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Guillaume Avrin, artificial intelligence 

As artificial intelligence (AI) becomes more mature, it is increasingly used in 

the world of work alongside human beings. This raises the question of the 

real value provided by AI, its limits and its complementarity with the skills of 

biological intelligence. Based on evaluations of AI systems by the Laboratoire 

national de métrologie et d’essais in France, this chapter proposes a high-

level taxonomy of AI capabilities and generalises it to other AI tasks to draw 

a parallel with human capabilities. It also presents proven practices for 

evaluating AI systems, which could serve as a basis for developing a 

methodology for comparing AI and human intelligence. Finally, it 

recommends further actions to progress in identifying the strengths and 

weaknesses of AI vs. human intelligence. To that end, it considers the 

functions and mechanisms underlying capabilities, taking into account the 

specificities of non-convex AI behaviour in the definition of evaluation tools. 

15.  Assessing artificial intelligence 

capabilities 
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Introduction 

Based on evaluations of AI systems by the Laboratoire national de métrologie et d’essais (LNE) in France, 

this chapter proposes a high-level taxonomy of AI capabilities. It then generalises this taxonomy to other 

AI tasks to draw a parallel with human capabilities. It also presents proven practices for evaluating AI 

systems, which could serve as a basis for developing a methodology for comparing AI and human 

intelligence. Finally, it recommends further actions to identify the strengths and weaknesses of AI vs. 

human intelligence. To that end, it considers the functions and mechanisms underlying capabilities, taking 

into account the specificities of non-convex AI behaviour in the definition of evaluation tools. 

The chapter uses the terms “evaluation” and “evaluation campaign”. An evaluation is a single test that aims 

to measure the characteristics (performance, explainability, etc.) of an intelligent system. Conversely, an 

evaluation campaign represents the process of evaluating products either vertically (by observing a range 

of products at a given time) and/or horizontally (by observing the evolution of the product over time). 

Disciplinary field of artificial intelligence evaluation 

This section provides a framework for LNE's “evaluation” activities in the AI field, while presenting the good 

practices acquired since this activity was set up in 2008. 

The good practices at the heart of LNE evaluation campaigns are mainly the result of the search for a 

compromise between realism and reproducibility of experiments. It has led to the identification of features 

to be presented in campaigns below. Some of these features relate to the general organisation of the 

evaluation campaign, while others are more specialised on the evaluation process. 

 Scientific 

Evaluation campaigns preserve the demonstration aspect typically associated with them. However, they 

are based on the scientific criteria of assessment objectivity, performance measurement repeatability and 

experiment reproducibility. They also respect the requirements imposed by metrological rigour. 

 Benchmark-based 

The intelligent systems are evaluated through benchmarks. This means they perform well-specified tests 

in realistic environments or on databases. In addition, their performance is assessed by applying 

quantitative metrics. 

 Modular 

It is often not satisfactory to evaluate only the robot as a whole. Thus, the elements constituting the robot's 

architecture are broken down into functionalities (e.g. obstacle detection). These are then combined to 

perform more complex tasks (e.g. semantic navigation). The evaluation thus consists in Functionality 

Benchmarks (FBMs) and Task Benchmarks (TBMs). FBMs evaluate specific capabilities with a limited 

utility when used alone, while TBMs evaluate more complex activities (see below). 

 Periodical 

Evaluation campaigns should be organised as recurring events offering a similar evaluation framework 

each time (similar testbeds, similar testing datasets, same evaluation tools, etc.). This framework enables 

monitoring of the technological progress of the community of developers as a whole. 

 Structured 

Evaluation campaigns are structured to optimise effort and maximise impact. As such, they provide the 

scientific community with a stable set of benchmarking experiments. This, in turn, enables objective 

comparison of research results and can act as the seed for the definition of standards. 

 Synergic 
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Evaluation campaigns should build on the well-established framework originally created by RoCKIn1 and 

Quaero2 projects and subsequently validated, perfected and extended by RockEU23, SciRoc4, ROSE5 and 

METRICS6 projects. 

 Open 

Evaluation tools and annotated datasets should be publicly available. This will enable research and 

industry to develop and fine-tune their own algorithms, systems and products. Existing and prospective 

actors gain access both to difficult-to-obtain data with associated ground truth and to validated evaluation 

tools. Importantly, these by-products benefit the evaluator and promote the long-term sustainability of its 

evaluation campaigns. Users of the open data and tools will naturally be inclined to participate in the 

campaigns, thus creating a virtuous circle enabling their success. 

Functionality benchmarks and task benchmarks 

Evaluation campaigns include two groups of benchmarks (Amigoni et al., 2015[1]; Avrin, Barbosa and 

Delaborde, 2020[2]). 

Functionality benchmarks (FBMs) 

A functionality is conventionally identified as a self-contained unit of capability, which is too low level to be 

useful on its own to reach a goal (e.g. self-localisation, crucial to most applications but aimless on its own). 

A single component or a set of components can provide a functionality, and usually involves both hardware 

and software.  

An FBM is a benchmark that investigates the performance of a robot component when executing a given 

functionality. A functionality is as independent as possible of the other functionalities of the system. In this 

way, functionality can be controlled as the sole dependent variable in the evaluation. 

Task benchmarks (TBMs) 

A task is an activity of a robot system that, when performed, accomplishes a goal considered useful on its 

own. A task always requires multiple functionalities to be performed. Finding and fetching an object, for 

example, involves functionalities such as self-localisation, mapping, navigation, obstacle avoidance, 

perception, object classification/identification and grasping. A TBM is a benchmark that investigates the 

performance of a robot system when executing a given task. TBMs are designed by focusing on the goal 

of the task, without constraining the means by which such goal is reached. 

