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This chapter reflects on major issues recounted in the previous chapters, 

raising three key questions relevant to the Artificial Intelligence and the 

Future of Skills project. What is the value in identifying ideal models when 

comparing humans with artificial intelligence (AI) and robotic systems? How 

might systematic mapping occur between skill taxonomies, tasks, tests and 

functional AI components? How can major differences be handled in targeted 

skills, different occupations and changes in the world? Some suggestions are 

offered on next steps in addressing these questions.  

18.  Tasks and tests for assessing 

artificial intelligence and robotics in 

comparison with humans 
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Introduction 

The OECD Artificial Intelligence and the Future of Skills (AIFS) project attempts to understand the 

educational implications of artificial intelligence (AI) and robotics. The goal is to create an ongoing 

programme to assess the capabilities of AI and robotics, and to compare them with human capabilities. 

The 5-6 October 2020 meeting featured presentations from 13 experts who spanned diverse fields, 

including educational assessment, AI, robots, cognitive science and workforce training. Additional experts 

from various fields (and countries) also contributed. This chapter raises some questions and suggestions, 

and offers other reflections on major issues covered at that meeting and recounted in the preceding 

chapters.  

Identifying knowledge, skills and abilities 

One central issue is to identify the set of knowledge, skills and abilities (KSAs) to assess. Psychology has 

proposed comprehensive taxonomies with psychometric tests. These include the three-level 

Carroll-Horn-Cattell model presented by Kyllonen (see Chapter 3). This has a long history of validation in 

humans and quantitatively tuned factor analyses.  

There are abilities and skills identified in industrial-organisational psychology and business that involve 

tasks specific to particular occupations. This allows adults to be trained and certified to practice in the 

occupation. For example, Dorsey and Oppler (see Chapter 10) described the O*NET (Occupational 

Information Network) in the US Department of Labor. It identifies KSAs for occupation categories 

(e.g. manufacturing, health care). Rüschoff (see Chapter 9) presented the vocational education and 

training framework in Germany. It has an intense two-day assessment that has practical, written and oral 

components, including answering questions to justify actions. 

Greiff and Dörendahl (see Chapter 7) pushed the envelope beyond basic cognitive skills and 

domain-specific skills into the realm of transversal skills that have increasing importance in the 21st 

century. These comprise problem solving, collaboration, creative thinking and global competency. Wooley 

(see Chapter 6) echoed the importance of social intelligence and collaboration. Conversely, De Fruyt (see 

Chapter 5) emphasised social skills and emotion regulation skills.  

The AI/robotics contingency did not offer taxonomies of KSAs, as pointed out by Hernández-Orallo (see 

Chapter 11). Instead, it focuses on functional components of intelligent mechanisms, such as knowledge 

representation, reasoning, planning, learning, perception, navigation and natural language processing. 

They evaluate how well the various computational models in AI/robotics compare with humans on tasks 

that focus on these functional components.  

Forbus and Davis (see Chapter 2 and Chapter 12, respectively) pointed out which components are easier 

for computers to achieve (such as remembering and accessing facts) and which are easier for humans 

(such as common sense reasoning). Avrin (see Chapter 15) discusses systematic evaluations of over 900 

AI systems on recognition capabilities, learning, understanding, generation and mission navigation.  

Nearly all of these evaluations of systems in AI/robotics have been on practical tasks. Such tasks, such as 

autonomous cars and text summarisation, have objective criteria of success. Moreover, the tasks typically 

focus on those performed by adults in the workforce. However, Cheke (see Chapter 17) covered low-level 

skills of animals whereas Chokron (see Chapter 4) focused on cognitive and social skills of children. These 

presentations address the second central issue of the expert meeting, namely identifying differences in 

what can be accomplished by humans versus AI/robotic systems.  

With this context in mind, the chapter raises three questions, with associated reflections and suggestions. 

These aim to shed light on the primary goal and two central issues of the AIFS project.  
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What is the value in identifying ideal models when comparing humans and 

artificial intelligence/robotic systems? 

Towards a formal model of performance to assess and compare humans and AI 

robots  

One could imagine an ideal specification (i.e. formal model) of performance on tasks, tests and functional 

components. Such a model could serve as a standard to assess and compare humans versus AI/robots. 

That would go a long way in providing a fair comparison on the capabilities of the two systems.  

A perfect ideal model is perhaps illusory, but there can be approximations. For example, accomplished 

human experts can specify ideal responses to tasks and tests. These could either solve a problem or meet 

a level of mastery in achieving particular tasks. Such a specification has both a content analysis and a 

threshold analysis.  

