrea and Mountz, 2008[8]). Outside of certain factories and warehouses with a large scope for 

investment, many workplaces cannot easily be adapted to address such strict limitations.  

Issues faced by developers of robotic vacuums and lawn mowers exemplify the challenges faced by 

bringing robotic assistance into a wider range of workplaces. These robots must navigate a messy 

real-world environment with unpredictable inputs and obstacles: is that grass, the edge of a flowerbed or 

an object on the lawn?  

To some extent, the environment can be controlled and accounted for. The edge of a lawn, for example, 

could be delineated with a guide wire. Similarly, the ceiling can be scanned for room size or the robot can 

be re-routed after a detected collision. However, in practice, many users spend more time managing the 

robot than they save by owning it. 

A taxonomy of common sense space and object skills 

Non-human animals can navigate complex environments with varying levels of sophistication, with even 

the simplest creatures showing some capacity. Animals use spatial skills but also memory to deal with 

obstacles, objects and affordances. The following taxonomy is a subset of skills identified by psychologists 

as key features of physical cognition in human and non-human animals. It focuses on skills relevant for 

basic physical tasks common in human workspaces, such as navigating a space and interacting with 

objects. 

1. Spatial memory and navigation:  

 Path integration: using self-motion cues (like limb velocity and movement) to navigate. This 

ability allows navigation without relying on external landmarks (Etienne and Jeffery, 2004[9]). 

 Cognitive maps: building an internal representation of external space, routes and landmark 

arrangements (Kitchin, 1994[10]). Cognitive maps can rely on path integration, as well as other 

sources of information (like external landmarks). 

 What-where-when episodic-like memory: remembering the location of a specific object at a 

specific time (Clayton et al., 2001[11]). 
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 Episodic memory: remembering entire events (including spatial context, perceptual 

information and internal processes) (Tulving, 1983[12]; Cheke and Clayton, 2015[13]). Episodic 

memory includes information about the “what”, “where” and “when” of an event (as in 

episodic-like memory). However, it also involves mentally reconstructing the experience of an 

event and other features.  

2. Object representations: 

 Object-level representations: Representing visual input as objects (that may be movable, 

able to block other objects, act as containers etc.), rather than patterns of light (Gregory, 

1997[14]). 

 Object permanence: knowing something is still there, even if you can no longer detect it 

(Baillargeon and DeVos, 1991[15]). Object permanence requires representing visual input as 

objects. 

 Affordance-level representations: relating perceptual information into affordance information 

to, for example, predict whether a large object will fit through a narrow aperture (Scarantino, 

2003[16]). An “affordance” is a property of an object that makes clear how it can be used. 

Affordance-level representations often depend on representing visual input as objects 

(e.g. representing something as an “apple” may evoke the affordance “eat-able”). 

3. Causal reasoning 

 Spatial and object inference: the ability to infer the location or properties of an object through 

inference, based on prior knowledge and context. For example, eliminative reasoning can 

conclude that out of a large and small container, only the former can contain a large object 

(Shanahan et al., 2020[2]). 

 Folk physics: the capacity to predict outcomes based on some understanding of the physical 

mechanisms involved (e.g. predicting a spherical object on a slope will roll downwards) 

(Povinelli, 2003[17]). The capacity for folk physics will typically rely on a capacity for spatial and 

object inference. 

AI’s space and object skills in the workplace 

Even the simplest tasks may require these skills if the inputs themselves cannot be strictly controlled and 

defined. Various standard software programs involve “objects” (e.g. text boxes or pictures). These objects 

often vary in whether they can be manipulated, and whether they can obstruct or occlude other objects, 

etc.  

An AI without common sense space and object skills may be useful in processing documents but only if 

these take predictable forms and are accompanied by sufficient metadata. Such an AI would be unable to 

cope with variations in input type (such as new software). Even in perfect conditions, it would make regular 

“obvious” errors that would necessitate extensive oversight.  

In contrast, an AI with an ability to represent objects and their affordances – i.e. able to continue to reason 

about them when they are no longer perceptible (object permanence) and infer new information based on 

this reasoning – would be able to process a large range of files from even unfamiliar sources. Furthermore, 

if an agent is also able to develop a folk physics of the software environment (e.g. image software that 

would contain multiple “layers” with “transparency”), when encountering an entirely unfamiliar object or 

software, it could make inferences based on its knowledge of similar objects/software. While this may 

sound sophisticated, it is the minimum required for an agent skilled in PowerPoint, for example, to learn to 

use Google Slides without explicit retraining. 
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Robots’ space and object skills in the workplace 

Robots in controlled environments 

For robots in physical workplaces, common sense space and object skills are even more crucial. Robotics 

is currently limited to strictly controlled environments. Even within workplaces (such as factories and 

warehouses), that can provide a relatively high level of consistency, space and object common sense 

would vastly expand the types and range of tasks available to robotics.  

Amazon illustrates the limitations of robots in the workplace. Even if all packages were labelled with (say) 

barcodes representing their content, a robot would still need several skills to locate a given package 

reliably. First, it would need to represent objects (“this visual input is a package”). Second, it would need 

to represent the affordances of the object (“the package is x shape and x weight and this translates into 

manipulating it in x manner”). Third, it would often require object permanence and inference (“the barcode 

may be behind or under the visible surface of the package, which may mean rotating the package to find 

it”). For basic navigation of the warehouse without predefined routes, the robot would need to use path 

integration, as well as the capacity to deal with obstacles.  

Robots in uncontrolled environments 

In many cases, where robot assistance would be most useful – such as medical and elderly care – are 

within uncontrolled environments (Lin, Abney and Jenkins, 2017[6]). However, these environments, by 

definition, create challenges. At its most fundamental level, assistance in the home will require the capacity 

to navigate a home environment, and to share it with someone who may behave in unpredictable ways. 

A robot carer without space and object common sense would function only within a consistently 

clear-floored home. It could not interact with objects that might take unpredictable forms or be in 

unpredictable locations. It could also not perform any bodily care (assisting with dressing, washing or 

toileting) without risk of causing pain and injury. Without at least episodic-like memory, it would be unable 

to locate items that can vary in their location even if it has seen where they were last placed. 

Conversely, a robot carer in possession of space and object common sense has multiple tools at its 

disposal. When confronted with an obstacle, a robot carer could use a cognitive map to choose an 

alternative route. It could also use affordance-level representations to relocate the obstacle and clear its 

own path. If an important item (e.g. a hearing aid or pacifier) falls out of sight, it could use object 

permanence to retrieve it. If delivering a drink, it could use folk physics regarding support and flatness to 

identify a surface that can safely hold the receptacle. Episodic memory would be crucial for a robot carer 

to monitor cognitive health of their charge. Speech repetition, for example, could be a warning sign for 

memory decline.  

In a wide range of workplace contexts, space and object common sense skills make a fundamental 

difference to the types of roles an agent can play. Some of these skills (e.g. path integration) are already 

common features in AI. Others (e.g. folk physics) are clearly some way off. For most skills in between, 

tools are not yet available to assess them in AI, and thus it is not clear how close they are to development 

(Crosby, 2020[18]; Shanahan et al., 2020[2]).  

Pragmatics and social interaction 

Recent advances in linguistic AI have led to an explosion of interactive applications. Chatbots, for example, 

are now routinely used as a first port of call for online customer enquiries and tech support. GTP-3 is a 

language model with 175 billion parameters that can perform at close to human level in many few-shot 

learning tasks. 
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However, GPT-3 performs relatively poorly on common sense reasoning tests that involve inferring 

meaning from non-explicit reference or background knowledge (Floridi and Chiriatti, 2020[19]). Within 

linguistics, this kind of reasoning using language is known as pragmatics. However, the skill of predicting 

or inferring meaning from ambiguous behaviour is an issue beyond linguistics and common to all social 

interaction. 

In the physical realm, a considerable challenge for AI has been to detect, identify and interpret inputs 

associated with objects and their affordances. Much the same challenge is magnified when it comes to 

human behavioural cues. For example, gaze direction indicates the subject of an individual’s attention (and 

therefore their behaviour and verbal reference). It provides the means for responding appropriately to a 

host of otherwise ambiguous behaviours. However, gaze indicates a direction but not a specific target. The 

target must be inferred from the context and behaviour of the individual, in combination with prior 

knowledge. These forms of common sense inferences are a particular challenge for current AI. 

A taxonomy of common sense social and communicative skills 

Animal and developmental cognition research distinguishes between two categories of social skills. Social 

learning and communication is the exchange of information with others. Meanwhile, social cognition is 

understanding and predicting the behaviour and mental states of others. The following taxonomy 

represents capacities widely accepted by researchers in this area (Hoppitt and Laland, 2013[20]; 

Shettleworth, 2013[21]). 

1. Social learning and communication 

 Local or stimulus enhancement: increased attention to areas or objects manipulated by 

others (Hoppitt and Laland, 2013[20]). Stimulus enhancement may be involved in other forms of 

learning (e.g. observational conditioning). For example, an observer may respond more to a 

stimulus as a result of witnessing another agent interact with that stimulus. 

 Observational conditioning: learning action-outcome relationships through watching others. 

For example, a rhesus monkey with no prior exposure to snakes will not behave fearfully in 

response to a snake. However, if the monkey observes another individual responding fearfully 

to snakes, it will begin responding this way as well (Cook et al., 1985[22]). 

 Emulation: targeting a goal or outcome after observation without imitating exact behaviour 

(Tomasello, 1990[23]). An adult carrying a stack of books might use her elbow to switch on a 

light; a child emulating this adult would know they could use alternative means (e.g. their hand) 

to achieve this same goal of switching on the light. 