Evaluating the overall performance of a robot system while performing a task is interesting for assessing 

the global behaviour of the application. However, it does not allow evaluation of the contribution of each 

component. Nor does it put in evidence which components are limiting system performance. 

On the other side, the good performance of each element in a set of components does not necessarily 

mean that a robot built with such components will perform well. System-level integration has, in fact, a 

deep influence on this, which component-level benchmarking does not investigate.  

For these reasons, combining a TBM with FBMs focused on the key functionalities required by the task 

provides a deeper analysis of a robot system and better supports scientific and technical progress. The 

objective is to address the evaluation needs of end-users, integrators and equipment manufacturers. 

Fairness of evaluation campaigns 

This section looks at how to ensure an optimally fair treatment of the campaign’s participants. The notion 

of fairness is addressed in light of metrological considerations. 
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Simultaneity 

The evaluator shall ensure a simultaneity of the evaluation, as required by the following considerations: 

 The difficulty to model the influence of environmental factors on the system’s performance: 

any outdoor experiment will never be completely repeatable. Clouds change in the sky; waves and 

tides modify visibility underwater, etc. This lack of repeatability, in addition to its influence on the 

metrological rigour of the evaluation, has an impact on the fairness of the evaluation between 

participating systems. It is not conceivable that one participant will have to operate in pouring rain, 

while another will suffer from maximum sunshine. In this regard, the evaluator shall define 

thresholds and limits in several parameters that are considered to influence performance of the 

devices. Outside of this acceptability range, the evaluator shall define remedial strategies to have 

intelligent systems compete in reasonably similar conditions. 

 The “a priori ignorance” imperative: evaluated systems have a learning capability and 

consequently, should not have a priori knowledge of the testing environment (testbeds and testing 

datasets) used for the evaluation in order to avoid measurement bias and overfitting. This remark 

remains valid for systems that do not have learning skills since developers can influence the design 

of their systems if they have a priori information about testbeds and data. 

 The “a posteriori publication” imperative: to ensure reproducibility of the evaluation 

experiments, testing environments used must be publicly described (and accessible if they are 

datasets) when the measurements and results are published. 

This notion of “simultaneity” can sometimes be spread across the one or two days of the evaluation 

campaigns. The tolerance level about what may be considered “simultaneous” must, of course, be 

discussed on a case-by-case basis. 

Impartiality 

The evaluation must be carried out by a “trusted third party”. This evaluator must have metrology expertise 

applied to the evaluated systems in order to develop an evaluation protocol common to all participants. In 

addition, it must guarantee there are no conflicts of interest between the campaigns’ evaluator and 

participants. 

Precise evaluation plan 

Each evaluation must rely on an evaluation plan, a document that details the features of the following: 

 one or more evaluation tasks that focus on a device or software performing a specification 

 characteristics that need to be measured or estimated (performance, quality, safety, explainability, 

etc.) 

 metrics (i.e. a formula that allows production of scores, such as accuracy, precision, recall, 

F-measure) 

 test data or test environments (datasets or testbeds) 

 evaluation tools (software for data collection, visualisation, comparison). 

Evaluation task 

The first step in organising an evaluation campaign is to specify and prioritise a set of evaluation tasks 

(FBMs and TBMs). They are deduced from the identification of scientific and technological barriers. The 

principal (campaign funder), who expresses the “business” need, defines the tasks rather than the 

evaluator (LNE and its potential partners). On the other hand, when a potential use case is identified, the 

evaluator must carry out the following checks: 
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 List solutions corresponding to the use case, with an estimate (when the information is accessible) 

of the performance limitations associated with their characteristics or conditions of use (costs, 

knowledge to be implemented for deployment, operation in highly constrained environments or for 

an extremely specific field, etc.). 

 List the types of data required for the development and operation of such solutions, and their 

availability (considering regulatory or ethical limitations, the cost of collection, etc.). 

During this stage, the evaluator checks the feasibility of the campaign using the following criteria: 

 possibility of objectifying the evaluation criteria 

 difficulty of collecting and transmitting test data to the participants of the challenge (confidentiality 

of data inherent to use cases, availability of data, etc.), or making test environments available 

 comparability of solutions for the use case (systems that can potentially take in extremely varied 

types of data may lead to significant adaptation of evaluation protocols, or even incomparability). 

Evaluation method 

The evaluation paradigm generally consists in comparing reference and hypothesis data. Reference data 

are the ground truth annotated by human experts or provided by measuring instruments in the test facility. 

Conversely, hypothesis data are the behaviour or output produced automatically by the intelligent system. 

This comparison allows the estimation of the performance, the reliability and other characteristics such as 

efficiency of robots. The evaluation can concern the entire system (during TBM) or the main technological 

components taken independently (during FBM), as shown in Figure 15.1. 

Figure 15.1. Evaluation method 

 

Some evaluation campaigns last several years and include several evaluations. The repeated evaluations 

allow the principal to assess the effectiveness of the funding granted for the organisation of the evaluation 

campaign. For example, this could estimate the performance of potential technological solutions that 

address its use case. For developers, repeated evaluations allow them to update the technological 

components of the intelligent system according to the quantitative results obtained. 
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The dry-run evaluation guarantees the smooth implementation of the campaign. It allows the evaluator to 

ensure its evaluation plan is both realistic with respect to the capabilities of the systems, and fair among 

the different technologies used by participants. Thus, the dry run can experiment with several test 

environments and metrics to define the best evaluation protocol that will be fixed during the official 

evaluation campaigns. Several official evaluation campaigns follow the dry run. These aim at objectively 

measuring the progress of participating robots in real field conditions. To this end, the evaluation plan is 

meant to be adapted throughout the campaign to accompany the evolutions of the participants’ 

technological solutions. The steps of an evaluation campaign are presented in Figure 15.2. 