Content analysis 

The content specification would declare the particular behaviours and products that correspond to a 

successful accomplishment of a task. This approach is adopted by designers of intelligent tutoring systems 

(Koedinger, Corbett and Perfetti, 2012[1]; Graesser, Hu and Sottilare, 2018[2]). These systems identify 

knowledge components required to master a subject matter or skill (e.g. algebra, physics). They also 

prepare a Q-matrix that specifies the knowledge components associated with each particular problem, 

task, or item along with behavioural manifestations of each knowledge component mastery. A complete 

and accurate solution would be needed, but it might also consider intermediate levels of achievement.  

Threshold analysis 

While the content analysis is applied to each individual item on a test or step in a task, the threshold 

analysis is applied to an aggregate score from the entire test/task. The threshold analysis identifies points 

on a continuum of scores that predict practical external criterial outcomes (which is infrequently 

conducted). This contrasts with exclusively psychometric indices or breakpoints in the distribution of scores 

(which is routinely conducted). Analyses can assess how well a population of humans or AI/robot systems 

meet the various thresholds of scores.  

How well would a human vs. an artificial intelligence/robotics system perform?  

Each adult has decades of experiences to fortify them in a task. Information about this past is either 

non-existent or minimally specified through demographic data or assorted tests. AI/robotics systems are 

unlikely to have such data available. However, there are AI systems that learn with experience. The 
Never-Ending Language Learner (NELL), for example, runs 24 hours per day learning to read the web and 

grow a knowledge base of beliefs (Mitchell et al., 2018[3]).  

There are several possible approaches to understanding how AI/robotics system can be put on an even 

playing field with a human. The first approach assumes AI systems and humans have a different array of 

assets and resources, and thus are rarely on an even playing field. However, they can still be compared 

on tasks, which the AIFS project is planning. A second approach puts the system through a practice set of 

benchmark tasks for a month. It then grades performance on a test set, as in the case of the NIST 

methodology. A third approach is to conduct an AI/simulation over a long stretch of time or epochs of 

experiences. The performance produced in such tasks is then observed, as in NELL (Mitchell et al., 

2018[3]).  

A computational or information-theoretic analysis could specify a problem space, combinatorial landscape 

or another type of formal, quantitative model that identifies hypothetical alternatives and bone fide 
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solutions. For example, the iconic “travelling salesman problem” attempted to find a route between 40 cities 

that minimised the distance in travel time. The problem proved to be so hard that it would have required 

over 1 000 years on the fastest computer that existed 20-30 years ago. Who knows how the travelling 

salesman problem fares 30 years later? However, computational analyses like these can be posed for a 

fair comparison between humans and AI/robotics.  

Ideal models with both computational and human constraints 

There are ideal models that incorporate both computational and human constraints. For example, cognitive 

scientists often perform tasks analyses on particular problems or problem sets that decompose the solution 

plans and concrete steps in executing solutions (Anderson, 2009[4]; Laird, 2012[5]). Researchers can 

compute the probability and time of (sub)task completion, as well as the assorted solution strategies. 

A good example of this approach is the models of lower-level perceptual-motor tasks. These include the 

Goals, Operators, Methods and Selection Rules (GOMS) model (Card, Moran and Newell, 1983[6]) and 

CogTool (John, 2013[7]). A researcher first specifies a set of tasks and the model generates expected task 

completion times and other aspects of performance.  

GOMS and CogTool are based on an ideal rational model (much like Anderson’s ACT-R and Laird’s SOAR) 

and psychological components (such as perception-cognition-action cycles, production rules) and 

psychological laws. Fitt’s law, for example, computes the time to move a part of a body to a target. Hick’s 

law specifies that the time taken for a decision is a logarithmic function of the number of alternatives. The 

power law of practice specifies an exponentially decreasing function of task completion time as a function 

of number of attempts to complete a task.  

GOMS and CogTool are remarkably accurate in predicting performance in some tasks (Graesser et al., 

2018[8]) but not others that require higher-order reasoning. Consequently, GOMS is best used to 

complement rather than replace expert judgements of task difficulty. Nevertheless, for lower-level tasks 

involving well-practised procedures, researchers would have a foundation for comparing humans and 

robots. Similar approaches could be proposed for problem solving, reasoning, collaboration and other 

transversal skills (Sinatra et al., 2021[9]).  

How might systematic mapping occur between skill taxonomies, tasks, tests and 

functional artificial intelligence components? 

Participants at the expert meeting presented several skill taxonomies, tasks, tests and functional AI 

components. A few of these are presented below. 

 Carroll’s (1993) 3-Stratum model presented by Kyllonen (Chapter 3) 

As discussed in Chapter 3, Stratum 3 is a general intelligence factor, whereas Stratum 2 has eight 

constructs manifested in factor analyses: fluid intelligence, crystallised intelligence, general 

memory/learning, broad visual perception, broad auditory perception, broad retrieval ability, broad 

cognitive speediness and processing speed. Stratum 2 depends on the measures collected in Stratum 1, 

which consists of dozens of precisely operationalised tests from the field of psychological assessment 

(Carroll, 1993[10]). 