 Imitation: reproduction of observed behaviour. In the previous example, a child learning 

through imitation would use their elbow to switch on the light if they had observed the adult 

doing so (Hoppitt and Laland, 2013[20]). Whether it is more appropriate to emulate or imitate 

will depend on the situation. In this example, the exact behaviour was the product of a limitation 

on the adult (the stack of books) that the child did not suffer. It was therefore more efficient to 

emulate the target of the action than to imitate the exact action itself. 

 Non-verbal communication: production and comprehension of non-linguistic communicative 

signals, such as gestures and facial expressions (Kendon, 2004[24]). Some argue that 

non-verbal communication paves the way for language development in humans (Iverson and 

Goldin-Meadow, 2005[25]). 

 Linguistic communication: production and comprehension of language for communicative 

purposes (Tomasello, 2009[26]). 

2. Social cognition 

 Co-operation: co-ordinating behaviour with another individual to achieve a shared goal 

(Henrich and Muthukrishna, 2021[27]). Some researchers suggest that co-operative activities, 
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like helping and sharing, depend on understanding the goals of others or a minimal theory of 

mind (Tomasello and Vaish, 2013[28]).  

 Behaviour reading: inferring likely behaviour from context and behaviour or facial expressions 

(Perner and Ruffman, 2005[29]).  

 Minimal theory of mind: inferring the goal (or outcome to which a behaviour is directed) of 

another agent from context and behaviour or facial expressions, without reference to mental 

states (Butterfill and Apperly, 2013[30]). This ability goes beyond behaviour reading (in involving 

goal attribution) but does not require a full-blown theory of mind.  

 Theory of mind: inferring and reasoning about internal epistemic and motivational states, such 

as intentions, desires and knowledge (Wellman, 1992[31]). Agents with this capacity can predict 

and explain behaviour by attributing a range of mental states, rather than just reasoning about 

behaviour or goal-directed behaviour.  

 Empathy: inferring and reasoning about the emotional states of others (Decety and Lamm, 

2006[32]). 

Social skills in the workplace 

All AIs interface, either directly or indirectly, with people. The form of this interaction is dictated by the 

capacity of the AI to deal with variability and unpredictability in its social input. This, in turn, dictates the 

roles available to AI in the workplace. This social input may take multiple forms, most commonly: 

information communicated via language, behaviour and social context. 

Predicting human behaviour is a major challenge for AI in multiple contexts. Yet this will be central to 

enable AIs to expand into new roles in the workforce, even if those roles do not involve an explicitly social 

component. For robots, human workers represent a unique form of (highly fragile) obstacle with complex 

and unpredictable trajectories.  

Predicting trajectories is particularly challenging for autonomous vehicles. Unless AI controls all road users, 

autonomous vehicles must predict and account for human behaviour to avoid collision. An AI without social 

common sense may learn a range of predictors of collision-risk. For example, it can learn that a child on 

the pavement may lead to a child on the road. However, it will struggle with anything that falls outside of 

its specific training or requires inference. For example, it may not understand that a ball on the road may 

lead to a child on the road, with potentially fatal consequences.  

Much more explicitly social roles for AI and robots may be widely useful (as can be seen with chatbots). 

However, these roles would require more refined social skills beyond predicting simple behaviours (such 

as trajectory). A robot carer, for example, may not require full-blown empathy. However, it must identify 

needs that may be communicated both verbally and nonverbally. It must also deal with issues as they arise 

such as distress, confusion and injury. 

A robot carer would also need to be able to monitor health and cognitive function. This would require 

learning enough information about a specific individual to detect changes in personality or behaviour (such 

as aggression, delirium or unresponsiveness).  

A robot carer would also benefit from being able to distinguish between intentional (lying down) and 

unintentional (falling down) behaviour. This fundamental element of social common sense in practice 

requires elements of theory of mind, making it one of the more complex social cognition skills. However, it 

is required ubiquitously in the workplace: papers placed on the desk should be processed, while papers 

placed on a shelf that fall onto the desk should not.  

Requirements for training and supervision will significantly influence the potential for proliferation of AI 

within the workforce. If expert oversight is required for every new task, then such agents may be useful if 

produced and programmed or trained at scale. However, they will not be appropriate for niche or specified 
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applications. The ability of agents to “learn on the job” – to learn by watching and perhaps practising with 

oversight – vastly expands potential applications.  

AIs are currently adept at some forms of social learning such as observational conditioning. They can be 

trained on predictive relationships, for example, by watching YouTube videos. However, other forms are 

much more challenging. Emulation – arguably the most effective form of task learning – requires the goal 

or affordances of a situation to be extracted from observation. 

Testing artificial intelligence with tasks from psychology: Challenges, 

opportunities and next steps 

The above review of a taxonomy of common sense skills draws on research in developmental and 

comparative psychology. It focused on those capabilities that represent the breadth of current work in 

human and non-human animal research (Tomasello and Call, 1997[4]; Shettleworth, 1998[33]; Hoppitt and 

Laland, 2013[20]) and which are also immediately relevant to the development of AI in the workplace 

(Shanahan et al., 2020[2]). These capabilities are ubiquitous in humans and often common throughout the 

animal kingdom, but currently pose a challenge for AI. 

A research agenda for artificial intelligence in the workplace 

Lack of these common sense skills in AI limits the tasks that can be performed. It means many types of 

jobs will be safe from full automation until significant progress is made. To understand what jobs these are, 

and whether that progress is likely, requires basic research in two areas. First, researchers need to identify 

which common sense skills are necessary for specific roles within the workplace, and to what extent. When 

most humans have a capability, it is an assumed skill within an employee, but this would not be the case 

with an AI. Second, they need to understand current AI capacity, and measure progress, in common sense 

skills.  

This chapter has taken a first step towards addressing the first area of research. Concerning the second 

area, a number of well-established tests within animal and developmental cognition research assess these 

skills. However, there are no “off-the-shelf” cognitive tests appropriate for testing AI. Many tests designed 

for children are diagnostic, rather than evaluative, and others rely heavily on species-specific tendencies 

or biases.  

Conversely, a number of benchmarking assessments for AI have been the basis for cognitive claims. 

However, these assessments are rarely cognitively defined, and suffer from a construct validity problem. 

In particular, it is easy for a programmer (either consciously or subconsciously) to design and train an AI 

to pass a particular test, rather than to possess a particular skill (Hernández-Orallo, 2017[34]; Shevlin and 

Halina, 2019[35]). 

Animal-AI Testbed 

One solution to the validity problem is to assess AI in the same way that psychologists assess animals and 

children, such as through the Animal-AI Testbed (Crosby, Beyret and Halina, 2019[36]; Crosby, 2020[18]; 

Crosby et al., 2020[37]). Here, agents can be trained in a 3D environment and learn about the spaces, 

objects, agents and rules it contains.  

During training, agents can access a simulated arena with simple objects of various sizes, shapes and 

textures. The objects behave as they would in the real world (subject to forces of gravity, friction, etc.) due 

to simulated physics. The arena also contains positive and negative rewards, which an agent can attempt 

to acquire or avoid, respectively.  
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This training arena is designed to reproduce the type of environment an animal might encounter before 

they are tested in a typical animal-cognition task. Crucially, in both cases, an agent is not trained on the 

test itself. It thus cannot learn to simply pass this test through hundreds or thousands of trials. Instead, it 

must rely on general common sense skills like those reviewed above. 

The most recent version of the Animal-AI Testbed consists of 300 tasks. Each task includes a set of 

objects, including a positive reward and a time limit. An agent succeeds in the task if it retrieves sufficient 

reward (i.e. reward above some threshold) within the time limit. The tasks are either drawn directly from or 

inspired by tests used in developmental and comparative psychology.  

Each task aims to probe an agent’s ability to engage in common sense reasoning. For example, several 

tasks test an agent’s spatial memory and navigation abilities: these include mazes of various difficulties, 

from simple mazes in the shape of the letter “Y” to more difficult radial mazes with many arms. Another 

category of task tests an agent’s capacity for object permanence by moving rewards out of sight.  

Finally, other tasks probe an agent’s capacity for folk physics by presenting agents with problems that 

require a tool. To solve these problems, the agent must have some understanding of the physical 

mechanisms involved and how the tool can produce a causal effect that will lead to a reward.  

Using a wide range of cognitively defined tests, it is therefore possible to provide a robust and valid 

assessment of AI common sense capacities (Crosby et al., 2020[37]). 

Emerging tests for social and communicative skills 

Using the Animal-AI Testbed, it has been demonstrated that state-of-the-art artificial agents display path 

integration and the beginnings of cognitive maps and spatial and object inference (Crosby et al., 2020[38]; 

Voudouris et al., 2021[39]). However, episodic memory, object-level representations, object permanence, 

affordance-level representations and folk physics require further research. Solving these tasks in Animal-AI 

will be the first step towards solving them in real-world settings and will be a marker for the possible 

landscape of AI integration into the future workplace.  

The Animal-AI Testbed tests for common sense space and object skills rather than social and 

communicative skills. However, the latter is a promising area for future research. In psychology, there is a 

rich literature of tasks for testing social and communicative capacities in human and non-human animals 

(see references in taxonomy above).  

Researchers have begun to apply these tasks to AI systems. For example, AI and robotics researchers 

have tested artificial systems on theory of mind tasks (Winfield, 2018[40]; Rabinowitz et al., 2018[41]). Further 

research in this area would benefit from distinguishing abilities like behaviour reading and theory of mind, 

given these capacities may have differential effects on performance (Shevlin and Halina, 2019[35]). 