Figure 15.2. Steps of a campaign involving several evaluations 

 

Comparison metrics 

The capability measurements must be quantitative and provided by a formula (“metric”) that indicates the 

distance between the reference and the hypothesis, or measures capacity directly. The distance between 

the reference and the hypothesis could be measured by the distance between a real or ideal trajectory in 

a navigation task, the number of false positives and false negatives in an image recognition task, the binary 

success of a task, etc. A direct measurement could be time to completion, distance covered, etc. 

Test data or test environments (datasets or testbeds) 

Evaluations can be based on physical (in real or laboratory conditions on testbeds) and/or virtual testing 

environments (simulators and testing datasets). Pros and cons of the two types of environments are 

presented below. 
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Table 15.1. Strengths and weaknesses of test environments 

 Physical testbeds Simulators Datasets 

Exhaustiveness of tested scenarios * *** ** 

Realism of tested scenarios *** * ** 

Generation of new data *** ** * 

Dynamic and closed-loop testing *** ** * 

Experimentations reproducibility and 

measure repeatability * *** *** 

Cost of each test * *** ** 

Data obsolescence *** ** * 

Note: The number of asterisks indicates the rank of the test environment type: *** corresponds to the best solution and * to the worst. 

Taxonomy of evaluations carried out by Laboratoire national de métrologie et 

d’essais 

Clustering Laboratoire national de métrologie et d’essais’s artificial intelligence 

evaluations 

LNE has carried out more than 950 evaluations of AI systems since 2008. These include areas such as 

language processing (translation, transcription, speaker recognition, etc.), image processing (person 

recognition, object recognition, etc.) and robotics (autonomous vehicles, service robots, agricultural robots, 

intelligent medical devices, industrial robots, etc.). Examples of evaluations in the context of research and 

development projects are presented in Table 15.2. 

The evaluation tasks have been grouped into the capabilities of recognition, understanding, mission 

management and generation. These are an extension of the “sense-think-act” paradigm and an adaptation 

of the AI cycle “Perception – Learning – Knowledge representation – Reasoning – Planning – Execution” 

(Beetz et al., 2007). 

These capabilities are also consistent with the NIST 4D/RCS reference architecture for autonomous 

vehicles (Albus, 2002[3]); with the “SPACE” breakdown into functions (Sense, Perceive, Attend, Apprehend, 

Comprehend, Effect action) that underpin intelligent behaviour (Hughes and Hughes, 2019[4]) and finally, 

with most cognitive architectures (Kotseruba and Tsotsos, 2016[5]; Ye, Wang and Wang, 2018[6]). These 

can be illustrated by the dialogue systems, for which such a division is common (see Figure 15.3) (Leuski 

and Traum, 2008[7]). 
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Figure 15.3. Division of dialogue systems capabilities 

 

Comparative evaluation of different architectures 

LNE also assesses another capability of AI, which cuts across the different capabilities listed above: the 

system's capability to learn and update its parameters throughout its lifecycle. 

The differences between the cognitive architectures cited above do not result so much from divergent 

points of view on potential capabilities. Rather, they reflect two other factors. First, they were developed in 

different contexts (different perimeters and objectives of the associated research projects). Second, they 

have different hypotheses regarding the neural processes underlying these functionalities (symbolic, 

connectionist or hybrid architectures, centralised or decentralised processing, etc.). Summaries of the main 

cognitive architectures7 and the main capabilities8 covered by these architectures are available in the 

literature. 

The comparative evaluation of these different architectures is a vast subject of research. The evaluation 

criteria considered include the generality of the architecture. This measures the types of tasks and 

environments that can be handled by systems developed according to this architecture. This 

measurement, in turn, is assessed in terms of versatility and taskability.  

Versatility is defined as the number of ways in which the system designed according to the architecture 

can solve the same task, using different capabilities. Meanwhile, taskability is the number of different tasks 

that can be performed by the system receiving external commands. This generality feature of an 

architecture is directly related to the general intelligence of the resulting systems (Langley, Laird and 

Rogers, 2009[8]) and therefore directly relevant to this study.  

There is a wide variety of terms within these cognitive architectures to describe their capabilities. The first 

column of Table 15.2 proposes a first equivalence between these terms. 

These cognitive architectures are consistent with each other. They are not only interested in reproducing 

the external behaviour of biological intelligences but also in modelling the internal properties of their 

cognitive systems. They propose a blueprint for cognitive agents depicting the arrangement of functional 

units. This facilitates implementation of their principles in mechatronic systems [see 

“architecture-as-methodology” in Jiménez et al. (2021[9])]. 

These cognitive architectures also provide a formalism for presenting human capabilities (and dealing with 

the intrinsic complexity of cognitive systems) that can be reproduced in artificial systems.9 In this way, they 

represent a bio-inspired and integrated taxonomy of human and artificial capabilities and they facilitate the 

comparison of these capabilities when they are implemented in humans and in machines. 

Exclusivity and exhaustiveness 

As these cognitive architectures are used to assemble technological components of intelligent mechatronic 

systems, each capability can be associated to an exclusive component or group of components. Mutual 

exclusivity between these capabilities is thus guaranteed. For obvious cost reasons, engineers using a 

cognitive architecture to design their intelligent systems would have no interest in building in functional 
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redundancy between the different components (which must be distinguished from the redundancy intended 

to meet the safety requirements of critical systems).  

This modular architecture therefore makes it possible to isolate the technological components that 

underpin the different capabilities (i.e. the functional units) and to carry out input-output evaluations on 

each component to evaluate each capability independently. 