 Greiff and Dörendahl’s (Chapter 7) taxonomy (which includes transversal skills) 

There is a distinction between transversal skills (problem solving, collaboration, creativity, digital 

competence, global competence), core domain skills (mathematical, reading and science literacies) and 

basic cognitive skills (general mental ability, fluid reasoning, comprehension knowledge, working memory, 

and others discussed in Chapter 3).  
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 Cheke, Halina and Crosby’s taxonomy (which emphasises lower-level cognitive skills in both 

animals and humans) 

Object and space skills include spatial memory and navigation, object representations and causal 

reasoning. Social and communicative skills include social learning and communication and social 

cognition, with several behavioural tests or tasks to operationalise these major categories.  

 Hernández-Orallo’s functional components in AI/robotics 

The functional components in the list were knowledge representation, reasoning, planning, learning, 

perception, navigation and natural language processing. However, there may be others as AI/robotics 

evolves.  

There were other taxonomies and distinctions discussed in the expert meeting. These included emotion 

regulation, empathy, trust and other dimensions of human experience (smell was an intriguing example). 

Perhaps the detection of misinformation would be particularly relevant in the age of social media (Rapp 

and Braasch, 2014[11]). In theory, there are subcomponents of misinformation detection, such as identifying 

the expertise of the source of information, comparisons to information in other documents, status of the 

media outlet, and sophistication of the language or information delivery.  

Many skill categories and distinctions are potential candidates. Consequently, there are challenges in 

identifying which skills to include. One could adapt at least four approaches to meeting the challenges.  

 The comprehensive approach would include any skill included by two or more stakeholders in the 

project, noting the lack of impact of unusual singletons.  

 The consensus approach would include those skills that a sufficient number of stakeholders would 

endorse.  

 The intersection approach would include those skills that can be measured in both humans and 

AI/robots in action.  

 The theoretical approach would adopt one singular model for all to adhere to.  

Approaches to selecting functional components 

The intersection approach is compelling because the measures are available. This means it would be 

pragmatically strategic to implement them. However, this approach would need to consider 

comprehensiveness and the theoretical landscape. Perhaps the most pragmatic solution is to identify a 

small number of skills/tasks that represent different areas of the theoretical landscape.  

A consensus approach would require a mapping between the different categories in different taxonomies, 

as exemplified above. Such a mapping could facilitate understanding of the landscape of skills, but major 

difficulties will emerge. For example, reasoning in one taxonomy will mean something different in another 

taxonomy. To address these concerns, stakeholders would need to negotiate a common ground of 

conceptual meanings of constructs, operational definitions of measures and other considerations. These 

would need to be familiar to those in the world of assessment, as well as science more generally.  

Differences in semantics will occur between different research communities and stakeholders. For 

example, mundane plausible reasoning in human taxonomies is different from the formal reasoning in 

propositional calculus, AI’s theorem proving and even the inference rules in the CYC computer system that 

represents world knowledge (Lenat et al., 2010[12]). Humans do well on modus ponens (If X, then Y; X; 

therefore Y). They consistently fail on modus tollens (If X, then Y; not Y; therefore, not X). Further, they 

often embrace the abductive reasoning that has an illegitimate formal foundation (Rips, 1994[13]). Similarly, 

statistical reasoning is different in formal systems vs. humans. Humans are prone to have, for example, 

base-rate and hindsight biases (Kahneman, Slovic and Tversky, 1982[14]). Such facts, of course, have 

relevance to what humans versus AI/robot systems can accomplish. That is apparent and also interesting.  
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In sum, reasoning is different in the various taxonomies. These differences reflect the goals of the projects, 

differences in fields and history. Negotiations among relevant stakeholders will be necessary to converge 

on a common ground. The achievement of a deep mapping of categories between taxonomies is complex 

and perhaps unlikely at the fine-grain levels but routinely successful at a course-grain level.  

There are caveats, of course. The achievement of a loose mapping of categories is easier but possibly 

misleading because of non-trivial differences that end up getting missed. A small number of broad 

categories risks glossing over major differences in specific tasks/tests selected to represent the broad 

categories. Mapping between taxonomies is thus beset with serious challenges, but the history of 

assessment offers encouragement that the goals can be pragmatically achieved.  

Mapping taxonomies and tasks, tests and functional artificial intelligence 

components: the Q-matrix 

It is essential to generate mappings between particular taxonomies and the specific tasks, tests and 

functional AI components. In some circles, these are called a Q-matrix. Each item (e.g. question to answer, 

alternative to select, action to perform) in an evaluation scenario is assigned a code of attributes being 

assessed by an item (i.e. knowledge component, knowledge, skill, strategy, ability).  