Enhancing human performance with artificial intelligence 

Moving beyond autonomous artificial agents, another use of AI in the workplace involves enhancing or 

augmenting human performance. Such enhancement technologies include tools like speech assistants, 

navigation systems and other decision-support systems (Hernández-Orallo and Vold, 2019[42]; Shevlin 

et al., 2019[1]; Sutton et al., 2020[43]).  

These tools are likely to present unique challenges to implementing AI in the workplace. Human-AI 

collaboration would also benefit from AI with common sense skills. For example, common sense space 

and object skills would facilitate guidance and navigational systems that can respond to the challenges 

and affordances of the environment rather than relying on pre-programmed routes and rules.  

Common sense social abilities may be even more important in the context of AI-human collaboration: an 

agent that can detect and respond to needs, interpret verbal and non-verbal communication, and engage 
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in joint problem solving will be a far more effective assistant in whatever capacity it is employed. Thus, 

common sense skills are important for not only enabling AI to operate autonomously or semi-autonomously 

in the workplace but also for enhancing human performance. 

Recommendations 

 Use animal and child development tests to test common sense skills  

While AIs excel at highly specified skills, they struggle with basic skills humans take for granted. Without 

such fundamental skills, they cannot navigate the world in a flexible and adaptive manner. It is challenging 

to test these skills in AI precisely because they are not generally assessed in human adults. Instead, tests 

developed for animals and young children provide the most appropriate means to assess AI systems in 

these areas.  

 Adapt these tests for AI  

However, such tests cannot be simply used, off the shelf, to assess AI. They must be adapted into contexts 

appropriate for AI and administered to ensure assessment of the skill and not expertise at the test. The 

Animal-AI Testbed provides an example of how this can be done.  

 Extend tests to social and communicative common sense 

The Animal-AI Testbed should be extended to tests for social and communicative common sense. These 

will be important for the integration of AI into workplaces that involve human interaction. 
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Part IV. Reflections and a 

pragmatic way forward 
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Art Graesser, Psychology and the Institute for Intelligent Systems, University of Memphis 

This chapter reflects on major issues recounted in the previous chapters, 

raising three key questions relevant to the Artificial Intelligence and the 

Future of Skills project. What is the value in identifying ideal models when 

comparing humans with artificial intelligence (AI) and robotic systems? How 

might systematic mapping occur between skill taxonomies, tasks, tests and 

functional AI components? How can major differences be handled in targeted 

skills, different occupations and changes in the world? Some suggestions are 

offered on next steps in addressing these questions.  

18.  Tasks and tests for assessing 

artificial intelligence and robotics in 

comparison with humans 
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Introduction 

The OECD Artificial Intelligence and the Future of Skills (AIFS) project attempts to understand the 

educational implications of artificial intelligence (AI) and robotics. The goal is to create an ongoing 

programme to assess the capabilities of AI and robotics, and to compare them with human capabilities. 

The 5-6 October 2020 meeting featured presentations from 13 experts who spanned diverse fields, 

including educational assessment, AI, robots, cognitive science and workforce training. Additional experts 

from various fields (and countries) also contributed. This chapter raises some questions and suggestions, 

and offers other reflections on major issues covered at that meeting and recounted in the preceding 

chapters.  

Identifying knowledge, skills and abilities 

One central issue is to identify the set of knowledge, skills and abilities (KSAs) to assess. Psychology has 

proposed comprehensive taxonomies with psychometric tests. These include the three-level 

Carroll-Horn-Cattell model presented by Kyllonen (see Chapter 3). This has a long history of validation in 

humans and quantitatively tuned factor analyses.  

There are abilities and skills identified in industrial-organisational psychology and business that involve 

tasks specific to particular occupations. This allows adults to be trained and certified to practice in the 

occupation. For example, Dorsey and Oppler (see Chapter 10) described the O*NET (Occupational 

Information Network) in the US Department of Labor. It identifies KSAs for occupation categories 

(e.g. manufacturing, health care). Rüschoff (see Chapter 9) presented the vocational education and 

training framework in Germany. It has an intense two-day assessment that has practical, written and oral 

components, including answering questions to justify actions. 

Greiff and Dörendahl (see Chapter 7) pushed the envelope beyond basic cognitive skills and 

domain-specific skills into the realm of transversal skills that have increasing importance in the 21st 

century. These comprise problem solving, collaboration, creative thinking and global competency. Wooley 

(see Chapter 6) echoed the importance of social intelligence and collaboration. Conversely, De Fruyt (see 

Chapter 5) emphasised social skills and emotion regulation skills.  

The AI/robotics contingency did not offer taxonomies of KSAs, as pointed out by Hernández-Orallo (see 

Chapter 11). Instead, it focuses on functional components of intelligent mechanisms, such as knowledge 

representation, reasoning, planning, learning, perception, navigation and natural language processing. 

They evaluate how well the various computational models in AI/robotics compare with humans on tasks 

that focus on these functional components.  

Forbus and Davis (see Chapter 2 and Chapter 12, respectively) pointed out which components are easier 

for computers to achieve (such as remembering and accessing facts) and which are easier for humans 

(such as common sense reasoning). Avrin (see Chapter 15) discusses systematic evaluations of over 900 

AI systems on recognition capabilities, learning, understanding, generation and mission navigation.  

Nearly all of these evaluations of systems in AI/robotics have been on practical tasks. Such tasks, such as 

autonomous cars and text summarisation, have objective criteria of success. Moreover, the tasks typically 

focus on those performed by adults in the workforce. However, Cheke (see Chapter 17) covered low-level 

skills of animals whereas Chokron (see Chapter 4) focused on cognitive and social skills of children. These 

presentations address the second central issue of the expert meeting, namely identifying differences in 

what can be accomplished by humans versus AI/robotic systems.  

With this context in mind, the chapter raises three questions, with associated reflections and suggestions. 

These aim to shed light on the primary goal and two central issues of the AIFS project.  
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What is the value in identifying ideal models when comparing humans and 

artificial intelligence/robotic systems? 

Towards a formal model of performance to assess and compare humans and AI 

robots  

One could imagine an ideal specification (i.e. formal model) of performance on tasks, tests and functional 

components. Such a model could serve as a standard to assess and compare humans versus AI/robots. 

That would go a long way in providing a fair comparison on the capabilities of the two systems.  

A perfect ideal model is perhaps illusory, but there can be approximations. For example, accomplished 

human experts can specify ideal responses to tasks and tests. These could either solve a problem or meet 

a level of mastery in achieving particular tasks. Such a specification has both a content analysis and a 

threshold analysis.  

Content analysis 

The content specification would declare the particular behaviours and products that correspond to a 

successful accomplishment of a task. This approach is adopted by designers of intelligent tutoring systems 

(Koedinger, Corbett and Perfetti, 2012[1]; Graesser, Hu and Sottilare, 2018[2]). These systems identify 

knowledge components required to master a subject matter or skill (e.g. algebra, physics). They also 

prepare a Q-matrix that specifies the knowledge components associated with each particular problem, 

task, or item along with behavioural manifestations of each knowledge component mastery. A complete 

and accurate solution would be needed, but it might also consider intermediate levels of achievement.  

Threshold analysis 

While the content analysis is applied to each individual item on a test or step in a task, the threshold 

analysis is applied to an aggregate score from the entire test/task. The threshold analysis identifies points 

on a continuum of scores that predict practical external criterial outcomes (which is infrequently 

conducted). This contrasts with exclusively psychometric indices or breakpoints in the distribution of scores 

(which is routinely conducted). Analyses can assess how well a population of humans or AI/robot systems 

meet the various thresholds of scores.  

How well would a human vs. an artificial intelligence/robotics system perform?  

Each adult has decades of experiences to fortify them in a task. Information about this past is either 

non-existent or minimally specified through demographic data or assorted tests. AI/robotics systems are 

unlikely to have such data available. However, there are AI systems that learn with experience. The 
Never-Ending Language Learner (NELL), for example, runs 24 hours per day learning to read the web and 

grow a knowledge base of beliefs (Mitchell et al., 2018[3]).  

There are several possible approaches to understanding how AI/robotics system can be put on an even 

playing field with a human. The first approach assumes AI systems and humans have a different array of 

assets and resources, and thus are rarely on an even playing field. However, they can still be compared 

on tasks, which the AIFS project is planning. A second approach puts the system through a practice set of 

benchmark tasks for a month. It then grades performance on a test set, as in the case of the NIST 

methodology. A third approach is to conduct an AI/simulation over a long stretch of time or epochs of 

experiences. The performance produced in such tasks is then observed, as in NELL (Mitchell et al., 

2018[3]).  

A computational or information-theoretic analysis could specify a problem space, combinatorial landscape 

or another type of formal, quantitative model that identifies hypothetical alternatives and bone fide 
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solutions. For example, the iconic “travelling salesman problem” attempted to find a route between 40 cities 

that minimised the distance in travel time. The problem proved to be so hard that it would have required 

over 1 000 years on the fastest computer that existed 20-30 years ago. Who knows how the travelling 

salesman problem fares 30 years later? However, computational analyses like these can be posed for a 

fair comparison between humans and AI/robotics.  

Ideal models with both computational and human constraints 

There are ideal models that incorporate both computational and human constraints. For example, cognitive 

scientists often perform tasks analyses on particular problems or problem sets that decompose the solution 

plans and concrete steps in executing solutions (Anderson, 2009[4]; Laird, 2012[5]). Researchers can 

compute the probability and time of (sub)task completion, as well as the assorted solution strategies. 

A good example of this approach is the models of lower-level perceptual-motor tasks. These include the 

Goals, Operators, Methods and Selection Rules (GOMS) model (Card, Moran and Newell, 1983[6]) and 

CogTool (John, 2013[7]). A researcher first specifies a set of tasks and the model generates expected task 

completion times and other aspects of performance.  