Various studies have investigated the exhaustiveness of the capabilities covered by these architectures. 

However, there does not yet seem to be a consensus regarding the most comprehensive architectures. 

Some prefer CLARION and AIS (Kotseruba and Tsotsos, 2016[5]), while others prefer OpenCogPrime (Ye, 

Wang and Wang, 2018[6]). Exhaustiveness can be measured by the "generality", i.e. the number of tasks 

and environments in which a system built according to this architecture can be used. 
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Table 15.2. LNE's evaluation tasks and metrics 

Automatic information processing systems 

Task Capability Metrics Project 

Speaker verification for criminalistics application  Recognition 

Equal error rate (EER), 
Detection cost function 

(DCF), Detection error trade-
off (DET), Probabilistic linear 
discriminant analysis, etc. 

(Ajili et al., 2016[10])  

FABIOLE (2013-16) 

VOXCRIM (2017-21) 

Automatic speech recognition Recognition 

Word error rate (WER), 

Automatic transcription 

evaluation for named entities 
(ATENE), Word Information 
Loss (WIL), Relative 

information loss (RIL), IN, 

Near 

(Ben Jannet et al., 2015[11]) 

VERA (2013-15) 

Speaker diarisation Recognition  
Diarisation Error Rate (DER) 

(Prokopalo et al., 2020[12]) 

ALLIES (2017-20) 

Speaker diarisation across time 
Recognition  

Learning 

Average DER across audio 
file, weighted by duration of 

the file 

Lifelong learning diarisation 
Recognition  

Learning 

The DER is computed on the 
final version of the hypothesis 

for each document penalised 
by the cost of interacting with 

the user in the loop 

Translation, translation across time, lifelong 

translation 

Recognition Understanding 

Generation 

Learning 

Bilingual evaluation 
understudy (BLEU) 
adaptations similar to those 
of the speaker diarisation 

tasks 

Recognition of patients' vital signs (breathing, heart 

rate, etc.). 
Recognition 

Estimated global error rate 
(EGER), Precision, Recall, F-

measure 
AIR (2020-22) 

Transcription from TV feeds 
Recognition  

Generation 

Word error rate (WER),  

(Galibert et al., 2014[13]) 
ETAPE (2010-12) 

Named entity recognition (detection, classification, 

decomposition) 
Recognition 

Entity Tree Error Rate 
(ETER), Slot error rate 
(SER), Error per response 
(ERR), EDT value, Local 

entity detection and 

recognition (LEDR) 

(Ben Jannet et al., 2014[14]) 

QUAERO (2008-14) 

Question-answering systems 

Recognition Understanding 

Mission management 

Generation 

QA distance measure,  

(Bernard et al., 2010[15]) 

People recognition in multimodal conditions Recognition EGER (Kahn et al., 2012) REPERE (2012-14) 

Translation of newspapers articles and broadcast 
news transcriptions that come from various radio and 

television programmes 

Recognition Understanding 

Generation 

Translation Error Rate (TER), 
BLEU, Human-mediated 

translation 

edit rate (HTER) 

TRAD (2012-14) 

Area segmentation Recognition 
ZoneMap, Pset, DetEval, 
Jaccard, (Brunessaux et al., 

2014[16]) 

MAURDOR (2012-14) Identification of the writing type (handwritten, printed, 

unspecified) 
Recognition Accuracy 

Language identification Recognition Accuracy 

Text-to-text transcription and optical character Recognition WER, Character error rate 
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recognition (CER) 

Extraction of logical structure (logical connections 

between semantic areas) 

 

Recognition 

Understanding 

Precision, Recall, F-measure 
(Oparin, Kahn and Galibert, 

2014[17]) 

Synthesis of video and text information 

Recognition Understanding 

Mission management 

Generation 

WER, SER, Precision, 

Recall, F-measure 
IMM (2013-16) 

Automatic speech recognition performance 

prediction 
Recognition Understanding 

Mean Absolute Error (MAE) 

and Kendall 

(Elloumi et al., 2018[18]) 

Autre – 2018 

Satellite image classification Recognition EGER, ZoneMap, Jaccard Confidential (2019-20) 

Recognition of aircraft movement patterns from radar 

data 
Recognition 

EGER, Precision, Recall, F-

measure 
Confidential (2019-20) 

Transcription by smartphone intelligent personal 

assistant 
Recognition WER, Accuracy 

Confidential (2019) 

QA by smartphone intelligent personal assistant 

Recognition Understanding 

Mission management 

Generation 

Accuracy 

Robotic systems 

Task Capability Metrics Project 

Crops and weeds recognition Recognition 

EGER, Precision, Rappel, F-
measure (Avrin et al., 
2019[19]); (Avrin et al., 

2020[20]) Challenge ROSE (2018-

21) Mechanical/electrical weeding action Generation Accuracy 

Full agricultural weeding robot evaluation 

Recognition Understanding 

Mission management 

Generation 

Accuracy 

Advanced driver assistance (ADAS) 

Recognition Understanding 

Mission management 

Generation 

Time to collision, time 
exposed to time to collision, 
time to brake, time to steer, 

time to react 

SVA/3SA (2015-22) 

Climbing up 10 cm high stairs without handrail, 
climbing up 15 cm high stairs with handrail, walking 
over stepping stones, walking on a beam, walking on 
a flat ground, walking on a slope, walking over 

obstacles 

Recognition Understanding 

Mission management 

Generation 

Walked distance, success 
rate, max tracking error, 
duration of the experiment, 

etc. 