There can be primary, secondary and tertiary codes in these expert annotations. Stakeholders from 

different professional communities can annotate the items in a candidate scenario on the taxonomy 

categories of importance. The analysts in each stakeholder community could adopt whatever standards 

and criteria they wish to adopt, as long as other stakeholders can understand them. 

What can be accomplished with the Q-matrices at hand from various stakeholders on candidate items in 

scenarios? The different stakeholders can evaluate and give feedback on whether the scenarios and items 

have a sufficient representation of the important taxonomic categories in their community.  

Just as countries give such feedback in OECD international assessments (e.g. the Programme for 

International Student Assessment), stakeholders from relevant communities can give their feedback. 

Approval of scenarios and tasks depends on constraint satisfaction and negotiation. Relevant stakeholders 

need input on most phases of the assessment – from selecting relevant scenarios and tasks to developing 

illuminating items with the associated constructs they manifest. Items in this context may be actions in 

addition to verbal contributions and decisions in conventional assessments.  

How can major differences be handled in targeted skills, different occupations 

and changes in the world?  

The tasks, tests and functional components under focus are different. Occupations have different 

expectations. Subject matters are different among the occupations. The world also changes in trajectories 

that differ among countries, languages and cultures. How can these differences be accommodated in AI 

systems?  

Consider separate implementations for each occupation, skill and time slice 

As one simple answer, AI will need separate implementations for each occupation, skills and time slices 

being considered. This can be accomplished surprisingly quickly if certain conditions are met: 

 a sufficient corpus of data for training and testing with machine learning  

 a sufficient crew of knowledge engineers for annotation of data (needed for supervised machine 

learning) and development of scripts, rules or other modules with authoring tools.  
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This would require funding. However, it is a matter of availability of resources, engineering and investments 

as opposed to a devasting bottleneck. Whether general AI principles and mechanisms can be gleaned 

from such activities is an open question.  

Compare timepoints 

It is, of course, important to address bias in many of these questions, as well as changes that occur over 

time. As articulated by Greiff and Dörendahl in Chapter 7, there is a shift in the need for transversal skills. 

Therefore, problem solving, collaboration, reasoning and creativity in the world will have a higher impact 

on predicting the successful workforce profile than will memory and routine perceptual-motor skills. The 

workforce data clearly reveal this shift (Autor, Levy and Murnane, 2003[15]; Elliott, 2017[16]).  

It could be argued that AI/robotics systems have not made significant headway in self-regulated activities 

and many of the transversal skills. This puts them at a disadvantage in these 21st century KSAs in contrast 

to their clear superiority in retrieving facts. Nevertheless, these points are non-problematic. For now, the 

goal is to identify what skills can be accomplished by humans vs. AI/robotics systems. 

Some comparisons between timepoints might help project the workforce of the future and assess 

generalisation of claims. In one approach, a collection of scenarios and tasks is representative of the past, 

vs. the present vs. the future in the ultimate assessment. That is, a subset of the scenarios would represent 

the world of ten years ago; another subset the present; and another subset the uncertain science fiction of 

the future.  

The three time points would crudely track trends over time on the measures collected from individuals at 

different age partitions and occupations. To increase the precision of temporal trends, time can be divided 

into finer slices. It would move from the past through present so that linear and non-linear trends can be 

detected and projected according to different quantitative models. However, projections would be 

considered with caution. Revolutionary disruptive historical changes periodically occur, such as war, 

pandemics like COVID-19 and the escalation of technology.  

The selection of assessment scenarios and items will need to accept how existing tests, tasks and 

functional AI components have a distinctive history that may resist compromise. Perhaps the assessment 

materials that end up being selected/created will be a blend of the different traditions. In this way, they may 

have a chance to pacify multiple stakeholders. Perhaps the selected assessment scenarios will be fortified 

by Q-matrices that have tentacles to most or all of the stakeholders. Whatever scenarios end up selected, 

systematic comparisons will be needed between humans and AI/robotic systems.  

Recommendations 

 Use ideal models as a neutral standard 

Some ideal models could serve as a neutral standard in comparisons of AI/robotics systems and humans. 

Ideal models are likely to stimulate exciting research on the data that end up being collected. However, 

they could potentially influence the selection of scenarios/tasks/tests.  

 Adopt an intersection approach to select tasks/tests for the comparisons  

The intersection approach uses tasks/skills/components that have been investigated both in psychology 

and AI, and covers different regions in the theoretical landscape. These decisions will require negotiations 

among stakeholders, as has been routinely accomplished for decades in the world of assessment. 

 Select scenarios, tasks and skills that present past, present and future 

The tasks performed in the work and daily lives of adults are known to vary over decades. Therefore, it 

would be prudent to select scenarios, tasks and skills that are representative of the past, present and 
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future. This would permit detection of trends over time for participants in different age groups, occupations 

and demographic characteristics. However, projections must be tempered with caution to the extent there 

are disruptive historical events such as COVID-19.  
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