GOMS and CogTool are based on an ideal rational model (much like Anderson’s ACT-R and Laird’s SOAR) 

and psychological components (such as perception-cognition-action cycles, production rules) and 

psychological laws. Fitt’s law, for example, computes the time to move a part of a body to a target. Hick’s 

law specifies that the time taken for a decision is a logarithmic function of the number of alternatives. The 

power law of practice specifies an exponentially decreasing function of task completion time as a function 

of number of attempts to complete a task.  

GOMS and CogTool are remarkably accurate in predicting performance in some tasks (Graesser et al., 

2018[8]) but not others that require higher-order reasoning. Consequently, GOMS is best used to 

complement rather than replace expert judgements of task difficulty. Nevertheless, for lower-level tasks 

involving well-practised procedures, researchers would have a foundation for comparing humans and 

robots. Similar approaches could be proposed for problem solving, reasoning, collaboration and other 

transversal skills (Sinatra et al., 2021[9]).  

How might systematic mapping occur between skill taxonomies, tasks, tests and 

functional artificial intelligence components? 

Participants at the expert meeting presented several skill taxonomies, tasks, tests and functional AI 

components. A few of these are presented below. 

 Carroll’s (1993) 3-Stratum model presented by Kyllonen (Chapter 3) 

As discussed in Chapter 3, Stratum 3 is a general intelligence factor, whereas Stratum 2 has eight 

constructs manifested in factor analyses: fluid intelligence, crystallised intelligence, general 

memory/learning, broad visual perception, broad auditory perception, broad retrieval ability, broad 

cognitive speediness and processing speed. Stratum 2 depends on the measures collected in Stratum 1, 

which consists of dozens of precisely operationalised tests from the field of psychological assessment 

(Carroll, 1993[10]). 

 Greiff and Dörendahl’s (Chapter 7) taxonomy (which includes transversal skills) 

There is a distinction between transversal skills (problem solving, collaboration, creativity, digital 

competence, global competence), core domain skills (mathematical, reading and science literacies) and 

basic cognitive skills (general mental ability, fluid reasoning, comprehension knowledge, working memory, 

and others discussed in Chapter 3).  
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 Cheke, Halina and Crosby’s taxonomy (which emphasises lower-level cognitive skills in both 

animals and humans) 

Object and space skills include spatial memory and navigation, object representations and causal 

reasoning. Social and communicative skills include social learning and communication and social 

cognition, with several behavioural tests or tasks to operationalise these major categories.  

 Hernández-Orallo’s functional components in AI/robotics 

The functional components in the list were knowledge representation, reasoning, planning, learning, 

perception, navigation and natural language processing. However, there may be others as AI/robotics 

evolves.  

There were other taxonomies and distinctions discussed in the expert meeting. These included emotion 

regulation, empathy, trust and other dimensions of human experience (smell was an intriguing example). 

Perhaps the detection of misinformation would be particularly relevant in the age of social media (Rapp 

and Braasch, 2014[11]). In theory, there are subcomponents of misinformation detection, such as identifying 

the expertise of the source of information, comparisons to information in other documents, status of the 

media outlet, and sophistication of the language or information delivery.  

Many skill categories and distinctions are potential candidates. Consequently, there are challenges in 

identifying which skills to include. One could adapt at least four approaches to meeting the challenges.  

 The comprehensive approach would include any skill included by two or more stakeholders in the 

project, noting the lack of impact of unusual singletons.  

 The consensus approach would include those skills that a sufficient number of stakeholders would 

endorse.  

 The intersection approach would include those skills that can be measured in both humans and 

AI/robots in action.  

 The theoretical approach would adopt one singular model for all to adhere to.  

Approaches to selecting functional components 

The intersection approach is compelling because the measures are available. This means it would be 

pragmatically strategic to implement them. However, this approach would need to consider 

comprehensiveness and the theoretical landscape. Perhaps the most pragmatic solution is to identify a 

small number of skills/tasks that represent different areas of the theoretical landscape.  

A consensus approach would require a mapping between the different categories in different taxonomies, 

as exemplified above. Such a mapping could facilitate understanding of the landscape of skills, but major 

difficulties will emerge. For example, reasoning in one taxonomy will mean something different in another 

taxonomy. To address these concerns, stakeholders would need to negotiate a common ground of 

conceptual meanings of constructs, operational definitions of measures and other considerations. These 

would need to be familiar to those in the world of assessment, as well as science more generally.  

Differences in semantics will occur between different research communities and stakeholders. For 

example, mundane plausible reasoning in human taxonomies is different from the formal reasoning in 

propositional calculus, AI’s theorem proving and even the inference rules in the CYC computer system that 

represents world knowledge (Lenat et al., 2010[12]). Humans do well on modus ponens (If X, then Y; X; 

therefore Y). They consistently fail on modus tollens (If X, then Y; not Y; therefore, not X). Further, they 

often embrace the abductive reasoning that has an illegitimate formal foundation (Rips, 1994[13]). Similarly, 

statistical reasoning is different in formal systems vs. humans. Humans are prone to have, for example, 

base-rate and hindsight biases (Kahneman, Slovic and Tversky, 1982[14]). Such facts, of course, have 

relevance to what humans versus AI/robot systems can accomplish. That is apparent and also interesting.  
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In sum, reasoning is different in the various taxonomies. These differences reflect the goals of the projects, 

differences in fields and history. Negotiations among relevant stakeholders will be necessary to converge 

on a common ground. The achievement of a deep mapping of categories between taxonomies is complex 

and perhaps unlikely at the fine-grain levels but routinely successful at a course-grain level.  

There are caveats, of course. The achievement of a loose mapping of categories is easier but possibly 

misleading because of non-trivial differences that end up getting missed. A small number of broad 

categories risks glossing over major differences in specific tasks/tests selected to represent the broad 

categories. Mapping between taxonomies is thus beset with serious challenges, but the history of 

assessment offers encouragement that the goals can be pragmatically achieved.  

Mapping taxonomies and tasks, tests and functional artificial intelligence 

components: the Q-matrix 

It is essential to generate mappings between particular taxonomies and the specific tasks, tests and 

functional AI components. In some circles, these are called a Q-matrix. Each item (e.g. question to answer, 

alternative to select, action to perform) in an evaluation scenario is assigned a code of attributes being 

assessed by an item (i.e. knowledge component, knowledge, skill, strategy, ability).  

There can be primary, secondary and tertiary codes in these expert annotations. Stakeholders from 

different professional communities can annotate the items in a candidate scenario on the taxonomy 

categories of importance. The analysts in each stakeholder community could adopt whatever standards 

and criteria they wish to adopt, as long as other stakeholders can understand them. 

What can be accomplished with the Q-matrices at hand from various stakeholders on candidate items in 

scenarios? The different stakeholders can evaluate and give feedback on whether the scenarios and items 

have a sufficient representation of the important taxonomic categories in their community.  

Just as countries give such feedback in OECD international assessments (e.g. the Programme for 

International Student Assessment), stakeholders from relevant communities can give their feedback. 

Approval of scenarios and tasks depends on constraint satisfaction and negotiation. Relevant stakeholders 

need input on most phases of the assessment – from selecting relevant scenarios and tasks to developing 

illuminating items with the associated constructs they manifest. Items in this context may be actions in 

addition to verbal contributions and decisions in conventional assessments.  

How can major differences be handled in targeted skills, different occupations 

and changes in the world?  

The tasks, tests and functional components under focus are different. Occupations have different 

expectations. Subject matters are different among the occupations. The world also changes in trajectories 

that differ among countries, languages and cultures. How can these differences be accommodated in AI 

systems?  

Consider separate implementations for each occupation, skill and time slice 

As one simple answer, AI will need separate implementations for each occupation, skills and time slices 

being considered. This can be accomplished surprisingly quickly if certain conditions are met: 

 a sufficient corpus of data for training and testing with machine learning  

 a sufficient crew of knowledge engineers for annotation of data (needed for supervised machine 

learning) and development of scripts, rules or other modules with authoring tools.  
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This would require funding. However, it is a matter of availability of resources, engineering and investments 

as opposed to a devasting bottleneck. Whether general AI principles and mechanisms can be gleaned 

from such activities is an open question.  

Compare timepoints 

It is, of course, important to address bias in many of these questions, as well as changes that occur over 

time. As articulated by Greiff and Dörendahl in Chapter 7, there is a shift in the need for transversal skills. 

Therefore, problem solving, collaboration, reasoning and creativity in the world will have a higher impact 

on predicting the successful workforce profile than will memory and routine perceptual-motor skills. The 

workforce data clearly reveal this shift (Autor, Levy and Murnane, 2003[15]; Elliott, 2017[16]).  

It could be argued that AI/robotics systems have not made significant headway in self-regulated activities 

and many of the transversal skills. This puts them at a disadvantage in these 21st century KSAs in contrast 

to their clear superiority in retrieving facts. Nevertheless, these points are non-problematic. For now, the 

goal is to identify what skills can be accomplished by humans vs. AI/robotics systems. 

Some comparisons between timepoints might help project the workforce of the future and assess 

generalisation of claims. In one approach, a collection of scenarios and tasks is representative of the past, 

vs. the present vs. the future in the ultimate assessment. That is, a subset of the scenarios would represent 

the world of ten years ago; another subset the present; and another subset the uncertain science fiction of 

the future.  

The three time points would crudely track trends over time on the measures collected from individuals at 

different age partitions and occupations. To increase the precision of temporal trends, time can be divided 

into finer slices. It would move from the past through present so that linear and non-linear trends can be 

detected and projected according to different quantitative models. However, projections would be 

considered with caution. Revolutionary disruptive historical changes periodically occur, such as war, 

pandemics like COVID-19 and the escalation of technology.  