(Stasse et al., 2018[21]) 

Robocom++ (2017-20) 

Human detection for logistics robots Recognition 
EGER, Precision, Recall, F-

measure 
Blaxtair Safe (2019-20) 

Estimate the stopping distance (conventional or 

emergency) under load and maximum speed 
Generation Linear distance measurement ECAI (2019-20) 

As shown in Table 15.2 the same task may involve one or more capabilities depending on the context. For 

example, an information retrieval task may rely only on the mission manager if the information is stored in 

memory. It may require recognition and understanding if it involves searching for information in text. A 

medical diagnosis may be based solely on a capability for recognition, or may also involve a phase of 

reasoning. A medical prescription will involve the “mission manager” component. 

Generalisation to other artificial intelligence tasks 

The capabilities presented in the previous section are defined in more detail in Table 15.3 and generalised 

to other typical AI tasks. Table 15.4 illustrates the presence of these capabilities in AI systems. Table 15.5 

provides an example of how to implement the evaluation process to assess these capabilities for a specific 

AI system.  
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Table 15.3. AI capabilities generalisation 

AI capabilities (and equivalent words) Examples of AI tasks Example of AI output 

Recognition: perception/acquisition of sensory 

information (vision, hearing, etc.) 

 

Speech recognition, optical character 
recognition, tokenisation, named entity 
recognition, lemmatisation, parsing, pose 
estimation, face verification, scene 

segmentation, person reidentification, image 

classification, etc. 

“object: glass”, “position: falling” and 
“object: human arm”, “position: 

stretched” 

Understanding: contextualisation, interpretation, 
comprehension, conceptualisation, assimilation 

(relating to system state, storage, etc.) 

  

Knowledge representation, 2D/3D mapping, 

information extraction, image captioning, etc. 

“the human tries to catch the falling 

glass” 

Mission manager: decision making, cogitation, 
cerebration, reasoning, inferring, arbitration 

(judgement), etc. 

Prediction, planning, optimisation, selection 

between different options, self-check, etc. 

Identification of the best trajectory to 
catch the glass safely before it 

touches the ground 

Generation: action  

 

Navigation, speech synthesis, locomotion, 
manipulation (grasping, etc.), content generation 

(image, etc.), etc. 

Generation of the movement of the 
robotic arm and the gripping effector 

to catch the glass 

Learning: adaptation, knowledge storing 

 

Parameters update (supervised, unsupervised, 
reinforcement learning, etc.), operation 

algorithm change.  

If "broken glass": failure, update the 
trajectory generation parameters, 

otherwise do nothing. 

Table 15.4. Examples of AI capabilities for different tasks 

Recognition Understanding Mission management Generation 

Autonomous car 

Traffic-sign recognition, obstacle 

recognition, etc. 

Velocity synthesis, image plan 
mapping, relationship 

identification, etc. 

Motion planning, risk 

assessment, etc. 

Vehicle control, braking, 

steering, driver alert, etc. 

Text summarisation 

Sentence segmentation, word 

segmentation, feature extraction 

Feature frequency, similarity 
computation, sentences 

comparison and scoring 

Sentences selection and 

assembly 
Summary generation 

Recommendation systems 

Analysis of rating Analysis of behaviour, 
contextualisation based on 

location, time, user profile, etc. 

Comparison to other user 

preferences 
Recommendation of objects. 

Table 15.5. Example of the evaluation steps for autonomous weeding robots (from ROSE and 
METRICS projects) 

Step Detail 

Formalisation of the need  What is the objective: autonomous weeding of the intra-row of agricultural plots. 

 Which crops should be considered in priority: corn and beans. 

 What are the weeds to be considered in priority: lamb’s quarter, matricaria, ryegrass and wild mustard. 

Feasibility analysis  Mapping of weed control robots on the market. 

 Identification of the main capabilities useful for the task (weed detection, weeding decision making, 

weeding action). 

 Estimation of the costs associated with the evaluation of these different capabilities: cheap weed 

images to produce, expensive test farm to set up, etc. 

Formalisation of the 

evaluation tasks 

 Recognition: segmentation of weeds and crops on images. 

 Generation: navigation, weeding action. 

 Etc. 

Formalisation of the 
evaluation criteria and 

metrics 

 Segmentation metrics: estimated global error rate (EGER), Jaccard index, Zonemap, etc. 

 Generation metrics: biomass estimation, counting of weeds removed. 

 Etc. 
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Relevance of the proposed capability taxonomy  

Relevance to artificial intelligence 

This section reviews the mutually exclusive and collectively exhaustive capabilities (MECE character) of 

the different taxonomies to assess their relevance. 

Exclusivity 

The taxonomy proposed in the previous section is inspired (although simplified) by cognitive architectures. 

These are designed to assemble different functional units (each representing its own capability) to form an 

information processing pipeline. As each unit has its own function, these cognitive architectures are 

designed to ensure the mutually exclusive nature of the capabilities. In this way, they avoid any redundancy 

that would be detrimental in terms of the manufacturing cost of the AI system. However, with the rise of 

end-to-end learning (Shibata, 2017[22]), the boundary between these different functions is blurring as design 

moves from this traditional “pipeline”. 

Exhaustiveness 

The proposed taxonomy seems to cover the capabilities of the main cognitive architectures, although with 

a high level of abstraction (Kotseruba and Tsotsos, 2016[5]; Ye, Wang and Wang, 2018[6]; Hughes and 

Hughes, 2019[4]). High-level capabilities could be further broken down into tasks, while retaining their 

MECE nature. Table 15.6 provides an example of the decomposition of a high-level capability, which is 

modality- and application-independent, into modality-dependent tasks and application-dependent 

sub-tasks. This division can be continued until specific tasks are reached (such as the manufacturing tasks 

proposed in Huckaby and Christensen (2012[23]): place, transport, retract, slide, insert, pick up, align, etc.). 