The selection of assessment scenarios and items will need to accept how existing tests, tasks and 

functional AI components have a distinctive history that may resist compromise. Perhaps the assessment 

materials that end up being selected/created will be a blend of the different traditions. In this way, they may 

have a chance to pacify multiple stakeholders. Perhaps the selected assessment scenarios will be fortified 

by Q-matrices that have tentacles to most or all of the stakeholders. Whatever scenarios end up selected, 

systematic comparisons will be needed between humans and AI/robotic systems.  

Recommendations 

 Use ideal models as a neutral standard 

Some ideal models could serve as a neutral standard in comparisons of AI/robotics systems and humans. 

Ideal models are likely to stimulate exciting research on the data that end up being collected. However, 

they could potentially influence the selection of scenarios/tasks/tests.  

 Adopt an intersection approach to select tasks/tests for the comparisons  

The intersection approach uses tasks/skills/components that have been investigated both in psychology 

and AI, and covers different regions in the theoretical landscape. These decisions will require negotiations 

among stakeholders, as has been routinely accomplished for decades in the world of assessment. 

 Select scenarios, tasks and skills that present past, present and future 

The tasks performed in the work and daily lives of adults are known to vary over decades. Therefore, it 

would be prudent to select scenarios, tasks and skills that are representative of the past, present and 
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future. This would permit detection of trends over time for participants in different age groups, occupations 

and demographic characteristics. However, projections must be tempered with caution to the extent there 

are disruptive historical events such as COVID-19.  
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This chapter takes a step back from the project, reviewing practical issues 

around the assessment of artificial intelligence (AI) that must guide the next 

phase of research. It provides guidance for setting up a general analytical 

framework for assessing AI capabilities with regard to human skills. 

Questions are centred around three main issues. First, the chapter looks at 

how the various parameters of measurement depend on the objectives of the 

assessment. Second, it examines selection of tests for comparing AI and 

human skills. Third, it discusses selection and training of raters. The chapter 

concludes with a summary of issues considered in planning the study.  

19.  Questions to guide assessment 

of artificial intelligence systems against 

human performance 
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Introduction 

Alongside the continuing explosion of artificial intelligence (AI) in research and applications is an 

accompanying need to understand its capabilities in a variety of settings. There is ample evidence that AI 

systems can solve particular problems far better and certainly faster than humans attempting comparable 

tasks. There is also a long list of AI accomplishments on sets of tasks humans could not directly attempt 

because of size and complexity of data. Nonetheless, there is a need to characterise and perhaps 

benchmark the capability of these systems.  

This chapter discusses general precepts for consideration with respect to the planning study. It focuses on 

the issues surrounding the use or development of taxonomies and relevant measures to allow a new level 

of understanding of current and future capacity of AI systems. To that end, it poses questions and provides 

guidance related to the characterisation of AI systems, issues in organisation and task selection for 

assessment, and the rating process. 

Why measure or characterise artificial intelligence systems? 

This OECD project expects that measures of AI performance can be developed to compare to human 

performance based on a set of existing (or potentially newly constructed) measures. The approach tests 

the assumption that clear correspondences are possible for performance by AI systems and people. The 

project must clarify its needs before the best strategy and operational objectives can be proposed. Three 

large considerations are discussed below to stimulate reflection. 

 Compare AI to human intelligence or to human workplace or academic outcomes? 

Comparing AI to human intelligence versus comparing it to workplace or academic performances have 

implications for the tests and types of skills or tasks used for its assessment. 

Based on the October 2020 workshop, the project is focused on the ability of AI to reproduce human 

performance in any conceivable human work or activity. To compare AI and human workplace 

performances, bounded domains of skills and content are much more useful than measurement 

approaches that depend on general constructs, e.g. math ability. However, to ensure that all human 

activities are covered, reflecting on the selected set of skills and content periodically is recommended. This 

helps map activities that were left out of the first selection (for example because they have emerged since 

the first assessment).  

 Compare outcomes alone or combine outcomes and process?  

AI systems use powerful computational approaches to solve problems or consolidate information. 

However, they can vary in terms of their strategy. Strategies include bottom-up exploratory approaches in 

machine learning, such as unsupervised learning, and a combination of rule-based and bottom-up data 

processing, such as expert systems. 

The assessment may seek to understand at a conceptual level how AI systems accomplish their tasks 

rather than simply their success in solving problems or reaching conclusions. In this case, AI and human 

process performance could also be compared. Indeed, as all AI systems profit from their massive computer 

power to solve specific tasks, they may be subject to measurement error when a problem involves 

non-linear relationships, while humans may be able to adjust to such complexities. Hence, a focus on both 

process and outcomes will have implications for task selection for the study. 

The OECD is primarily interested in outcomes, which is a suitable approach if AI produces the same 

outcomes with a different process. However, process is likely to be important for generalising the results 

of a test to a broader range of capabilities than are directly tested. Some generalisations may be valid for 

humans but not AI and vice versa. For example, common sense inferences can usually be assumed in 
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humans, while they must be tested explicitly in AI. That stems in part from process differences in 

developing expertise in AI and humans – AI expertise does not rest on a base of common sense the way 

it does for humans. Human-AI process differences should be kept in mind since they probably have 

implications for what needs to be tested on the AI side. Overall, some analyses or explanation of how 

the system arrived at its outcome must be provided for both acceptance and fairness issues. 

 Document changes or improvements in AI competence over time or describe a single temporal 

point? 

If the project intends to map the progress of AI systems across one or more sets of performance variables, 

then task selection should anticipate increases in AI performance over time. Thus, the tasks selected 

initially should represent areas in which AI currently does not do well. This would avoid a ceiling effect for 

later measurement occasions. If the intention is for one time only, then a range of “difficulty” or complexity 

of tasks could be included to detail how the systems operate today. 

Issues in organisation and task selection 

Selection of organisational systems and the corresponding tasks are major concerns for the study. The 

questions below amplify or posit additional prerequisite concerns about the best ways to determine 

taxonomies or organisational structures. Should the project select existing ones or develop new ones? The 

questions also examine assessments to be considered by the project. 

Context of assessment tasks 

 How important are the contexts of use of the assessment tasks? Is the project considering tasks 

drawn primarily from an academic disciplinary base or tasks that include context, such as general 

and specific knowledge? 

If the interest is in disciplinary tasks, such as tasks of mathematical concepts or interpretations of the 

meaning of texts, then the project might assemble data from an age- or experience-based range of 

subjects. It would then ask the project rating team to make their estimates of AI systems using categories 

that capture span of respondent differences. For example, raters might be asked to estimate how well 

upper elementary students, junior high school algebra pupils or college math students could solve a 

problem. This distribution of performers would provide a database to guide the raters in making their 

judgements. However, disciplinary assessments often include implicit contextual information. This could 

have unintended effects on performance, especially if background characteristics of respondents are 

unknown or not included in the study.  

Instead of disciplinary-focused tasks or items, tasks could be selected from areas in workforce skills. While 

there is contextual and background knowledge here, much of it is job related, which the systems could 

learn. This strategy is recommended if the project wants to influence how AI is perceived, used or evaluated 

in workplace context. It involves the selection of tasks (both comparable and unique) from two or more 

sectors, e.g. finance, hospitality. This method would indicate the robustness of a system across sectors 

and types of embedded domain knowledge. It could also give useful information for similar tasks, as well 

as about the functionality of the system on tasks wholly unique to a particular sector (think of a Venn 

diagram showing shared and unique knowledge and skills). 

Prescriptive vs descriptive functions 

 Is prescription or description intended as the principal function of the taxonomy or other organising 

system with respect to the experimental tasks? Is the taxonomy to guide selection of tasks, i.e. to 
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function prescriptively? Or, will the organising system reflect, in a verbal or symbolic way, the nature 

of the tasks to describe and represent them as they exist? 

If tasks were selected, perhaps from domains assessed by the German vocational/technical system – in 

two or more sectors – what similarities and differences in assessment design structure would be found? 

How might such bottom-up analyses among sectors relate to the O*NET structure? Depending on the 

sphere of influence selected as the major target of the project, a hybrid approach could be adopted. This 

approach would use formulations that guided the creation of tasks, i.e. German sector tasks or O*NET 

descriptors. It would then modify organisational structures and descriptions depending upon whether the 

purpose was an existence-proof project or the beginning of a sequence of connected studies about AI 

progress. 

The OECD has been thinking of the taxonomies functioning prescriptively to guide task selection for two 

reasons. First, taxonomies can serve as a reminder of capabilities or workplace activities that need to be 

assessed. Second, they can point to capabilities or workplace activities that are closely related and should 

be assessed together. A descriptive approach would make sense if specific work contexts are of interest, 

each with well-defined authentic tasks that would provide the natural focus of assessment. In that 

approach, the OECD could see the need to make sense of the various tasks that arise in those contexts. 

However, in principle, the full range of current and possible work contexts must be addressed. Therefore, 

a prescriptive framework will more likely be needed. This framework would consist of taxonomies of 

capabilities and workplace activities to use in specifying what needs to be assessed. 

Characterising artificial intelligence systems 

 How can AI systems be characterised?  

Following the selection of tasks and tests, experts will be selected to rate how computer systems would 

fare with the problems or tasks. This can be done in multiple ways.  

First, through procedures that permit the direct processing of tests or tasks by existing AI systems 

themselves.  

Second, by assessing the capabilities of specific AI systems. This approach may yield more reliable 

judgements but involves some decisions: 

o Which system attributes will be included? How will they be represented or described? Will 

experts be expected to understand a subset of common AI systems? 

o Should AI systems that have an explanatory function be selected or rather those that do not 

(e.g. a white box or black box)? 