Table 15.6. Example of breaking down the recognition capability into sub-tasks 

Capability 

(modality- and application-independent) 
Modality-dependant task 

Modality- and application-dependant sub-

task 

Recognition 

Image recognition 

Optical character recognition 

Face recognition 

Pose estimation 

Etc. 

Language recognition 

Tokenisation 

Lemmatisation 

Named entity recognition 

Etc. 

Etc. Etc. 

The breakdown of capabilities proposed for the taxonomy is also relevant given that substantial progress 

on a task in one capability advances AI performance on other associated tasks (see Table 15.2 for 

examples of tasks for each capability). This is, in particular, the consequence of the democratisation of the 

use of pre-trained algorithms and inductive transfer (Moon, Kim and Wang, 2014[24]).  

This observation is even more striking for a particular modality related to a given capability [e.g. visual 

recognition (Razavian et al., 2014[25])or speech recognition (Howard and Ruder, 2018[26]; Peters et al., 

2018[27]; Devlin et al., 2019[28])].  

This is the case in part because the tasks for a given capability usually involve the same types of 

algorithms. For example, recognition tasks typically use classification, clustering or mapping algorithms. 

Conversely, mission management tasks will use more optimisation or regression algorithms. These 
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correspondences between types of tasks to be automated and types of algorithms used for automation are 

discussed further below. 

These dependencies between progress on tasks associated with the same capability are much more 

evident between high-level tasks and their sub-tasks. In particular, some work highlights the critical 

implications that progress in certain sub-tasks can have for AI as a whole (Cremer and Whittlestone, 

2020[29]). 

Relevance to humans 

If the proposed taxonomy seems relevant to AI, another question arises: will it allow an effective 

comparison between human and AI capabilities? The answer requires two considerations. 

First, this taxonomy is related to cognitive architectures. As such, they already provide an integrated view 

of human and artificial capabilities, with particular caution regarding jingle-jangle fallacies mentioned in 

Primi et al. (2016[30]). Indeed, such a taxonomy should be independent of the underlying methods and 

equipment used Shneier et al. (2015[31]). 

Second, the idea of decomposing high-level capabilities into a pipeline of lower-level capabilities also 

seems relevant for the analysis of human capabilities. Tolan et al. (2020[32]) highlight this type of 

dependence between high-level capabilities and lower-level skills. This pipeline decomposition is also 

consistent with the levels of autonomy proposed in Huang et al. (2007[33]) to characterise the assistance 

of the machine to the human and vice versa. 

The decomposition choices, of which a first example is provided in Table 15.6, are in turn complex to 

perform. A consensus seems to be found in the idea of starting the taxonomy with high-level capabilities 

that are non-specialised (Hernández-Orallo, 2017[34]). Neubert et al. (2015[35]) called these capabilities with 

a higher level of abstraction “Core domain skills”, “Transversal skills” and “Basic cognitive skills”, while 

O*NET10 refers to them as “cross-occupational activities”. Chapter 7 explores these skills in more detail. 

The question of correspondence with the taxonomies of human capabilities also arises (Hernández-Orallo, 

2017[34]; Hernández-Orallo, 2017[36]; Tolan et al., 2020[32]). An association is proposed in Table 15.7. 
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Table 15.7. Correspondence between AI and human capabilities 

Human abilities  Capabilities 

Memory processes 
Mission management 

Learning 

Sensorimotor interaction 

Recognition 

Understanding 

Mission management 

Generation 

Visual processing Recognition 

Auditory processing Recognition 

Attention and search Recognition 

Planning and sequential decision making and acting 
Mission management 

Generation 

Comprehension and compositional expression 

Understanding 

Mission management 

Generation 

Communication 
Mission management 

Generation 

Emotion and self-control 
Mission management 

Generation 

Navigation Mission management 

Conceptualisation, learning and abstraction 
Understanding 

Learning 

Quantitative and logical reasoning Mission manager 

Mind modelling and social interaction 

Understanding 

Mission manager 

Generation 

Metacognition and confidence assessment Mission manager 

Source: Hernández-Orallo, (2017[36]). 

The human capabilities shown in Table 15.7 are mainly inspired by psychometrics, comparative 

psychology and cognitive science. They correspond to combinations of different capabilities proposed for 

AI, although the proposed taxonomy has a high level of abstraction. As a consequence, transcribing these 

human capabilities into an AI system would require different functional units. These capabilities would be 

called "composite". In AI, composite capabilities are complex to evaluate. The modular organisation of 

capabilities within cognitive architectures instead allows each technological component to be evaluated 

independently, through input-output evaluations, as discussed in Section 3.  

Relevance of evaluation methods to compare human and artificial capabilities 

Relevance of artificial intelligence tests 

This chapter presents an approach used by LNE to evaluate AI systems based on the implementation of 

benchmarks (i.e. standard tests). The test-based approach is also commonly used to assess human 

capabilities. School exams and neuropsychological evaluations (perceptual, motor, attentional tasks, etc.) 

rely on tests. Moreover, the a priori ignorance, a posteriori publication and impartiality requirements are 

equally important for such human dedicated tests. Even the adaptive/adversarial testing approaches used 

for AI have their equivalent for human testing. Adaptive testing is found in GRE, as well as in oral tests 

such as the one used by German dual vocational education and training (see Chapter 9). 
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Since the test-based approach is already used to evaluate both biological and artificial capabilities, it would 

be interesting to compare these competences. In most of the LNE data-based evaluations, humans 

perform the reference annotations against which the outputs of the intelligent system under evaluation are 

compared (see sub-section “Precise evaluation plan”). In practice, several humans annotate each piece of 

data in the test database11 to carry out inter- and intra-annotations agreement analyses (Mathet et al., 

2012[37]) and to verify the ground truth associated with the test data. Therefore, most evaluations of AI 

systems include, from the beginning, a comparison with humans.  