Third, by assessing the capabilities of current technology in general. In this case, experts rate the feasibility 

of well-defined tasks based on their knowledge of state‐of‐the‐art AI approaches. 

There are many ways to combine and describe data for this project. For example, there are several options 

regarding how judgements are made, how ratings are tabulated and summarised. Rating can take place 

in various forms such as through interface development options. 

Rating process 

This section suggests refinements to the human rating process. These approaches are derived from the 

extensive experiences available from ratings of open-ended achievement tests, as well as from new ideas 

stimulated by the workshop. All decisions regarding rating have cost implications, to be discussed in a 

subsequent section. Cost implications interact with decisions to have one status study or a sequence of 

studies over time assessing AI system progress. 
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Raters 

Raters need to understand the nuance, as well as the operations, of their study tasks. They must have 

both adequate training and time to accomplish their judgements. Finally, the processes they used must be 

documented.  

Number and selection of raters 

 Who will be the actual raters of the assessment materials? Who will determine if the selected tasks 

are representative of the desired domain or sub-domain? How will the tasks be identified and 

selected?  

Published tasks may or may not be thoroughly vetted. Unless there is robust evidence on this process, a 

group of experts should examine and judge their quality and suitability for the study. 

A second group of raters, the AI experts, will then judge how well AI systems could complete all or part of 

any tasks.  

For both rater groups, explicit criteria should be set for selection, such as expertise, availability (based on 

notions of ideal timing for the project, estimated time for training and the study ratings, post-rating 

interviews, willingness to participate in subsequent ratings).  

 How many raters are needed? 

This decision depends first upon the estimated numbers of tasks or items to be rated. If the tasks are 

selected from a common disciplinary area, such as mathematics, then raters should be at least familiar 

with the area and have teaching experience with the content of the tasks. One would also want raters to 

demonstrate competence on the study tasks. The project may wish to complete its work in a single 

language, e.g. English.  

 Should raters be selected from homogenous work environments or represent a broader swath of 

backgrounds and experience?  

On the one hand, irrelevant task variance should be limited. On the other, a set of raters with a limited or 

perhaps peculiar orientation based on the source of their experience should be avoided.  

 Could an English-only study be replicated in other OECD countries? 

Bilingual raters could ensure the same level of stringency is used in any between-country study. If 

multilingual raters are used in the main study, a minimum of three from each country could be used for 

their topic.  

Expectations of performance would vary by country largely in any domain as a function of nationality. For 

example, American and Japanese raters would have distinct expectations for their own students’ expertise 

in given subject matters. Psychologists and measurement experts would rate quality of items along a set 

of dimensions. However, like the subject matter experts, they will be influenced by their experiences.  

Instead of pure measurement experts who likely have preferred methods if not ideology, it may be best to 

find experts with a “conjoint” interest in learning and assessment. In this instance, conjoint refers to 

individuals who understand the learning requirements for success at particular tasks and who can judge 

item or task quality as well. It does not mean formative assessment devotees who advocate specific 

classroom assessments for teachers. Experts from the learning sciences would be ideal. 

Work of raters 

 How will raters work, where and for how long? 
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Ratings could take place at a common site or distributed sites, e.g. schools or homes. Depending upon 

timing, training and rating can take place over Zoom or other platforms that permit recording. In rating 

A-Level exams in England, raters experienced interruptions. Compliance among individuals varied. Some 

completed all tasks as rapidly as possible during a single sitting despite their given instructions to complete 

a certain number (randomly ordered) each day. 

Creation of scoring rubrics 

 What kind of supports do content and AI raters need for the rating process? 

The process should avoid binary responses (e.g. where AI either can or cannot successfully address the 

item or task). An agreed-upon protocol could constrain the AI raters to a specific range of systems. Either 

it would provide system functional descriptions or architecture, the kinds of output or uses to which the 

system has been put, or use a standard set of AI systems. This last choice would require a qualifying “test” 

to determine that prospective AI raters know and understand the systems to be considered. 

Both rater groups will need rubrics to guide judgement of analytical components, as well as to help them 

make an overall rating of the likely success of the system (or system types, if more than one is considered). 

There have been many studies of rubric construction, reliability, clarity and other characteristics. The 

rationale behind experts’ judgements should be documented. 

Ideally, rubrics could begin with an overall judgement on a preferred scale, e.g. 1-4, 1-6. This would be 

followed by a sub-scale scoring of attributes or elements that may have been considered in that decision. 

There has been work that begins with sub-scores and adds them up for a final judgement, but that practice 

turned out to be less useful.  

In addition to an overall judgement, sub-elements on the rubric might describe a comparable task known 

to have been successfully encountered by the system, the logic or linearity of the task, relevance of specific 

prior knowledge, the clarity of the language used in the task, and so on.  

For the rubric used to judge test tasks or items, subcomponents could relate to the importance of the tasks, 

the critical content or contextual elements it includes, its dependence on prior knowledge, clarity of task 

for the examinee, and – if open-ended – the quality of the scoring rules intended to be applied.  

 How much detail should rubrics have? How should they be developed? 

Most experience advises against long and detailed scoring rubrics because of fatigue, lack of inter-rater 

agreement and the general inter-correlation clusters of elements.  

It is good practice to create and try out rubrics before training raters to use them. In that process, a separate 

set of experts is given a set of experiences that model the range and timing of a single scoring session. 

Raters may independently use the rubric and note difficulties. Other approaches involve some “think-aloud” 

protocols where the raters speak aloud the process they are using to arrive at scores for both the overall 

and sub-categories.  

Judgements about rubric quality tend to cluster around its clarity, applicability to the range of tasks, brevity 

and understanding of the meanings of rating points, (how does a “3” differ from a “4?”).  

The development of rubrics should also involve verifying that experts obtain similar ratings on the same 

tasks or items. Rubric development experiences should ideally be sequenced. This allows the rubric to be 

tried on two or so items, notes and scores compared, and discrepancies found and discussed. The rubric 

can then be revised and used for the next small set.  

The development process should also examine whether scores are more sensible when the raters score 

as they go, or when they first only make notes and score all elements at the end. This latter approach can 

ensure that the same scale values are used across rating sub-topics. Once the process has stabilised the 
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rubric, a trial rating occurs to estimate the time it takes to score. Limiting scoring time per task is good 

practice. 

Rater training 

 How should raters be trained? 

Rating training could consist of a face-to-face work (preferred) or a combination of face-to-face and webinar 

with feedback. Rater training involves both training and qualification. Training involves using the same 

rubric applied to a different set of examples than those to be encountered in the actual study.  

Three sets of technical quality criteria are relevant. First, raters need to agree with a criterion set of ratings, 

using approaches that cleave to the rubric-incorporating experts’ views. Second, there should be intra-rater 

agreement, meaning that a single rater assigns much the same value to identical or similar tasks over time. 

Third, there should be inter-rater agreement on the same task, usually expressed as the obtained 

percentage of exact agreement between pairs of raters. In practice, the first two criteria are more important.  

The order of rating needs to be organised to represent a number of elements. A general random order with 

repeated examples (probably three) should establish consistency within raters. There should also be a 

way to enter scores and have computations of agreement take place on the spot.  

If agreement is found to be low, following the ratings, the “leader” can discuss the ratings in terms of the 

criterion cases, but there should be no opportunity for raters to discuss and modify their scores. Such 

discussion usually results in a socially defined rating that may be unique to subsets of raters and 

undermines the validity of the process.  

Finally, more individuals than needed will need to be trained because some raters will likely not qualify. 

Ideally, another project-related task may be found for them, such as compiling and summarising 

information. 

Answering the questions 

The OECD project posed six questions at the outset, which are answered below. 

 How should the project decide on what types of skills to assess? 

Domains with sets of coherent knowledge, skills and attributes are best for tasks related to performance 

using skills and content (rather than broad constructs). The German efforts on tasks and standards within 

the world of work sectors are relevant and of high quality, both to the project and to AI system development. 

Raters could also be given additional tasks that will stretch even the best of current system capabilities 

(transfer). This is because elements of transfer could be described related to completeness of queries, 

types of logic, extrapolations and so on. 

 Are there existing skills taxonomies that describe the right set of skills to assess? 

If a workplace setting is chosen, then the skill taxonomies underlying the German or other such system 

(like O*NET) should be used. 

 How should the project decide on the types of tests to be used? 

One or more bounded domains in a clear use context could be used as the source of assessments. This 

approach will have a greater likelihood of success because it will have limited abstraction and communicate 

best with desired audiences. Operationally, the use of a compilation of tasks or items rather than selecting 

an existing test is advised. There will be trade-off between relativity and validity in either case.  
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At least two sectors or large content domains are advised to demonstrate generalisability of the approach. 

In addition, within a domain, a range of task and item types should be employed, probably no less than 

three for each type. Common descriptors of items will include item formats, ranging from brief to extended, 

that provide or expect recollection of essential prior knowledge, which include selected or open-ended 

responses. Open-ended responses should include multi-stepped solutions to problems that are ill formed, 

partially formed or where the problem statement is given. Tasks that require various iterations among task 

formulation, resource search and acquisition, integration and solution fit are desirable.  

Assuming systems will have natural language processing capability, there may be excellent tasks that 

require paraphrasing. This will create a text answer that demonstrates understanding of the levels of 

meaning of particular questions that are independent of any specific content domain.  

Items used should vary in complexity and completeness. Ideally, data should be available regarding item 

difficulty or facility with answers for different groups. Thus, items and tasks to be selected should include 

a range of cognitive requirements, task formats, and use of language and other underlying skills. 

 Are there existing types of tests that are good candidates for assessment? 

The work provided at the October 2020 workshop for the Artificial Intelligence and the Future of Skills 

project would be a good start. Self-report and game/simulation measures are available from previous 

research. 