Tests designed for AI are also interesting because they are modular (cf. sub-section “Disciplinary field of 

AI evaluation”). As well, the evaluation tasks (task benchmarks and functionality benchmarks) follow the 

division of human capabilities into functional units proposed by cognitive architectures (cf. sub-section 

“Clustering LNE’s AI evaluations”). Thus, they are optimal to compare human and artificial capabilities. 

For these reasons, tests specifically designed for AI systems could occupy a prominent place in the 

OECD’s Artificial Intelligence and the Future of Skills project. 

Relevance of human tests 

Many tests designed for humans seem unsuitable for AI.  

First, tests are generally conducted with environments whose size (questionnaire, duration of driving 

licence exams, etc.) is not adapted to the specifics of AI behaviour. Indeed, AI behaviour is largely 

non-convex and non-linear. It is not possible to evaluate its performance at a few points and deduce by 

interpolation and extrapolation its performance on the whole operating domain. Thus, testing environments 

are set up to maximise the exhaustiveness of the test scenarios covered (e.g. virtual testing). On the 

contrary, humans have much less chaotic behaviour. This is why a driving exam of less than 60 minutes, 

or a written test with about 20 questions, is sufficient to test a human’s performance.  

Second, they sometimes focus on tasks (e.g. IQ tests) that can be easily overfitted by AI. Conversely, the 

risk of human overfitting of tasks designed to evaluate AIs seems much lower. 

Third, LNE has never evaluated some human capabilities presented in Table 15.7 in AI. Perhaps the task 

was not immediately relevant to the machine kingdom (e.g. it has no “self-control”). Or perhaps it was not 

evaluated as part of a specifically dedicated task, even it was a sub-component of a more complex task 

being evaluated (e.g. memory processes, quantitative and logical reasoning). As another possibility, no 

client may have ever asked LNE to assess this capability (e.g. “Emotion”, "Mind modelling and social 

interaction").  

This third finding is informative for the OECD study because it may indicate one of two things: 

 AI is too immature to perform this task. Therefore, there is no system on the market that can 

perform it and useless to organise an evaluation campaign for it. 

 Economic stakeholders have not yet deemed the assessment of this capacity as useful.  

The latter does not necessarily mean the automation of this capability has no market value. Indeed, most 

often only the “critical” systems incorporating AI (which present a risk to goods and/or people) are assessed 

by trusted third parties such as the LNE, in line with European regulations.12 

Finally, human tests are designed to assess abilities, some of which have a name that may be questionable 

for AI. A somewhat simplistic understanding of the “memory” capability in Table 15.7, for example, could 

suggest this task is not relevant for AI, since AI never forgets. On the contrary, if this task concerns the 

ability to store, recognise and re-use knowledge in general, then it seems a critical step not yet reached in 

AI development (Cremer and Whittlestone, 2020[29]).  

Similarly, many tasks automated by AI, such as optimising movements on a farm plot to weed a maximum 

of weeds in a minimum of time call for “quantitative and logical reasoning” skills (Avrin et al., 2020[20]; Avrin 
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et al., 2019[19]). However, it is not clear whether this task is more consistent with this capability than with 

“planning and sequential decision making and acting” or even “navigation”. 

Relevance of test methods specific to the intelligences being tested 

With respect to the non-convexity of AI behaviour and the convexity of human behaviour, and given the 

risks of overfitting, evaluation tools must generally be defined according to the intelligence to be evaluated. 

Two elements generally define the testing tools (measuring instrument, test dataset, etc.) to be used in an 

evaluation. First, there are the expected functionalities (image recognition, scene understanding, etc.) of 

the evaluated intelligent system. Second, there are the technological solutions underpinning these 

functionalities, be they algorithms (CNN, SVM, etc.) or biological neural networks. 

Another taxonomy relating to the type of technical solution (algorithms, biological neural architectures, etc.) 

used to achieve the functionality could therefore be established. This “mechanisms taxonomy” would be 

used to define the test protocol used (sampling and number of tests/questions, etc.) to evaluate the skills 

listed in the “capabilities taxonomy” and offered by the intelligent system under study.  

This does not mean that some systematic correspondences between the “capabilities taxonomy” and the 

“mechanisms taxonomy” cannot be found. For example, recognition tasks are often automated by deep 

learning algorithms. In addition, comprehension tasks often rely on knowledge graphs and mission 

management tasks on reasoners. 

This conclusion, moreover, is quite logical with regard to certain specificities of AI and human intelligence: 

 Other elements than capabilities can influence human performance, such as traits, interests and 

values (De Fruyt, Wille and John, 2015[38]). The socio-emotional characteristics of human 

performance must be considered when designing the test. This is not the case for AI. 

 AI can be duplicated and simulations run in parallel to test a large number of test scenarios; it is 

not possible to do the same for humans. 

Relevance of task assessments 

Although the assessment of AI and human intelligence capabilities are the focus of the study, task-based 

assessments may still be useful given the two points below: 

 There is no single combination of capabilities to perform a given task. Each type of agent will 

try to rely on its best capabilities: AI systems will rely on their remembering and retrieving skills, 

their unbounded working memory, their speed of calculation, their perfect attention span; humans 

will rely on their unrivalled manipulation skills, common sense reasoning, frugal learning skills, etc. 

 The end-to-end learning approach of AI can render obsolete/impossible the evaluation of 

certain capabilities (e.g. it is not possible to evaluate the performance of an end-to-end dialogue 

system in named entity recognition). 

Relevant commonalities between all test methods 

The test-based evaluation approach is common to both AI and human intelligence. It seems to be a crucial 

avenue to compare them. The Animal-AI testbed is, for example, dedicated to the evaluation of non-specific 

capabilities in both animals and AIs. How could standard test modules, such as ASTM E2919-14 for “Pose 

measurement”, be designed for AI in many different applications in manufacturing, construction, medicine 

and aerospace, to evaluate human performance?  

In addition, the test-based approach has other attributes that can inspire the expert judgement-based 

method of this study: 



268    

AI AND THE FUTURE OF SKILLS, VOLUME 1 © OECD 2021 
  

 The assessments should be modular (in agreement with the taxonomical approach of the OECD 

project), as already discussed above. 

 The impartiality of evaluations should be ensured: an expert could underestimate or overestimate 

the capabilities of AI systems due to a conflict of interest.  

Recommendations 

This chapter capitalises on LNE's experience in evaluating AI systems to address two main questions:  

 Which taxonomy should be used to compare AI and human intelligence capabilities? 

 What evaluation tools and methods should be used to compare these capabilities? 

It proposed a first taxonomy, simple but relevant to both biological and artificial intelligences. It then made 

recommendations regarding assessments to compare these intelligences. To make progress in answering 

the two questions above, and to pursue the impulse launched by the OECD in a particularly constructive, 

methodical, concerted and transparent spirit, the following actions would be useful: 

 Classify human and AI capabilities in terms of functions and mechanisms  

Intelligent systems (human or machine) perform very different functions (e.g. face recognition and bipedal 

walking, medical diagnosis and navigation of an unmanned aerial vehicle) using information processing 

mechanisms that rely on the same elementary principles. Conversely, within the same category of 

functions, different mechanisms can be used (rational or intuitive channels for humans, neural networks or 

expert systems for AI). For AI, grouping by evaluation metrics, types of automated tasks (classification, 

segmentation, etc.) and types of algorithms used (CNN, SVM, etc.) are examples of interesting avenues. 

 Organise evaluation tools around this double classification (function and mechanism) 

The general architecture and the hardware devices of the test benches to be set up (input/output channels, 

feedback, real time, etc.) are closely related to the mission of the system to be evaluated. Conversely, 

protocols to be followed (sampling and annotation of the operating domain, number of tests, etc.) will be 

determined mainly by the cognitive or computer mechanisms involved. In a maths competition, for 

example, a grading scale and a reader are mobilised; in a singing or figure skating competition, a jury is 

set up; in a sitting trial, both a professional legal judge and a popular jury are involved.  

 Formalise the influence of the non-convexity and intra-task variability of behaviour on the 

evaluation tools to be implemented 

AI generally has a non-convex behaviour with significant intra-task performance variability, while humans 

have a convex and stable behaviour. The behaviour convexity has a direct impact on the evaluation 

methods. It constitutes a gap between AI and human testing approaches that makes any assimilation 

difficult at this stage, in either direction. The evaluator of an intelligent machine has no choice but to go 

through the operating domain in all its corners. It must be tested at each of its operating points with a 

sampling step that is immediately related to the extremely unstable, non-linear character of its reactions.  

The evaluator of a human being will be much less precise. The evaluator will be satisfied with probing the 

acquisition of a know-how by putting the person in “typical” situations that solicit the various components 

of the competence (e.g. the driving licence exam vs. the long test campaigns of the autonomous vehicle). 

The evaluator thus hypothesises that the person has regulation capabilities and mental resources more 

general and common to the ordinary human being that will make him/her able to face any intermediate 

situation.  

The machine does not have them yet. This is probably because of its specialisation and its relative 

simplicity. However, it is also undoubtedly because of the technologies and processes used, which are 

not, or not sufficiently, superimposable on the natural cognitive mechanisms, composite and articulated, 

inherited from evolution.  
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These major differentials – the instability of intelligent systems – are of course to be nuanced precisely 

according to these technologies and applications. This is the main criterion on which to base improvements 

of the proposed taxonomy for comparison and cross-fertilisation between the two disciplines. 

 Deepen the discussion concerning the inter-task and intra-capability repercussions of the 

progress made in AI, to identify the root of AI capabilities and, by analogy, that of the human 

being  

 Develop a broadly shared set of resources, methodologies and evaluation metrics that will 

enable these analyses to be conducted and AI/human progress to be tracked 

The strengths and weaknesses of human intelligence compared to AI by a technical and comparative 

rapprochement in terms of taxonomic and methodological unity of appreciation should be identified as 

soon as possible. This should accompany the progress in AI and cognitive sciences and, in particular, pilot 

what contributes to identify their "greatest common divisors".  

AI seems to be the source of changes that are extremely favourable to the destiny of humanity, such as a 

radical emancipation from work. Therefore, this evolution should be supported by seeking to control the 

risks rather than pushing it back or slowing it down. Otherwise, humans will end up enduring AI without 

having prepared for it sufficiently. 
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3 www.eu-robotics.net/eurobotics/about/projects/rockeu2.html 

4 https://sciroc.org/ 

5 http://challenge-rose.fr/ 

6 https://metricsproject.eu/ 

7 https://bicasociety.org/cogarch/ 

8 https://web.archive.org/web/20100315140823/http://ai.eecs.umich.edu/cogarch0/common/capa.html 

9 The usefulness of having cognitive architectures to produce general artificial intelligence is presented in 

Langley (2006[39]). 

10 www.onetonline.org/  

11 Learning data is also often subject to human annotation, which can be related to the concept of 

Fauxtomation. 

12 https://ec.europa.eu/growth/single-market/goods/building-blocks/conformity-assessment_en 
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