 Are there existing types of tests that should be excluded from the assessment? 

Well-known standardised tests for admissions to higher education or for evaluation and accountability in 

pre-collegiate environments should be avoided. Some communities see these tests as biased. 

 Are there new types of tests that need to be developed for the assessment? 

Yes, if both outcomes and processes can be identified for this environment. Rather than a completely new 

development, it seems likely existing tests could be modified. 
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Stuart W. Elliott, OECD 

This chapter synthesises the expert contributions of the report and offers 

perspectives for building a comprehensive assessment of artificial 

intelligence (AI) capabilities. It compares and contrasts the contributions of 

psychologists and computer scientists along two dimensions: whether they 

focus on human or AI taxonomies and tests, and whether they test isolated 

capabilities or more complex tasks. The chapter argues that a more complete 

assessment of AI must bring together the different approaches. It illustrates 

this argument with an example in the area of language. Finally, the chapter 

offers next steps towards a systematic assessment of AI capabilities, which 

will allow for drawing fine-grained implications for work and education. 

20.  Building an assessment of 

artificial intelligence capabilities 
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Introduction 

Through the Artificial Intelligence and the Future of Skills (AIFS) project, the OECD is developing an 

approach to assessing the capabilities of AI and comparing them with human capabilities. The goal is to 

develop a comprehensive programme to measure these capabilities in a valid, reliable and meaningful way 

that policy makers can use to understand the implications of AI for education and work. AIFS is a six-year 

project, which will include an initial systematic assessment of AI capabilities and analysis of their 

implications. It will conclude with a proposed approach for an ongoing programme to assess AI capabilities 

at regular intervals. 

This volume addresses questions related to identifying the AI capabilities that the project should assess, 

as well as tests that could be used to assess them. Based on a workshop in October 2020, the volume 

surveys a broad range of work in psychology and computer science that can provide relevant taxonomies 

of capabilities and assessments of them.  

The papers in the volume make clear there are many resources the project can use to define a set of 

capabilities and associated assessments for measuring the capabilities of AI. Before the workshop, the 

AIFS project team hoped to identify a single comprehensive taxonomy that could be linked to an 

appropriate set of assessments to use for the project. Given the number of available taxonomies in 

psychology, this hope seemed potentially realistic. However, the experts who participated in the workshop 

and wrote papers in this volume put forward other thoughtful arguments. They suggest that AIFS could 

benefit from combining the complementary strengths of several different approaches rather than using only 

one. 

The meeting discussion and this resulting report highlight two dimensions of difference that should be 

reflected in an assessment of AI capabilities: the contrast between human and AI taxonomies and tests, 

and the contrast between testing capabilities and tasks. 

Human vs. artificial intelligence taxonomies and tests 

As amply illustrated in Part I of this volume, rich resources in psychology reflect long research traditions to 

develop the conceptual and practical tools for cognitive assessment in humans, as well as animals. 

Furthermore, the efforts to assess AI capabilities in computer science have often started from these 

materials, as noted by Hernández-Orallo in Chapter 11, because of their broad coverage and availability. 

Indeed, the computer science community acknowledges the intellectual foundation and extensive materials 

provided by psychology. However, computer scientists also clearly state that human tests can be 

misleading and incomplete when used to assess AI. Many papers stress this point in Part III. 

Computer scientists note that human tests focus on aspects of capabilities that are meaningful for 

assessing humans. However, these tests are not necessarily meaningful for assessing for AI. Assessments 

are always incomplete, focusing on only a sample of the capabilities of interest. They then assume the 

sampled capabilities also provide information about the critical unsampled capabilities needed for 

competent performance.  

Because the cognitive capacities of humans and AI are different, assumptions about unsampled 

capabilities are different. Therefore, the sampled capabilities included on a test need to be different. As a 

result, AI needs to be assessed for things rarely considered for direct assessment in humans, such as 

common sense reasoning. This could lead to somewhat different taxonomies of the capabilities needed to 

consider for AI. Ultimately, this could lead to entirely new tests to assess those capabilities.  
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Testing capabilities vs. tasks 

In Chapter 15, Avrin discusses the importance of assessing both isolated capabilities (“functionality 

benchmarks”) and the performance of complete tasks (“task benchmarks”) in evaluations of AI. Usually, 

the tasks are the priority. The task benchmarks are then chosen to reflect something wanted from an AI 

system in the real world.  

However, tasks almost always require complex combinations of capabilities. An AI system may fail 

because of the inadequacy of either one of the capabilities or their integration. Assessing the individual 

capabilities provides a way to determine whether each one is sufficient for the task; the assessment of the 

task itself determines whether the separate capabilities function effectively together. 

This contrast that Avrin describes on the AI side is richly illustrated across the different types of 

assessments on the human side.  

On the one hand, assessments in psychology often attempt to isolate individual capabilities for assessment 

and avoid using tasks that will confound the contributions of several distinct capabilities. The process of 

separating the contributions of different individual capabilities with specially designed tasks is at the heart 

of the factor analytic tradition in psychology discussed by Kyllonen in Chapter 3.  

On the other hand, many human assessments focus on authentic tasks of interest in human contexts and 

intentionally mix the full set of capabilities needed for those tasks. The occupational tests discussed by 

Rüschoff in Chapter 9 provide the clearest example of authentic tasks that require many separate 

capabilities to carry out. These tasks often involve not only cognitive capabilities related to language, 

reasoning and problem solving but also additional capabilities related to social interaction, sensory 

perception and psychomotor control. The educational tests discussed by Greiff and Dörendahl in Chapter 

7 often aim at a middle range of complexity. They mix capabilities related to language, reasoning and 

problem solving but omit capabilities related to social interaction, sensory perception and psychomotor 

control that can be important in many work contexts. 

Working with both dimensions 

The four revolutions of Forbus 

In Chapter 2, Forbus illustrates the two dimensions of difference – human vs. AI taxonomies and tests and 

testing capabilities vs. tasks – through four revolutions in AI.  

The first three revolutions relate to the key categories of the human cognitive taxonomies: one can link 

learning, knowledge and reasoning directly to Carroll’s 3-stratum model of human cognitive abilities, 

discussed by Kyllonen in Chapter 3, as general memory and learning, crystallised intelligence and fluid 

intelligence, respectively.  

The fourth revolution – agency – relates to the complex way that humans can integrate capabilities. It is 

reflected, for example, in the complex tasks carried out in human jobs, as well as the basic developmental 

stages in children.  

Forbus uses this revolutions framework to identify both recent successes and key missing aspects of 

current AI capabilities. Crucially, some missing aspects are ones that may not be typically assessed on 

the human side. These include the ability to learn from a single example, knowledge of one’s personal 

experience and common sense reasoning. Agency then provides the example of the combination of 

capabilities that is still missing to carry out real-world tasks in context. 

While illustrating the two key dimensions of difference, Forbus also highlights the larger motivation for the 

AIFS project: there are revolutions occurring or approaching in each of these four key areas of AI cognition 
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that will result in qualitative shifts in AI capabilities. The prospect of major improvements in AI capabilities 

underlines the importance of providing measures for the policy community that identify what capabilities 

are missing. These measures can provide an early warning system, identifying when those capabilities 

appear and offering guidance to their implications. 

Combining the two dimensions 

Figure 20.1 suggests a way to fit the two dimensions together in a framework for assessing AI capabilities. 

This figure provides an initial framework for synthesising the different taxonomies and tests discussed in 

this report. 

The first dimension – differentiating between human and AI sources for assessment – is illustrated 

horizontally at the bottom of the figure. AI assessment approaches derived from human capability 

frameworks appear on the left, while assessment approaches focused on missing AI capabilities are on 

the right.  

The second dimension – differentiating between testing separate capabilities and complex tasks – is 

illustrated vertically. Assessment of separate capabilities is at the bottom, while assessment of real-world 

tasks requiring use of multiple capabilities is at the top.  

The boxes for human capability frameworks and real-world tasks reference some of the taxonomies that 

describe and categorise relevant capabilities and tasks, respectively, and that link to a variety of 

assessments. The box for missing AI capabilities differs from the other two boxes in listing capabilities that 

are “special cases” rather than listing frameworks. These special case capabilities are often missing in two 

senses: they are missing from AI’s current capabilities and from many (but not all) of the capability 

frameworks and assessments used to describe humans. As a result, the missing AI capabilities are both 

important to assess and require extra effort to identify assessments focused on AI’s unique challenges. 

Figure 20.1. Sources for AI assessments 

 

Filling in the details 

The chapters provide a wealth of detail about the kinds of capabilities and tests that might go into each of 

the boxes in Figure 20.1. 
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Starting with the Human Capability Frameworks box, Chapters 3, 5 and 6 present taxonomies and tests 

for a set of isolated human abilities. Kyllonen in Chapter 3 outlines the comprehensive taxonomies 

developed to describe the full range of cognitive abilities, building on a rich assortment of associated tasks. 

These taxonomies have been extended by some researchers, and Kyllonen briefly discusses some of the 

work related to social-emotional, perceptual, psychomotor and other skills. Kyllonen’s initial overview is 

then supplemented by more detailed discussions in some of the other chapters in Part II. De Fruyt in 

Chapter 5 discusses social and emotional capabilities, along with some tests developed to assess them. 

Woolley in Chapter 6 provides a detailed discussion of the components of social capabilities that allow 

groups to function effectively, along with some novel assessments of those capabilities. 

These human taxonomies are well developed and provide an extensive set of human tests for the different 

isolated abilities that could potentially be applied to assess AI. Some areas appear to be less interesting 

for AI assessment because AI systems have already mastered the abilities or could be developed to do 

well on the test without the underlying capabilities of interest. It would be necessary to choose tests 

carefully, in some cases using existing tests as an inspiration to develop versions that would be more likely 

to produce valid results for AI. 

Two chapters reside in the Human Capability Frameworks box but represent an attempt to identify 

frameworks and tests on the human side that might be developed to address some of the Missing AI 

Capabilities. Chokron in Chapter 4 describes the many domains and assessments used in 

neuropsychological evaluation in children. Research on the assessment of deficits of normal cognitive 

functioning in children raises the possibility of identifying assessments of some missing AI capabilities that 

are usually also missing from tests for adult humans. Similarly, Cheke and colleagues in Chapter 17 use 

approaches for testing basic capabilities in young children and animals to develop some tests for AI 

systems of these capabilities. This chapter is placed in Part III of the report because it has already made 

the move into a set of applications for assessing some missing AI capabilities, but it rests on a research 

foundation from human and animal psychology.  

Moving completely over to the Missing AI Capabilities box, the various papers from computer scientists 

outline a set of examples of assessments that have been or could be carried out related to AI systems:  

 Hernández-Orallo in Chapter 11 provides an overview of the different approaches.  

 Avrin in Chapter 15 discusses a number of AI and robotics systems that have been formally 

evaluated at the Laboratoire national de métrologie et d'essais in France, including a number of 

individual capabilities. The chapter also discusses the assessment of complex tasks, which belong 

in the Real-World Tasks box.  

 Graham in Chapter 16 describes the assessment of different components of natural language 

capability. She makes the case that the field of natural language processing has developed 

assessments that go beyond typical human assessments. They now focus on the specific 

challenges and current level of capability in available AI systems for natural language processing.  

 In Chapter 14, Cohn describes a few of the competitions and benchmarks used to compare 

performance of AI systems in different areas. He notes how competitions and benchmarks often 

evolve to focus on performance levels that are almost but not yet attainable by the field.  

 The papers by Davis in Chapter 12 and Granger in Chapter 13 illustrate how AI assessment can 

go awry. They provide surprising examples of “brittle” performance of AI systems where seemingly 

small task differences produce large differences in the results. The authors present these examples 

as cautionary tales. Yet the examples simultaneously illustrate assessment techniques that can 

identify such brittle performance, at least in some cases.  

 Finally, Forbus in Chapter 2 outlines several possible strategies for assessing AI progress related 

to the different revolutions he describes.  
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These many efforts do not suggest an integrated framework for assessing AI with respect to the aspects 

of capabilities that are not well reflected on human tests. However, they indicate several different 

approaches that can be explored for doing so. 

Moving up to the real-world tasks involving combined capabilities in Figure 20.1, several chapters consider 

educational or occupational tests. Many educational and occupational tests focus on isolated capabilities 

that would appear in the Human Capability Frameworks box of the figure. These include, for example, 

capabilities in skills related to reading or mathematics. However, the chapters on educational and 

occupational tests in this report largely focus on tests that require combinations of capabilities. These are 

tests inspired by complex tasks in the real world, occurring in the context of education or work. 

In Chapter 7, Greiff and Dörendahl provide an overview of different educational tests, including both core 

domain and transversal skills. Each of the assessments focuses on a particular capability, like reading 

literacy or problem solving. However, all the assessment tasks discussed require a mix of capabilities, 

including various aspects of language, reasoning and problem solving.  

Finally, three chapters provide an overview of occupational tests, and the complexity of the tasks that can 

sometimes be included in them. Ackerman in Chapter 8 argues for the benefits of assessing AI using 

domain-specific tests for different occupations that include assessment of both declarative knowledge and 

hands-on procedural knowledge. Rüschoff in Chapter 9 then introduces the testing programme in the 

German vocational education and training system. A detailed discussion of the framework includes 

examples of specific tests. Dorsey and Oppler in Chapter 10 provide an overview of the framework for 

understanding occupational tasks and worker capabilities included in the US Department of Labor’s 

Occupational Informational Network, along with several examples of occupational tests. 

Fitting the details into the framework 

The framework in Figure 20.1 suggests the importance of bringing together different types of approaches 

to provide a more complete assessment of AI. Building on the examples discussed in the chapters, 

Figure 20.2 shows a partial example of what this might look like in the area of language. At the bottom of 

the figure are examples of tests for isolated language capabilities. One is a test of vocabulary noted by 

Kyllonen in Chapter 3 as an example from the human side. The other is the Winograd Schema noted by 

Cohn in Chapter 17, which was developed to assess AI’s ability to identify difficult pronoun referents. Greiff 

and Dörendahl in Chapter 7 provide an example of a reading literacy task from the Programme for 

International Student Assessment. This involves understanding a reading passage, reasoning about it and 

providing a written answer. Finally, Rüschoff discusses a multi-hour work sample assessment for 

Advanced Manufacturing Technicians. This includes several oral discussions about a complex work task 

involving the construction of a functional module according to a set of technical drawings.  

As illustrated in Figure 20.1, the chapters have gone beyond suggesting an assessment approach that 

combines several different types of assessments. They have also provided concrete examples of the types 

of assessment tasks needed for such an assessment.  

In his reflections on the project in Chapter 18, Graesser raises the important point about how to integrate 

the various taxonomies suggested in the different chapters. In Graesser’s terms, the provisional framework 

for a synthesis in Figure 20.1 is perhaps a “comprehensive” synthesis, where complementary aspects of 

different approaches are added together. However, the two key dimensions of difference suggested by the 

chapters also provide the initial ingredients for a synthesis that is more theoretically motivated. Over time, 

the OECD hopes this can move to a rough consensus related to the capabilities and types of assessment 

tasks that the AIFS project should include. 
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Figure 20.2. Assessing language with multiple tests 

 

Next steps 

This volume is only a starting point for the project. There is substantial work to do to build a specific set of 

assessments to provide policy makers with an understanding of AI capabilities and their implications for 

education and work.  

Several chapters in this report described approaches for moving directly to assess implications of AI 

without going through the intermediate step of evaluating AI’s capabilities. As described in the introduction, 

the research literature includes a number of efforts to take this more direct approach. While acknowledging 

the value of this work, the AIFS project is building a more substantial foundation related to understanding 

AI capabilities before moving on to their implications.  

The project is motivated by the importance of developing a more robust and meaningful understanding of 

AI that can support policy makers in understanding its implications. This is particularly important with 

respect to the educational implications of AI – the primary motivator of the project – which require a 

fine-grained understanding of the way that human and AI capabilities will complement each other.  

The next stage of the AIFS project will involve piloting the types of assessments described in this volume 

to identify how well they provide a basis for understanding current AI capabilities. This work will begin with 

intense feedback from small groups of computer and cognitive scientists who attempt to describe current 

AI capabilities with respect to the different types of assessment tasks. It will build the project’s 

understanding of the types of assessment approaches that give a valid and reliable picture of AI 

capabilities. With more understanding of types of assessments to use, the project will expand the range of 

input to include a broader sample of experts who know about AI so that we can fully represent the field.  

Baker and O’Neil in Chapter 19 and Graesser in Chapter 18 anticipate a number of challenges that will 

come in this next phase. Baker and O’Neil review a set of practical issues that must guide the process of 

gathering ratings from experts who know about AI, as well as the larger context and framing that experts 

must consider when providing their ratings. Graesser raises a key question about how one should evaluate 

a comparison of AI and human performance. He asks whether human performance should be defined as 

the standard for evaluating AI – as is often done in AI evaluations. Should an objective, ideal model be 

used instead? The project will need to address these questions in the next stages of development work. 

The initial work has also given the project an appreciation for the range of empirical measures of AI 

capabilities – such as those discussed by Cohn in Chapter 14 – that could potentially provide some of the 



322    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

assessments the project seeks to create. At this point, the usability of these empirical AI measures is an 

open question. Many experts are concerned that they are often too narrow to provide informative 

comparisons between humans and AI for people outside the field of computer science. As a result of these 

discussions, the project now expects the next steps to consider the potential value of these measures to 

the project. 

From assessment to implications 

The project will ultimately translate assessments of AI capabilities to their implications for education and 

work. One part of this will involve a simple comparison of AI and human capabilities in different areas. This 

will aim to understand what aspects of different capabilities are still well beyond AI and how many people 

have those capabilities. In addition, the project will envision different scenarios for applying AI capabilities 

to the tasks in different occupations. This will be a way to understand how humans will begin to work with 

AI systems that have new capabilities and how human occupations will evolve, along with the educational 

preparation they require. 

The last step of the translation process will be to develop ways to communicate the results of these 

assessments and analyses to policy makers and the general public. This will likely involve creation of a set 

of indicators across different capabilities and different work activities to communicate the substantive 

implications of AI capabilities in meaningful terms.  

The development work is projected to continue through the end of 2024. At that time, a first systematic 

assessment of AI capabilities should be completed. A translation of that assessment to its implications for 

education and work, with a set of meaningful indicators that describe those results, is also expected to be 

finished. Of course, AI is advancing rapidly and a single assessment would quickly become outdated. The 

final stage of the development work will be to define a programme for regular updates to the assessment. 

In the larger vision for this work, an ongoing programme of assessment for AI will add a crucial component 

to the OECD’s set of international comparative measures that help policy makers understand human skills. 

The Programme for International Student Assessment (PISA) provides the link from education to skill, 

while the Programme for the International Assessment of Adult Competencies (PIAAC) provides the link 

from skill to work and other key adult roles. The AIFS project is now building a component that will relate 

human skills to the pivotal technology of AI, thereby providing a bridge from AI to its implications for 

education and work, and the resulting social transformations in the decades to come as AI continues to 

develop. 
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